Statisztika. Dr Gősi Zsuzsanna. Egyetemi adjunktus. Sportmenedzsment Tanszék
|
|
- Aurél Balla
- 8 évvel ezelőtt
- Látták:
Átírás
1 Statisztika Dr Gősi Zsuzsanna Egyetemi adjunktus Sportmenedzsment Tanszék
2 Kötelező irodalom - Számonkérés Pintér József Ács Pongrác Bevezetés a sportstatisztikába Dialóg Campus Kiadó 2007 Honlap: Írásbeli vizsga vizsgaidőszakban Elégséges 51%-tól
3 Mi is az a statisztika Tömegesen előforduló jelenségek mérése leírása és elemzése előrejelzése és szimulálása Módszertan ahhoz, hogy jobb döntéseket hozzunk
4 Statisztika részei I Leíró statisztika Adatgyűjtés Adatok ábrázolása Adatok csoportosítása, osztályozása Adatokkal végzett egyszerűbb aritmetikai műveletek Az eredmények megjelenítése /pl. a Nike félmaratonon 2007-ben az egyéni célba érkezők száma 4116, ebből a nők aránya 28,3%/
5 Statisztika részei II Következtetéses statisztika: jelenségekre, folyamatokra vonatkozóan olyan megállapításokat tehetünk, amelyek nem csak közvetlen megfigyelésen alapulnak matematikai képletek, valószínűségszámítás (A sportcsarnokban lévő világítótestek várható élettartama 3000 óra)
6 Statisztika részei III Statisztikai döntéselmélet több cselekvési lehetőség közül az optimálisnak vélt kiválasztásához ad számszerű információkat. /Beruházási döntések előkészítése, profil váltás előkészítése/
7 Statisztika alapfogalmak Sokaság: statisztikai megfigyelés tárgyát képző egyedek összességét.(sportolók, iskolai tornatermek.) Álló sokaság állapotot fejez ki (igazolt kézilabdázok száma) Mozgó sokaság folyamatok fejez ki, időtartamra (2007-ben Mo-ra érkező turisták száma)
8 Sokaság megfigyelése Teljes körű megfigyelés (népszámlálás) Részleges megfigyelés Reprezentatív felvétel jó következtetéseket lehet levonni az egészre Monográfia egy előzetes ismérv alapján szűkítjük a sokaságot
9 Statisztikai ismérv A statisztikai sokaság egyedeire vonatkozó tulajdonságokat, jellemzőket. A különbözőségeket kifejező tulajdonságok, jellemzők az ismérvek, lehetséges kimeneteli változatai a ismérvváltozók
10 Statisztikai ismérv Alternatív ismérv két ismérvváltozat van (férfi-nő, kapus-mezőnyjátékos) Általános ismérvek lehetnek Időbeli születési dátum Területi megye, város Minőségi első osztályú, másodosztályú Mennyiségi jövedelem, kapura lövések száma
11 Ismérv kapcsolatok Függetlenség egyik ismérv hovatartozásáról nem következtethetünk egy másik ismérv konkrét változatra Függvényszerű kapcsolat: egyik ismérv konkrétan meghatározza a másik ismérvet pl. munkaviszony kezdete(időbeli ismerév), meghatározza a munkában töltött időt (mennyiségi ismérv) Sztochasztikus kapcsolat valószínűség jelleg (a gól szám növekedése emeli a nézők létszámát) 11
12 Sztochasztikus kapcsolatok Asszociációs minőségi ismérvek kapcsolata Vegyes típusú egyik oldalon minőségi ismérv, mint ok a másik oldalon mennyiségi ismérv mint okozat szerepel Korrelációs kapcsolat mennyiségi ismérvek közötti kapcsolat
13 Csapat neve Példa (Milyen ismérv változatok szerepelnek a táblázatban? ) Sportág Cornexi Kézilabda Domino Vízilabda Alba Volán Jégkorong PVSK Kosárlabda Komló Kézilabda Helyezés Pontszám Játékoskeret (fő)
14 Statisztikai adat Olyan tapasztalati, empirikus szám, amely mérés vagy számlálás útján keletkezik. Adott számhoz tartozik sokaság, hely és idő megjelölés, valamint mértékegység. / vagy.. Hazánkban 2005-ben db kerékpárt gyártottak/
15 Adatok fajtái Abszolút adat pl: a labdarugó csapatok játékos kerete 387 fő Származtatott adat: abszolút adatokkal végzet műveletek viszonyszámok, átlagok pl. a játékos keret az elmúlt évhez viszonyítva 1,57%-kal bővült
16 Adatokkal szemben támasztott követelmények Pontosság Gazdaságosság Gyorsaság / az adatok néha csak korlátozottan pontosak pl. a Bajnokok Ligája elődöntőt 130 millió ember látta/
17 Mérési skálák Nominális skála Ordinális skála Intervallum skála Arányskála
18 Nominális skála Szimbólumok, számok csak az azonosítást szolgálják Jellemzően minőségi ismérv szerinti megfigyeléseknél alkalmazzuk PL. nemek, hajszín, állampolgárság
19 Ordinális skála Sorrendiségre vonatkozó relációk alapján rangsorba rendez. A sorrendi skálán nem biztos hogy az egyes elemek egymástól egyforma távolságra helyezkednek el. Pl. osztályzatok, minősítések, ranglisták
20 Intervallumskála Tiszta kvantitatív mértékeket használ. Sorrend mellett a skála bármely két pontja közötti távolság is értelmezhető. (de nem rendelkezik igazi zéro ponttal) Pl. a hőmérséklet, tengerszint feletti magasság
21 Arányskála hányados skála Igazi kvantitatív skála, vagy hányados skála A skálának zéro pontja van A nulla az adott tulajdonság abszolút hiányát jelzi Pl. hosszúság, súly, költség
22 Statisztikai adatok csoportosítása, osztályozás Csoportképző ismérvek kialakítása. Olyan ismérvek meghatározás, hogy adatok egyértelműen besorolhatók legyenek valamelyik csoportba (valamennyi egyed csak egy csoportba kerülhet) Rendszeresen használt ismérvváltozatokat nomenklatúrának nevezzük. Pl: FEOR, sportágak jegyzéke
23 Statisztikai sor statisztikai tábla A statisztikai adatok valamilyen ismérv szerinti felsorolását statisztikai sornak nevezzük. (időbeli, minőségi, mennyiségi és területi statisztikai sorok) A különböző fajta de egymással összefüggő adatokat tartalmazó sorokat leíró sornak nevezzük
24 Idősor Év -helyszín Magyar sportolók száma 1896 Athén Párizs St, Louis
25 Minőségi sor Játékban betöltött szerep Játékosok száma (fő) Kapus 3 Átlövő 4 Szélső 5 Beálló 6 Irányító 3 Összesen
26 Mennyiségi sor Gólok száma Góllövők száma
27 Területi sor Megye Sportegészségügyi rendelők száma Budapest 16 Baranya 6 Bács-Kiskun
28 Leíró sor Szakosztályi létesítmények száma 1db Igénybe vett szállítóeszközök 8 db Havi tagdíjbefizetések átlagos nagysága 3750 Ft/fő
29 Statisztikai tábla A statisztikai sorok összefüggő rendszere A táblának fontos elemei a cím, a forrás, a magyarázó szöveg A statisztikai tábla legalább két statisztikai sorból áll (két, három, több dimenziós tábla)
30 A 2005/2006-os női kosárlabda bajnokság csapatai A csapatok székhely szerint Maximális nézőszám Játékosok száma Szekszárd Diósgyőr Nagykanizsa
31 Táblák fajtái Egyszerű: amelyben csak összehasonlító vagy leíró sorok szerepelnek. (pl. leíró sor két időpontra vonatkozóan) Csoportosító: egy ismérv szerint végzünk benne csoportosítást.(pl. területi megoszlás és utána mennyiségi sorok..) Kombinációs tábla a minőségi statisztikai sorok csoportosító jellegűek
32 Összehasonlítás Gyakran alkalmazott, elemi módszer Statisztika adatok egymáshoz rendelése elemzési céllal Pl. átlagos havi jövedelem Magyarországon, átlagos havi jövedelem Ausztriában
33 Viszonyszámok Viszonyszám két egymással kapcsolatban álló statisztikai adat hányadosa A viszonyszám általános definíciója V = A/B V: a viszonyszám A: viszonyított adat B: viszonyítási alap
34 Viszonyszámok típusai Dinamikus viszonyszámok két időszak vagy időpont adatainak hányadosai A viszonyítás alapját képző időpontot szokták bázisidőszaknak, míg a viszonyítás tárgyát tárgy időszaknak nevezni. Kettőnél több időszak esetén beszélhetünk: Bázisviszonyszámról: a viszonyítási alap állandó Láncviszonyszám: a viszonyítási alap mindig az előző időszak
35 Képletek Bázis viszonyszám képlete Lánc viszonyszám képlete b i y i y 0 l i y y i i 1 ahol i= 1,2,3,..n
36 Összefüggések Bázisviszonyszámok hányadosa alapján megkaphatjuk a láncviszonyszámot Láncviszonyszámok szorzata a bázisviszonyszám
37 Sportolók vizsgálata Év Megvizsgált sportolók száma
38 Megoszlási viszonyszám Azt mutatja meg, hogy egy csoport az egész sokaságon belül mekkora részt képvisel p j m n j 1 j n j n j a j-edik csoport elemszám j 1,2,.m a csoportok száma
39 A népesség megoszlása gazdasági aktivitás szerint 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% 47,8 4,4 0 47,8 38,2 13,5 0 48,3 32,1 20,6 0 47,3 29,5 25,6 1,2 43,6 28,5 32,5 4,7 34,2 26,4 33,3 4,1 36, Aktív kereső Munkanélküli Inaktív kereső Eltartott
40 Az év során legalább egy könyvet olvasó éves férfiak és nők aránya azerint, hogy sportolnak-e, vagy sem, százalék sportol Férfi Nő nemsportol
41 Számolj megoszlási viszonyszámot az alábbi adatokból lakott lakások száma Budapest Többi város 776 ezer db ezer db Községek ezer db
Bevezető Mi a statisztika? Mérés Csoportosítás
Gazdaságstatisztika 1. előadás Kóczy Á. László Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Oktatók Előadó Kóczy Á. László (koczy.laszlo@kgk.bmf.hu) Fogadóóra: szerda 11:30 11:55, TA125 Gyakorlatvezető
Sta t ti t s i zt z i t k i a 3. előadás
Statisztika 3. előadás Statisztika fogalma Gyakorlati tevékenység Adatok összessége Módszertan A statisztika, mint gyakorlati tevékenység a tömegesen előforduló jelenségek egyedeire vonatkozó információk
Viszonyszám A B. Viszonyszám: két, egymással kapcsolatban álló statisztikai adat hányadosa, ahol A: a. viszonyítadóadat
Viszonyszámok Viszonyszám Viszonyszám: két, egymással kapcsolatban álló statisztikai adat hányadosa, ahol A: a viszonyítandó adat Viszonyítás tárgya (viszonyítandó adat) B: a viszonyítás alapja V viszonyítadóadat
[GVMGS11MNC] Gazdaságstatisztika
[GVMGS11MNC] Gazdaságstatisztika 1. előadás Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Óbudai Egyetem Oktatók Előadó Kóczy Á. László (koczy.laszlo@kgk.uni-obuda.hu)
2. előadás. Viszonyszámok típusai
2. előadás Viszonyszámok típusai Mérési skálák Nominális /névleges skála: kötetlen hozzárendelése a számoknak Sorrendi / Ordinális skála: sokaság egyedeinek egy közös tulajdonság szerinti sorbarendezése
STATISZTIKA I. A változók mérési szintjei. Nominális változók. Alacsony és magas mérési szint. Nominális változó ábrázolása
A változók mérési szintjei STATISZTIKA I. 3. Előadás Az adatok mérési szintjei, Viszonyszámok A változók az alábbi típusba tartozhatnak: Nominális (kategorikus és diszkrét) Ordinális Intervallum skála
Sta t ti t s i zt z i t k i a 1. előadás
Statisztika 1 előadás Témakörök Statisztikai alapfogalmak Statisztikai sorok Mennyiségi sorok csoportosítása Statisztikai táblák Statisztika fogalma Gyakorlati tevékenység Adatok összessége Módszertan
Statisztikai alapfogalmak
i alapfogalmak statisztikai sokaság: a megfigyelés tárgyát képező egyedek összessége 2 csoportja van: álló sokaság: mindig vmiféle állapotot, állományt fejez ki, adatai egy adott időpontban értelmezhetők
Megoldások. Az ismérv megnevezése közös megkülönböztető 2007. szeptember 10-én Cégbejegyzés időpontja
Megoldások 1. feladat A sokaság: 2007. szeptember 12-én a Miskolci Egyetem GT-204-es tankör statisztika óráján lévő tagjai az A 1 épület III. em. 53-as teremben 8-10-ig. Közös ismérv Megkülönböztető ismérv
KÖZPONTI STATISZTIKAI HIVATAL. Szóbeli vizsgatevékenység
KÖZPONTI STATISZTIKAI HIVATAL A vizsgarészhez rendelt követelménymodul azonosító száma, megnevezése: 2144-06 Statisztikai szervezői és elemzési feladatok A vizsgarészhez rendelt vizsgafeladat megnevezése:
Statisztikai alapfogalmak
Statisztika I. KÉPLETEK 2011-2012-es tanév I. félév Statisztikai alapfogalmak Adatok pontossága Mért adat Abszolút hibakorlát Relatív hibakorlát Statisztikai elemzések viszonyszámokkal : a legutolsó kiírt
Mintavétel fogalmai STATISZTIKA, BIOMETRIA. Mintavételi hiba. Statisztikai adatgyűjtés. Nem véletlenen alapuló kiválasztás
STATISZTIKA, BIOMETRIA. Előadás Mintavétel, mintavételi technikák, adatbázis Mintavétel fogalmai A mintavételt meg kell tervezni A sokaság elemei: X, X X N, lehet véges és végtelen Mintaelemek: x, x x
Statisztika 3. Dr Gősi Zsuzsanna Egyetemi adjunktus Koncentráció mérése Koncentráció általában a jelenségek tömörülését, összpontosulását értjük. Koncentráció meglétéről gyorsan tájékozódhatunk, ha sokaságot
A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015
A mérés problémája a pedagógiában Dr. Nyéki Lajos 2015 A mérés fogalma Mérésen olyan tevékenységet értünk, amelynek eredményeként a vizsgált jelenség számszerűen jellemezhetővé, más hasonló jelenségekkel
Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés. Gazdaságstatisztika KGK VMI
Gazdaságstatisztika 2. előadás Egy ismérv szerinti rendezés Kóczy Á. László KGK VMI Áttekintés Gyakorisági sorok Grafikus ábrázolásuk Helyzetmutatók Szóródási mutatók Az aszimmetria mérőszámai Koncentráció
Áruforgalom tervezése. 1. óra A gazdasági statisztika alapjai Alapfogalmak, viszonyszámok
Áruforgalom tervezése 1. óra A gazdasági statisztika alapjai Alapfogalmak, viszonyszámok Alapvető gazdasági számítások 1. Egy vállalkozás tevékenysége nagyon összetett. Szükség van arra, hogy ismerjük
Függetlenségvizsgálat, Illeszkedésvizsgálat
Varga Beatrix, Horváthné Csolák Erika Függetlenségvizsgálat, Illeszkedésvizsgálat 4. előadás Üzleti statisztika A sokaság/minta több ismérv szerinti vizsgálata A statisztikai elemzés egyik ontos eladata
Statisztika I. 2. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 2. előadás Előadó: Dr. Ertsey Imre Statisztikai sorok Meghatározott szempontok szerint kiválasztott két vagy több logikailag összetartozó statisztikai adat, statisztikai sort képez. általában
Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés
Gazdaságstatisztika 2. előadás Egy ismérv szerinti rendezés Kóczy Á. László KGK VMI Áttekintés Gyakorisági sorok Grafikus ábrázolásuk Helyzetmutatók Szóródási mutatók Az aszimmetria mérőszámai Koncentráció
Korrelációs kapcsolatok elemzése
Korrelációs kapcsolatok elemzése 1. előadás Kvantitatív statisztikai módszerek Két változó közötti kapcsolat Független: Az X ismérv szerinti hovatartozás ismerete nem ad semmilyen többletinformációt az
6. A kereskedelmi készletek elszámoltatása, az értékesítés elszámoltatása 46. Összefoglaló feladatok 48.
Tartalomjegyzék 1. Alapvető gazdasági számítások 4. 1.1. A gazdasági számítások jelentősége egy vállalkozás életében 4. 1.2. A gazdasági számításokkal szemben támasztott követelmények 4. 1.3. Milyen feladatokat
1. óra: Területi statisztikai alapok viszonyszámok, középértékek
1. óra: Területi statisztikai alapok viszonyszámok, középértékek Tér és társadalom (TGME0405-GY) gyakorlat 2018-2019. tanév Viszonyszámok Viszonyszá m Viszonyítandó adat (A) Viszonyítási alap (B) 1. Megoszlási
Statisztikai. Statisztika Üzleti szakügyintéző felsőfokú szakképzés I. évfolyam VS 210-4 (NFG ÜS302G4) 2010-2011-es tanév I. félév
Statisztika Üzleti szakügyintéző felsőfokú szakképzés I évfolyam VS 210-4 (NFG ÜS302G4) 2010-2011-es tanév I félév Statisztikai alapfogalmak Oktató: Dr Csáfor Hajnalka főiskolai docens Vállalkozás-gazdaságtan
Bevezetés a sportstatisztikába Ács Pongrác Pintér József
Bevezetés a sportstatisztikába Ács Pongrác Pintér József Bevezetés a sportstatisztikába Ács Pongrác Pintér József Publication date 2011 Szerzői jog 2011 Dialóg Campus Kiadó Copyright 2011., Ács Pongrác,
A statisztika alapjai - Bevezetés az SPSS-be -
A statisztika alapjai - Bevezetés az SPSS-be - Kvantitatív statisztikai módszerek Petrovics Petra, Géczi-Papp Renáta SPSS alapok Statistical Package for Social Sciences SPSS nézetek: Data View Variable
A lánc viszonyszám: A lánc viszonyszám számítási képlete:
A lánc viszonyszám: Az idősor minden egyes tagját a közvetlenül megelőzővel osztjuk, vagyis az idősor első évének, vagy időszakának láncviszonyszáma nem számítható. A lánc viszonyszám számítási képlete:
TANTÁRGYI ÚTMUTATÓ. Statisztika 1.
I. évfolyam BA TANTÁRGYI ÚTMUTATÓ Statisztika 1. TÁVOKTATÁS Tanév 2014/2015 II. félév A KURZUS ALAPADATAI Tárgy megnevezése: Statisztika 1. Tanszék: Módszertani Tantárgyfelelős neve: Sándorné Dr. Kriszt
Bevezetés az SPSS program használatába
Bevezetés az SPSS program használatába Statisztikai szoftver alkalmazás Géczi-Papp Renáta SPSS alapok Statistical Package for Social Sciences SPSS nézetek: Data View Variable View Output Viewer Sintax
Statisztika I. 2. előadás: Statisztikai táblák elemzése. Kóczy Á. László. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Óbudai Egyetem
Statisztika I 2 előadás: Statisztikai táblák elemzése Kóczy Á László koczylaszlo@kgkuni-obudahu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Óbudai Egyetem Eddig statisztikai alapfogalmak
Kvantitatív statisztikai módszerek
Kvantitatív statisztikai módszerek 1. konzultáció tárgyjegyző Dr. Szilágyi Roland Mérési skálák Számok meghatározott szabályok szerinti hozzárendelése jelenségekhez, bizonyos tulajdonságokhoz. 4 féle szabály
Statisztika 1. Tantárgyi útmutató
Módszertani Intézeti Tanszék Nappali tagozat Statisztika 1. Tantárgyi útmutató 2015/16 tanév II. félév 1/6 Tantárgy megnevezése: Statisztika 1. Tantárgy kódja: STAT1KAMEMM Tanterv szerinti óraszám: 2+2
Statisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus
Statisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus Gyakorisági sorok Mennyiségi ismérv jellemző rangsor készítünk. (pl. napi jegyeladások száma) A gyakorisági sor képzése igazából tömörítést jelent Nagyszámú
Matematikai statisztika
Matematikai statisztika PROGRAMTERVEZŐ INFORMATIKUS alapszak, A szakirány Arató Miklós Valószínűségelméleti és Statisztika Tanszék Természettudományi Kar 2019. február 11. Arató Miklós (ELTE) Matematikai
Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 8. előadás Előadó: Dr. Ertsey Imre Minták alapján történő értékelések A statisztika foglalkozik. a tömegjelenségek vizsgálatával Bizonyos esetekben lehetetlen illetve célszerűtlen a teljes
Statisztika I. 1. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 1. előadás Előadó: Dr. Ertsey Imre A STATISZTIKA FOGALMA 1. Gyakorlati számbavételi tevékenység tömegjelenségek számbavétele, elemzése összefüggések feltárása következtetések levonása Célja:
Méréselmélet MI BSc 1
Mérés és s modellezés 2008.02.15. 1 Méréselmélet - bevezetés a mérnöki problémamegoldás menete 1. A probléma kitűzése 2. A hipotézis felállítása 3. Kísérlettervezés 4. Megfigyelések elvégzése 5. Adatok
Biomatematika 2 Orvosi biometria
Biomatematika 2 Orvosi biometria 2017.02.05. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)
A statisztika alapjai - Bevezetés az SPSS-be -
A statisztika alapjai - Bevezetés az SPSS-be - Petrovics Petra PhD Hallgató SPSS (Statistical Package for the Social Sciences ) 2 file: XY.sav - Data View XY.spv - Output Ez lehet hosszabb név is Rövid
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.08. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)
Orvosi szociológia (1. szeminárium) KUTATÁSMÓDSZERTAN
Orvosi szociológia (1. szeminárium) KUTATÁSMÓDSZERTAN (Babbie) 1. Konceptualizáció 2. Operacionalizálás 3. Mérés 4. Adatfeldolgozás 5. Elemzés 6. Felhasználás KUTATÁS LÉPÉSEI 1. Konceptualizáció 2. Operacionalizálás
Statisztika I. 11. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 11. előadás Előadó: Dr. Ertsey Imre Összefüggés vizsgálatok A társadalmi gazdasági élet jelenségei kölcsönhatásban állnak, összefüggnek egymással. Statisztika alapvető feladata: - tényszerűségek
1. Előadás. Statisztikai alapfogalmak. A statisztikai munka fázisai. Statisztikai adatok csoportosításának lehetőségei. Statisztikai sorok, táblák.
1. Előadás Statisztikai alapfogalmak. A statisztikai munka fázisai. Statisztikai adatok csoportosításának lehetőségei. Statisztikai sorok, táblák. A statisztika fogalma gyakorlati tevékenység, amelynek
9.3. Külkereskedelmi statisztika...77 9.4. Pénzügystatisztika, az államháztartás információs rendszere...77 9.5. Agrárstatisztikai információs
Kovács Péter Statisztikai alapismeretek Tartalomjegyzék BEVEZETÉS...4. A STATISZTIKA ALAPFOGALMAI...5.. A statisztika tárgy, tudományági besorolása...5.. Alapfogalmak...6.3. A statisztikai munka fázisai...8.4.
3/29/12. Biomatematika 2. előadás. Biostatisztika = Biometria = Orvosi statisztika. Néhány egyszerű definíció:
Biostatisztika = Biometria = Orvosi statisztika Biomatematika 2. előadás Néhány egyszerű definíció: A statisztika olyan tudomány, amely a tömegjelenségekkel kapcsolatos tapasztalati törvényeket megfigyelések
AZ ÖSSZEHASONLÍTÁST TORZÍTÓ TÉNYEZŐK ÉS KISZŰRÉSÜK
BUDAPESTI GAZDASÁGI FŐISKOLA PÉNZÜGYI ÉS SZÁMVITELI KAR KONTROLLING-ELLENŐRZÉS INTÉZETI TANSZÉK ÖSSZEÁLLÍTOTTA: BLUMNÉ BÁN ERIKA ADJUNKTUS ELEMZÉS-ELLENŐRZÉS MÓDSZERTANA ÉS RENDSZERE 2. ELŐADÁS MUNKAVEZÉRLŐ
1. Egy Kft dolgozóit a havi bruttó kereseteik alapján csoportosítottuk: Havi bruttó bér, ezer Ft/fő
Figyelem! A példasor nem tartalmazza valamennyi típuspéldát. A dolgozatban az órán leadott feladatok közül bármely típusú előfordulhat. A példasor már a második dolgozat anyagát gyakorló feladatokat is
Matematika érettségi feladatok vizsgálata egyéni elemző dolgozat
Szent István Egyetem Gazdaság- és Társadalomtudományi Kar Statisztika I. Matematika érettségi feladatok vizsgálata egyéni elemző dolgozat Boros Daniella OIPGB9 Kereskedelem és marketing I. évfolyam BA,
Matematikai statisztika elıadás, földtudományi BSc (geológus szakirány) 2014/ félév Arató Miklós
Matematikai statisztika elıadás, földtudományi BSc (geológus szakirány) 2014/2015 2. félév Arató Miklós 1. elıadás: Bevezetés Irodalom, követelmények A félév célja Matematikai statisztika tárgya Történet
Statisztikai alapok. Leíró statisztika Lineáris módszerek a statisztikában
Statisztikai alapok Leíró statisztika Lineáris módszerek a statisztikában Tudományosan és statisztikailag tesztelhető állítások? A keserűcsokoládé finomabb, mint a tejcsoki. A patkány a legrondább állat,
Mérés és modellezés Méréstechnika VM, GM, MM 1
Mérés és modellezés 2008.02.04. 1 Mérés és modellezés A mérnöki tevékenység alapeleme a mérés. A mérés célja valamely jelenség megismerése, vizsgálata. A mérés tervszerűen végzett tevékenység: azaz rögzíteni
Matematikai alapok és valószínőségszámítás. Statisztikai változók Adatok megtekintése
Matematikai alapok és valószínőségszámítás Statisztikai változók Adatok megtekintése Statisztikai változók A statisztikai elemzések során a vizsgálati, vagy megfigyelési egységeket különbözı jellemzık
Sándorné dr. Kriszt Éva dr. Csesznák Anita. Statisztika I. Szerkesztette Sándorné dr. Kriszt Éva. Nemzedékek Tudása Tankönyvkiadó, Budapest
Sándorné dr. Kriszt Éva dr. Csesznák Anita Ország Gáborné Statisztika I. Szerkesztette Sándorné dr. Kriszt Éva Nemzedékek Tudása Tankönyvkiadó, Budapest TARTALOMJEGYZÉK Előszó... 9 1. A statisztika alapfogalmai...11
GAZDASÁGI STATISZTIKA
GAZDASÁGI STATISZTIKA Dr. Kun István GÁBOR DÉNES FŐISKOLA Tantárgy: Gazdasági statisztika Kódszám: 224 Lapszám: 1 TÉMAKÖRÖK A STATISZTIKA ALAPFOGALMAI STATISZTIKAI SOROK STATISZTIKAI TÁBLÁK ÖSSZETETT VISZONYSZÁMOK
STATISZTIKA I. Centrális mutatók. Helyzeti középértékek. Középértékek. Bimodális eloszlás, U. Módusz, Mo. 4. Előadás.
Centrális mutatók STATISZTIKA I. 4. Előadás Centrális mutatók 1/51 2/51 Középértékek Helyzeti középértékek A meghatározása gyakoriság vagy sorszám alapján Számítás nélkül Az elemek nagyság szerint rendezett
Tudnivalók a tantárgyról. Leíró és matematikai statisztika. Tudnivalók a tantárgyról/2. A tananyagról. Honlap: zempleni.elte.hu
Leíró és matematikai statisztika Matematika alapszak, matematikai elemző szakirány Zempléni András Valószínűségelméleti és Statisztika Tanszék Matematikai Intézet Természettudományi Kar Eötvös Loránd Tudományegyetem
2.1. A éves népesség munkanélküliségi rátája
2.1. A 15-64 éves népesség munkanélküliségi rátája Az aktív népesség arányában, % Az aktív korú népesség arányában, % férfi nő összesen férfi nő összesen 1990 1,4 1,1 1,4 1,1 0,7 0,9 1991 6,0 5,1 5,6 4,4
EPIDEMIOLÓGIA I. Alapfogalmak
EPIDEMIOLÓGIA I. Alapfogalmak TANULJON EPIDEMIOLÓGIÁT! mert része a curriculumnak mert szüksége lesz rá a bármilyen tárgyú TDK munkában, szakdolgozat és rektori pályázat írásában mert szüksége lesz rá
STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM.
STATISZTIKA 5 4,5 4 3,5 3 2,5 2 1,5 1 0,5 0 MAGY. MAT. TÖRT. KÉM. ANNA BÉLA CILI András hármas. Béla Az átlag 3,5! kettes. Éva ötös. Nóri négyes. 1 mérés: dolgokhoz valamely szabály alapján szám rendelése
Mérés és modellezés 1
Mérés és modellezés 1 Mérés és modellezés A mérnöki tevékenység alapeleme a mérés. A mérés célja valamely jelenség megismerése, vizsgálata. A mérés tervszerűen végzett tevékenység: azaz rögzíteni kell
10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK
MATEMATIK A 9. évfolyam 10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK KÉSZÍTETTE: CSÁKVÁRI ÁGNES Matematika A 9. évfolyam. 10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK Tanári útmutató 2 MODULLEÍRÁS A modul
Mi az adat? Az adat elemi ismeret. Az adatokból információkat
Mi az adat? Az adat elemi ismeret. Tények, fogalmak olyan megjelenési formája, amely alkalmas emberi eszközökkel történő értelmezésre, feldolgozásra, továbbításra. Az adatokból gondolkodás vagy gépi feldolgozás
MUNKAANYAG. Bernáth Julianna. Alapvető statisztikai módszerek a vállalkozás tevékenységét érintő javaslatok előkészítéséhez
Bernáth Julianna Alapvető statisztikai módszerek a vállalkozás tevékenységét érintő javaslatok előkészítéséhez A követelménymodul megnevezése: A beszerzés és az értékesítés előkészítése, megszervezése
[GVMGS11MNC] Gazdaságstatisztika
[GVMGS11MNC] Gazdaságstatisztika 5. előadás Érték-, ár-, és volumenindexek http://uni-obuda.hu/users/koczyl/gazdasagstatisztika.htm Kóczy Á. László KGK-VMI Az indexszám fogalma Gazdasági elemzésben fontos
55 345 01 0010 55 01 Európai Uniós üzleti
A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,
Kutatásmódszertan és prezentációkészítés
Kutatásmódszertan és prezentációkészítés 10. rész: Az adatelemzés alapjai Szerző: Kmetty Zoltán Lektor: Fokasz Nikosz Tizedik rész Az adatelemzés alapjai Tartalomjegyzék Bevezetés Leíró statisztikák I
Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus
Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár PhD kurzus Mi a statisztika? A sokaság (a sok valami) feletti áttekintés megszerzése, a sokaságról való információszerzés eszköze. Célja: - a sokaságot
55 345 01 0010 55 01 Európai Uniós üzleti
A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,
Módszertani Intézeti Tanszéki Osztály. A megoldás részletes mellékszámítások hiányában nem értékelhető!
BGF KKK Módszertani Intézeti Tanszéki Osztály Budapest, 2012.. Név:... Neptun kód:... Érdemjegy:..... STATISZTIKA II. VIZSGADOLGOZAT Feladatok 1. 2. 3. 4. 5. 6. Összesen Szerezhető pontszám 21 20 7 22
Statisztika 10. évfolyam. Adatsokaságok ábrázolása és diagramok értelmezése
Adatsokaságok ábrázolása és diagramok értelmezése A statisztikában adatsokaságnak (mintának) nevezik a vizsgálat tárgyát képező adatok összességét. Az adatokat összegyűjthetjük táblázatban és ábrázolhatjuk
Emberi légzésvizsgálat (Spirometria)
Emberi légzésvizsgálat (Spirometria) Légzési térfogatok meghatározása és összehasonlítása Állati Struktúra és Funkció II. gyakorlat A mérést és kiértékelést végezték:.. Gyakorlatvezető:. Időpont: 1. kísérleti
Bevezető Mi a statisztika? Mérés Feldolgozás Adatok rendezése Adatok jellemzése Időbeli elemzés Feladatok. Statisztika I.
Statisztika I. 1. előadás: A statisztika alapfogalmai Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Óbudai Egyetem A kurzusról A kurzus célja
EPIDEMIOLÓGIA I. Alapfogalmak
EPIDEMIOLÓGIA I. Alapfogalmak TANULJON EPIDEMIOLÓGIÁT! mert része a curriculumnak mert szüksége lesz rá a bármilyen tárgyú TDK munkában, szakdolgozat és rektori pályázat írásában mert szüksége lesz rá
Ranglista és Minősítési Szabályzat
MAGYAR TOLLASLABDA SZÖVETSÉG Hatályos: 2013.január 1-től Az MTLSZ Elnöksége által elfogadva 2013.január 7-én Készítette: Bakó László és Borka György 1 1 Egyéni ranglista 1.1 Az MTLSZ minden Ranglista verseny
STATISZTIKAI ADATOK. Összeállította fazekas károly köllő jános lakatos judit lázár györgy
STATISZTIKAI ADATOK Összeállította fazekas károly köllő jános lakatos judit lázár györgy statisztikai adatok A 2000-től kiadott Munkaerőpiaci Tükörben publikált munkaerőpiaci folyamatokat leíró táblázatok
ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó június
GAZDASÁGSTATISZTIKA GAZDASÁGSTATISZTIKA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi
Módszertani leírás a Munkaerő-felmérés II. negyedévi Megváltozott munkaképességűek a munkaerőpiacon című kiegészítő felvételhez
Az alapfelvétel jellemzői Módszertani leírás a Munkaerő-felmérés 2011. II. negyedévi Megváltozott munkaképességűek a munkaerőpiacon című kiegészítő felvételhez A Központi Statisztikai Hivatal a lakosság
2013 ŐSZ. 1. Ismertesse a mérési skálák tulajdonságait és a közöttük lévő összefüggéseket.
GAZDASÁGSTATISZTIKA KIDOLGOZOTT ELMÉLETI KÉRDÉSEK AZ 1. ZH-HOZ 2013 ŐSZ (Jelen kérdések az első zh összes elméleti témakörét összegzik, melyeket egymásra épülő sorrendben, illetve tematika szerinti bontásban
Mérés és skálaképzés. Kovács István. BME Menedzsment és Vállalatgazdaságtan Tanszék
Mérés és skálaképzés Kovács István BME Menedzsment és Vállalatgazdaságtan Tanszék Miröl is lesz ma szó? Mi is az a mérés? A skálaképzés alapjai A skálaképzés technikái Összehasonlító skálák Nem összehasonlító
Általános statisztika I. Havasy, György Molnár, Máténé Szunyogh, Zsuzsanna Tóth, Mártonné Korpás, Attiláné Csernyák, László
Általános statisztika I Havasy, György Molnár, Máténé Szunyogh, Zsuzsanna Tóth, Mártonné Korpás, Attiláné Csernyák, László Általános statisztika I Havasy, György Molnár, Máténé Szunyogh, Zsuzsanna Tóth,
Sztochasztikus kapcsolatok
Sztochasztikus kapcsolatok Petrovics Petra PhD Hallgató Ismérvek közötti kapcsolat (1) Függvényszerű az egyik ismérv szerinti hovatartozás egyértelműen meghatározza a másik ismérv szerinti hovatartozást.
Módszertani Intézeti Tanszéki Osztály
BGF KKK Módszertani Intézeti Tanszéki Osztály Budapest, 2012. Név:... Kód:...... Eredmény:..... STATISZTIKA I. VIZSGA; NG KM ÉS KG TQM SZAKOKON MINTAVIZSGA Feladatok 1. 2. 3. 4. 5. 6. Összesen Szerezhető
Matematika kisérettségi I. rész 45 perc NÉV:...
Matematika kisérettségi I. rész 45 perc NÉV:... 1. Az A halmaz elemei a háromnál nagyobb egyjegyű számok, a B halmaz elemei pedig a húsznál kisebb pozitív páratlan számok. Sorolja fel az halmaz elemeit!
y ij = µ + α i + e ij
Elmélet STATISZTIKA 3. Előadás Variancia-analízis Lineáris modellek A magyarázat a függő változó teljes heterogenitásának két részre bontását jelenti. A teljes heterogenitás egyik része az, amelynek okai
Dr. Szabó Tamás a Nemzeti Sport Intézet főigazgatója MOB-alelnök
NEMZETI SPORT INTÉZET Dr. Szabó Tamás a Nemzeti Sport Intézet főigazgatója MOB-alelnök LEZÁRULT EGY KORSZAK A tehetséggondozó programok 9-10 évesek. Új struktúra áll fel. Új források jelennek meg. HÁROM
Statisztikai mutatók leírása
Munkaerő-piaci monitoring EURES-T Pannonia Statisztikai mutatók leírása 1. Népesség Forrás: Központ Statisztikai Hivatal Lakónépesség az adott területen lakóhellyel rendelkező és másutt tartózkodási hellyel
MAGYAR VÍZILABDA SZÖVETSÉG A ÉVI BENU FÉRFI ÉS NŐI MAGYAR KUPA VERSENYKIÍRÁSA 2016/2017. ÉVI BAJNOKI SZEZON
MAGYAR VÍZILABDA SZÖVETSÉG A 2016. ÉVI BENU FÉRFI ÉS NŐI MAGYAR KUPA VERSENYKIÍRÁSA 2016/2017. ÉVI BAJNOKI SZEZON 1. ÁLTALÁNOS RENDELKEZÉSEK 1.1 A Magyar Kupa mérkőzéssorozat célja: A Magyar Kupa mérkőzéssorozat
KÖZLEKEDÉSI ALAPISMERETEK (KÖZLEKEDÉS-ÜZEMVITEL)
ÉRETTSÉGI VIZSGA 2015. május 19. KÖZLEKEDÉSI ALAPISMERETEK (KÖZLEKEDÉS-ÜZEMVITEL) EMELT SZINTŰ ÍRÁSBELI VIZSGA 2015. május 19. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati
A sportszövetségek bevételi szerkezetének változása a TAO sportágak körében
A sportszövetségek bevételi szerkezetének változása a TAO sportágak körében A TAO; tapasztalatok, elemzések, értékelések, perspektívák a látványsportok támogatási rendszerében Testnevelési Egyetem 2017.09.28
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen
STATISZTIKA I. 3. rész. T.Nagy Judit
STATSZTKA. 3. rész T.Nagy Judit tnagy.judit@hjf.hu Standardizálás és standardizáláson alauló indexszámítás nhomogén (heterogén) sokaságokra vonatkozó átlagok; intenzitási viszonyszámok (átlagbérek, átlagos
Matematika feladatbank I. Statisztika. és feladatgyűjtemény középiskolásoknak
Matematika feladatbank I. Statisztika Elméleti összefoglaló és feladatgyűjtemény középiskolásoknak ÍRTA ÉS ÖSSZEÁLLÍTOTTA: Dugasz János 2011 Fapadoskonyv.hu Kft. Dugasz János Tartalom Bevezető 7 Adatok
TÁJÉKOZTATÓ BÉKÉS MEGYE NÉPEGÉSZSÉGÜGYI HELYZETÉRŐL
NÉPEGÉSZSÉGÜGYI FŐOSZTÁLY TÁJÉKOZTATÓ BÉKÉS MEGYE NÉPEGÉSZSÉGÜGYI HELYZETÉRŐL 2015. november 2. Tartalomjegyzék Fogalmak... 4 Demográfia népesség, népmozgalom, foglalkoztatottság... 6 Halálozás (mortalitás)
Kőnig-Görögh Dóra 1,2 Dr. Ökrös Csaba 1
Fiatal Sporttudósok IV. Országos Konferenciája 2016.12.03. Budapest Kőnig-Görögh Dóra 1,2 Dr. Ökrös Csaba 1 1 Testnevelési Egyetem 2 Debreceni Egyetem Gyermeknevelési és Felnőttképzési Kar BEVEZETÉS A
Statisztika I. 7. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 7. előadás Előadó: Dr. Ertsey Imre STATISZTIKAI INDEXEK STATISZTIKAI INDEXEK Index: latin eredetű szó, egyszerűen mutatót jelent A statisztikai indexszám: - komplexebb tartalmú, - többet
Általános és gazdasági statisztika. Csugány Julianna
Általános és gazdasági statisztika Csugány Julianna MÉDIAINFORMATIKAI KIADVÁNYOK Általános és gazdasági statisztika Csugány Julianna Eger, 2015 Hungarian Online University Ágazati informatikai együttműködés
1. előadás Horváthné Csolák Erika
1. előadás Horváthné Csolák Erika tanársegéd ppt: Dr. Varga Beatrix anyaga A statisztika fogalma gyakorlati tevékenység, amelynek eredményeképpen statisztikai adatokhoz jutunk; e tevékenység eredményeképpen
STATISZTIKA. Gyakorló feladatok az első zh-ra
STATISZTIKA Gyakorló feladatok az első zh-ra A változás átlagos üteme év Kenyér Ft/ kg bázisindex % 2002 151 100,0 2003 156 103,3 2004 178 117,9 2005 173 114,6 2006 179 118,5 2007 215 142,4 I = n 1 l i
Hipotézis, sejtés STATISZTIKA. Kétmintás hipotézisek. Tudományos hipotézis. Munkahipotézis (H a ) Nullhipotézis (H 0 ) 11. Előadás
STATISZTIKA Hipotézis, sejtés 11. Előadás Hipotézisvizsgálatok, nem paraméteres próbák Tudományos hipotézis Nullhipotézis felállítása (H 0 ): Kétmintás hipotézisek Munkahipotézis (H a ) Nullhipotézis (H
TANMENET. Matematika
Bethlen Gábor Református Gimnázium és Szathmáry Kollégium 6800 Hódmezővásárhely, Szőnyi utca 2. Telefon: +36-62-241-703 www.bgrg.hu OM: 029736 TANMENET Matematika 2016/2017 5.A természettudományos képzés
STATISZTIKA. Mit nevezünk idősornak? Az idősorok elemzésének módszertana. Az idősorelemzés célja. Determinisztikus idősorelemzés
Mit nevezünk idősornak? STATISZTIKA 10. Előadás Idősorok analízise Egyenlő időközökben végzett megfigyelések A sorrend kötött, y 1, y 2 y t y N N= időpontok száma Minden időponthoz egy adat, reprodukálhatatlanság