Orvosi szociológia (1. szeminárium) KUTATÁSMÓDSZERTAN
|
|
- Liliána Kisné
- 9 évvel ezelőtt
- Látták:
Átírás
1 Orvosi szociológia (1. szeminárium) KUTATÁSMÓDSZERTAN
2 (Babbie)
3 1. Konceptualizáció 2. Operacionalizálás 3. Mérés 4. Adatfeldolgozás 5. Elemzés 6. Felhasználás KUTATÁS LÉPÉSEI
4 1. Konceptualizáció 2. Operacionalizálás 3. Mérés 4. Adatfeldolgozás 5. Elemzés 6. Felhasználás KUTATÁS LÉPÉSEI
5 KONCEPTUALIZÁCIÓ az a folyamat, melynek során pontosan meghatározzuk, hogy az egyes kifejezéseken mit fogunk érteni Példa: egészség jelentése
6 VÁLTOZÓ ÉS ATTRIBÚTUM Attribútum: valamely dolog tulajdonsága Változó: logikailag egymáshoz tartozó attribútumok halmaza
7 VÁLTOZÓ ÉS ATTRIBÚTUM Változó: logikailag egymáshoz tartozó attribútumok halmaza (Babbie) azok az ismérvek, amelyek a kérdéses jelenségről az információt hordozzák (Vargha 21.)
8 Példa: egészség attribútumai: - testi jóllét, - lelki jóllét, - szociális jóllét változó (3 attribútummal): testi jóllét és lelki jóllét és szociális jóllét
9 EGÉSZSÉGÜGYI VILÁGSZERVEZET (WORLD HEALTH ORGANIZATION, WHO) Az egészség a teljes testi, lelki és szociális jólét állapota, és nem csupán a betegség vagy fogyatékosság hiánya (1948)
10 A VÁLTOZÓ ÉRTÉKKÉSZLETE a változó lehetséges különböző értékeinek az együttese Példa: Nem [változó] férfi Nem (Férfi,Nő) nő [a változó lehetséges értékei]
11 ELEF (1. HÁZTARTÁSBAN ÉLŐK FONTOSABB ADATAI) 5. Mi az Ön hivatalos családi állapota? 1 nőtlen/hajadon 2 házas és együtt is élnek (beleértve a bejegyzett élettársi kapcsolatot is) 3 házas, de külön él 4 özvegy 5 elvált (beleértve a jogilag megszüntetett élettársi kapcsolatot is) 8 NT 9 NK
12 PARAMÉTER egy változó valamely összefoglaló jellemzője egy populációban Példa: * Átlag * Medián * Módusz
13 1. Konceptualizáció 2. Operacionalizálás 3. Mérés 4. Adatfeldolgozás 5. Elemzés 6. Felhasználás KUTATÁS LÉPÉSEI
14 OPERACIONALIZÁLÁS azon konkrét eljárások kialakítása, melyek eredményeképpen a definiált fogalmat megjelenítő empirikus megfigyelésekhez juthatunk Példa: jövedelemosztályok
15 A MÉRÉSI SZINT MEGHATÁROZÁSA meghatározzuk a mért változó típusát Társadalomtudományos változók típusai: A. nominális B. ordinális C. arány D. intervallum
16 TÁRSADALOMTUDOMÁNYOS VÁLTOZÓK TÍPUSAI Változó Szám tulajdonsága Értelmes példa ARÁNYSKÁLA TÍPUSÚ INTERVALLUM- SKÁLA TÍPUSÚ ORDINÁLIS 1. nagyság szerint sorba rendezhetők 2. összeadhatók és kivonhatók 3. más számokkal megszorozhatók és eloszthatók 1. nagyság szerint sorba rendezhetők 2. összeadhatók és kivonhatók 1. nagyság szerint sorba rendezhetők x<y,x>y x-y,y-x x/y,y/x x<y,x>y x-y,y-x x<y,x>y testmagasság, testsúly Celsius-skálán mért testhőmérséklet iskolai végzettség NOMINÁLIS *egyik sem* társadalmi nem, családi állapot, pszichiátriai diagn.
17 ! ESETENKÉNT TÖBB VÁLTOZÓVAL IS MÉRHETÜNK Példa: cigarettázási szokás Nominális változó Ordinális változó Arányskálájú változó Cigarettázik Nem cigarettázik Rendszeresen sokat szív Csak alkalmanként cigarettázik Soha nem cigarettázik Naponta átlagosan elszívott cigaretták száma
18 A MÉRÉS TERJEDELMÉNEK A MEGHATÁROZÁSA a kutatás szempontjából lehetséges értékek értéktartományainak meghatározása Példa: vagyoni helyzet jövedelemszint osztályok forintnál kisebb forint
19 ELEF (15. A HÁZTARTÁS JÖVEDELME) Kérem mondja meg a 19. VÁLASZLAP segítségével, hogy melyik jövedelemsávba sorolható az Önök háztartásának havi nettó összjövedelme? forintnál kisebb forint forint forint forint forint forint forint forint forint forint ezer forintnál több 88 NT 99 NK
20 ELEMZÉSI EGYSÉG az a dolog, amit megfigyelünk
21 MINTAVÉTEL a megfigyelendők kiválasztásának a folyamata POPULÁCIÓ (statisztikai sokaság) - valamilyen közös tulajdonsággal rendelkező megfigyelési/elemzési/ egységek összessége MINTA - az egyedeknek az az összessége, amelyre a statisztikai következtetés vonatkozik - a konkrét kutatásba bevont, ténylegesen rendelkezésre álló és megvizsgált megfigyelési egységek együttese
22 MINTAVÉTEL KÉT FORMÁJA I. Valószínűségi a mintaválasztás során a populáció minden egyedének ugyanakkora esélyt biztosítunk a mintába való bekerülésre II. Nem valószínűségi
23 REPREZENTATIVITÁS A valószínűségi mintavétel alapgondolata egy mintából akkor vonhatunk le használható következtetéseket a teljes sokaságra nézve, ha a mintának lényegében ugyanolyan az összetétele, mint az alapsokaságnak
24 II. Nem valószínűségi 4 formája: A. Egyszerűen elérhető alanyok B. Szakértői kiválasztás C. Hólabda módszer D. Kvótás mintavétel
25 MINTAVÉTEL KÉT FORMÁJA I. Valószínűségi ez a nagy mintán végzett kérdőíves felmérések helyes kiválasztási eljárása II. Nem valószínűségi
26 1. Konceptualizáció 2. Operacionalizálás 3. Mérés 4. Adatfeldolgozás 5. Elemzés 6. Felhasználás KUTATÁS LÉPÉSEI
27 A MÉRÉSSEL SZEMBEN TÁMASZTOTT KÖVETELMÉNYEK 1) Megbízhatóság + 2) Érvényesség az adott mérés, ha ismételten alkalmazzuk ugyanarra a tárgyra, ugyanazt az eredményt adja a mérés tükrözi a szóban forgó fogalom valódi jelentését
28 1. Konceptualizáció 2. Operacionalizálás 3. Mérés 4. Adatfeldolgozás 5. Elemzés 6. Felhasználás KUTATÁS LÉPÉSEI
29 1. Konceptualizáció 2. Operacionalizálás 3. Mérés 4. Adatfeldolgozás 5. Elemzés 6. Felhasználás KUTATÁS LÉPÉSEI
30 ADATELEMZÉS I. Kvantitatív nyert adatok numerikus elemzése II. Kvalitatív kvalitatív módszerekkel nyert adatok nem numerikus elemzése
31 1. Konceptualizáció 2. Operacionalizálás 3. Mérés 4. Adatfeldolgozás 5. Elemzés 6. Felhasználás KUTATÁS LÉPÉSEI
32 Köszönöm a figyelmet!
Mintavétel fogalmai STATISZTIKA, BIOMETRIA. Mintavételi hiba. Statisztikai adatgyűjtés. Nem véletlenen alapuló kiválasztás
STATISZTIKA, BIOMETRIA. Előadás Mintavétel, mintavételi technikák, adatbázis Mintavétel fogalmai A mintavételt meg kell tervezni A sokaság elemei: X, X X N, lehet véges és végtelen Mintaelemek: x, x x
Statisztikai alapok. Leíró statisztika Lineáris módszerek a statisztikában
Statisztikai alapok Leíró statisztika Lineáris módszerek a statisztikában Tudományosan és statisztikailag tesztelhető állítások? A keserűcsokoládé finomabb, mint a tejcsoki. A patkány a legrondább állat,
Az empirikus vizsgálatok alapfogalmai
Az empirikus vizsgálatok alapfogalmai Az adatok forrása és jellege Milyen kísérleti típusok fordulnak elő a beszédtudományokban? Milyen adatok jönnek ki ezekből? Tudományosan (statisztikailag) megválaszolható
KUTATÁSMÓDSZERTAN 4. ELŐADÁS. A minta és mintavétel
KUTATÁSMÓDSZERTAN 4. ELŐADÁS A minta és mintavétel 1 1. A MINTA ÉS A POPULÁCIÓ VISZONYA Populáció: tágabb halmaz, alapsokaság a vizsgálandó csoport egésze Minta: részhalmaz, az alapsokaság azon része,
Matematikai alapok és valószínőségszámítás. Statisztikai változók Adatok megtekintése
Matematikai alapok és valószínőségszámítás Statisztikai változók Adatok megtekintése Statisztikai változók A statisztikai elemzések során a vizsgálati, vagy megfigyelési egységeket különbözı jellemzık
Dr. Nagy Zita Barbara igazgatóhelyettes KÖVET Egyesület a Fenntartható Gazdaságért november 15.
Dr. Nagy Zita Barbara igazgatóhelyettes KÖVET Egyesület a Fenntartható Gazdaságért 2018. november 15. PÉNZ a boldogság bitorlója? A jövedelemegyenlőtlenség természetes határa A boldog ember gondolata a
Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus
Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár PhD kurzus Mi a statisztika? A sokaság (a sok valami) feletti áttekintés megszerzése, a sokaságról való információszerzés eszköze. Célja: - a sokaságot
Vargha András Károli Gáspár Református Egyetem Budapest
Vargha András Károli Gáspár Református Egyetem Budapest Kötelező irodalom a kurzushoz Vargha András: Matematikai statisztika pszichológiai, nyelvészeti és biológiai alkalmazásokkal (2. kiadás). Pólya Kiadó,
Kvantitatív kutatás mire figyeljünk? Majláth Melinda PhD Tartalom. Kutatási kérdés kérdőív kérdés. Kutatási kérdés kérdőív kérdés
Kvantitatív kutatás mire figyeljünk?. Tartalom Kutatási kérdés Mintaválasztás Kérdésfeltevés Elemzés Jánossy Ferenc Szakkollégium- TDK felkészítő előadások sorozat, 2016. február Óbudai Egyetem Mintavétel
Mintavételi eljárások
Mintavételi eljárások Daróczi Gergely, PPKE BTK 2008. X.6. Óravázlat A mintavétel célja Alapfogalmak Alapsokaság, mintavételi keret, megfigyelési egység, mintavételi egység... Nem valószínűségi mintavételezési
A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015
A mérés problémája a pedagógiában Dr. Nyéki Lajos 2015 A mérés fogalma Mérésen olyan tevékenységet értünk, amelynek eredményeként a vizsgált jelenség számszerűen jellemezhetővé, más hasonló jelenségekkel
A kutatási terv. 1. Pontosan meg kell határoznunk, hogy mi az, amit meg akarunk tudni. 2. Meg kell határoznunk, hogyan lehet ezt legjobban kideríteni
A kutatási terv A tudomány a dolgok kiderítésének szentelt vállalkozás. Bármit is akarunk kideríteni azt többféleképpen is megtehetjük. Mielőtt azonban megfigyeléseket végeznénk, tervre van szükségünk.
Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus. KOKI,
Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár PhD kurzus. KOKI, 2015.09.17. Mi a statisztika? A sokaság (a sok valami) feletti áttekintés megszerzése, a sokaságról való információszerzés eszköze.
A társadalomkutatás módszerei I.
A társadalomkutatás módszerei I. 2. hét Daróczi Gergely Budapesti Corvinus Egyetem 2011. IX. 22. Outline 1 Bevezetés 2 Társadalomtudományi módszerek Beavatkozásmentes vizsgálatok Kvalitatív terepkutatás
Bevezető Mi a statisztika? Mérés Csoportosítás
Gazdaságstatisztika 1. előadás Kóczy Á. László Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Oktatók Előadó Kóczy Á. László (koczy.laszlo@kgk.bmf.hu) Fogadóóra: szerda 11:30 11:55, TA125 Gyakorlatvezető
STATISZTIKA I. A változók mérési szintjei. Nominális változók. Alacsony és magas mérési szint. Nominális változó ábrázolása
A változók mérési szintjei STATISZTIKA I. 3. Előadás Az adatok mérési szintjei, Viszonyszámok A változók az alábbi típusba tartozhatnak: Nominális (kategorikus és diszkrét) Ordinális Intervallum skála
Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 8. előadás Előadó: Dr. Ertsey Imre Minták alapján történő értékelések A statisztika foglalkozik. a tömegjelenségek vizsgálatával Bizonyos esetekben lehetetlen illetve célszerűtlen a teljes
[GVMGS11MNC] Gazdaságstatisztika
[GVMGS11MNC] Gazdaságstatisztika 1. előadás Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Óbudai Egyetem Oktatók Előadó Kóczy Á. László (koczy.laszlo@kgk.uni-obuda.hu)
3/29/12. Biomatematika 2. előadás. Biostatisztika = Biometria = Orvosi statisztika. Néhány egyszerű definíció:
Biostatisztika = Biometria = Orvosi statisztika Biomatematika 2. előadás Néhány egyszerű definíció: A statisztika olyan tudomány, amely a tömegjelenségekkel kapcsolatos tapasztalati törvényeket megfigyelések
Mi az adat? Az adat elemi ismeret. Az adatokból információkat
Mi az adat? Az adat elemi ismeret. Tények, fogalmak olyan megjelenési formája, amely alkalmas emberi eszközökkel történő értelmezésre, feldolgozásra, továbbításra. Az adatokból gondolkodás vagy gépi feldolgozás
Közösségi kezdeményezéseket megalapozó szükségletfeltárás módszertana. Domokos Tamás, módszertani igazgató
Közösségi kezdeményezéseket megalapozó szükségletfeltárás módszertana Domokos Tamás, módszertani igazgató A helyzetfeltárás célja A közösségi kezdeményezéshez kapcsolódó kutatások célja elsősorban felderítés,
A társadalomkutatás módszerei I. Outline. Most járunk, vagy nem járunk? Már úgy szeretném megtudnííí, hogy most já-runk-e, vagy nem já-runk?
A társadalomkutatás módszerei I. 3. hét Daróczi Gergely Budapesti Corvinus Egyetem 2011. IX. 29. Outline 1 Bevezetés 2 A fogalom 3 4 Operacionalizálás 5 Változók és mérési szintek Daróczi Gergely (BCE)
A társadalomkutatás módszerei I.
A társadalomkutatás módszerei I. 3. hét Daróczi Gergely Budapesti Corvinus Egyetem 2011. IX. 29. Outline 1 Bevezetés 2 A fogalom 3 Konceptualizálás 4 Operacionalizálás 5 Változók és mérési szintek Daróczi
PIACKUTATÁS (MARKETINGKUTATÁS)
PIACKUTATÁS (MARKETINGKUTATÁS). FŐBB PONTOK A kutatási terv fogalmának meghatározása, a különböző kutatási módszerek osztályozása, a feltáró és a következtető kutatási módszerek közötti különbségtétel
Statisztika. Politológus képzés. Daróczi Gergely április 24. Politológia Tanszék
Statisztika Politológus képzés Daróczi Gergely Politológia Tanszék 2012. április 24. Outline 1 A mintavételi hiba és konfidencia-intervallum 2 A mintaválasztás A mintaválasztás célja Alapfogalmak A mintaválasztás
Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók
Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz
Kutatói pályára felkészítı modul
Kutatói pályára felkészítı modul Kutatói pályára felkészítı kutatási ismeretek modul Tudomáyos kutatási alapayag feldolgozása, elemzési ismeretek KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI
Míg a kérdıíves felérés elsısorban kvantitatív (statisztikai) elemzésre alkalmas adatokat szolgáltat, a terepkutatásból ezzel szemben inkább
Terepkutatás Míg a kérdıíves felérés elsısorban kvantitatív (statisztikai) elemzésre alkalmas adatokat szolgáltat, a terepkutatásból ezzel szemben inkább kvalitatív adatok származnak Megfigyelések, melyek
Kutatásmódszertan és prezentációkészítés
Kutatásmódszertan és prezentációkészítés 10. rész: Az adatelemzés alapjai Szerző: Kmetty Zoltán Lektor: Fokasz Nikosz Tizedik rész Az adatelemzés alapjai Tartalomjegyzék Bevezetés Leíró statisztikák I
Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása
Matematikai alapok és valószínőségszámítás Statisztikai becslés Statisztikák eloszlása Mintavétel A statisztikában a cél, hogy az érdeklõdés tárgyát képezõ populáció bizonyos paramétereit a populációból
A társadalomkutatás módszerei I.
A társadalomkutatás módszerei I. 13. hét Daróczi Gergely Budapesti Corvinus Egyetem 2011. december 8. Outline 1 A mintaválasztás célja 2 Alapfogalmak 3 Mintavételi eljárások 4 További fogalmak 5 Mintavételi
biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás
Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani
KÖVETKEZTETŐ STATISZTIKA
ÁVF GM szak 2010 ősz KÖVETKEZTETŐ STATISZTIKA A MINTAVÉTEL BECSLÉS A sokasági átlag becslése 2010 ősz Utoljára módosítva: 2010-09-07 ÁVF Oktató: Lipécz György 1 A becslés alapfeladata Pl. Hányan láttak
6. Előadás. Vereb György, DE OEC BSI, október 12.
6. Előadás Visszatekintés: a normális eloszlás Becslés, mintavételezés Reprezentatív minta A statisztika, mint változó Paraméter és Statisztika Torzítatlan becslés A mintaközép eloszlása - centrális határeloszlás
Matematikai alapok és valószínőségszámítás. Bevezetés Statisztikai mintavétel
Matematikai alapok és valószínőségszámítás Bevezetés Statisztikai mintavétel Miért tanuljunk statisztikát? Általános mőveltség, hétköznapi haszon Közgazdaságtan, filozófia, szociológia Statisztika: Miért
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.15. Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza) alkotja az eseményteret. Esemény: az eseménytér részhalmazai.
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.08. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)
Készült: Az ÁKFI - Mérési és Módszertani Iroda keretében. Utolsó frissítés dátuma: január
Készült: Az ÁKFI - Mérési és Módszertani Iroda keretében Utolsó frissítés dátuma: 2018. január Tartalom Fogalomtár... 7 Szociológia > Módszertan > Kutatásmódszertan... 7 A megfigyelés hatása... 7 Adatközlő...
Mintavétel. Kovács István BME Menedzsment és Vállalatgazdaságtan. Tanszék
Mintavétel Kovács István BME Menedzsment és Vállalatgazdaságtan Tanszék Alapfogalmaink Sokaság azon elemek összessége, amelyek valamilyen közös jellemzővel bírnak, és megfelelnek a marketingkutatási probléma
A mintavétel szakszerűtlenségeinek hatása a monitoring-statisztikákra
A mintavétel szakszerűtlenségeinek hatása a monitoring-statisztikákra Vörös Zsuzsanna NÉBIH RFI tervezési referens 2013. április 17. Egy kis felmérés nem kor Következtetések: 1. a jelenlevők nemi megoszlása:
Témaválasztás, kutatási kérdések, kutatásmódszertan
Témaválasztás, kutatási kérdések, kutatásmódszertan Dr. Dernóczy-Polyák Adrienn PhD egyetemi adjunktus, MMT dernoczy@sze.hu A projekt címe: Széchenyi István Egyetem minőségi kutatói utánpótlás nevelésének
Biomatematika 2 Orvosi biometria
Biomatematika 2 Orvosi biometria 2017.02.13. Populáció és minta jellemző adatai Hibaszámítás Valószínűség 1 Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza)
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát
Biomatematika 2 Orvosi biometria
Biomatematika 2 Orvosi biometria 2017.02.05. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)
A társadalomkutatás módszerei I. Outline. A mintaválasztás A mintaválasztás célja. Notes. Notes. Notes. 13. hét. Daróczi Gergely. 2011. december 8.
A társadalomkutatás módszerei I. 13. hét Daróczi Gergely Budapesti Corvinus Egyetem 2011. december 8. Outline 1 célja 2 Alapfogalmak 3 Mintavételi eljárások 4 További fogalmak 5 Mintavételi hiba számítása
Adatok statisztikai értékelésének főbb lehetőségei
Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció
Először éljenek együtt, de azután Az élettársi kapcsolatok megítélése Magyarországon és Európában
Először éljenek együtt, de azután Az élettársi kapcsolatok megítélése Magyarországon és Európában Rohr Adél PTE BTK Demográfia és Szociológia Doktori Iskola KSH Népességtudományi Kutatóintézet Fókuszban
Szerző: Sztárayné Kézdy Éva Lektor: Fokasz Nikosz TÁMOP-4.1.2.A/1-11/1-2011-0091 INFORMÁCIÓ - TUDÁS ÉRVÉNYESÜLÉS
Kutatásmódszertan és prezentációkészítés 3. rész: Kvantitatív és kvalitatív kutatási módszerek Szerző: Sztárayné Kézdy Éva Lektor: Fokasz Nikosz Harmadik rész Kvantitatív és kvalitatív kutatási módszerek
Statisztika. Politológus képzés. Daróczi Gergely február 20. Politológia Tanszék
Statisztika Politológus képzés Daróczi Gergely Politológia Tanszék 2012. február 20. Outline 1 A mérési hiba Megbízhatóság és érvényesség 2 A kutatás megtervezése A kutatás lehetséges céljai A kutatás
Statisztika. Politológus képzés. Daróczi Gergely február 23. Politológia Tanszék
Statisztika Politológus képzés Daróczi Gergely Politológia Tanszék 2011. február 23. Outline 1 A mérési hiba Megbízhatóság és érvényesség 2 A kutatás megtervezése A kutatás lehetséges céljai A kutatás
Szerzők: Kmetty Zoltán Lektor: Fokasz Nikosz TÁMOP A/1-11/ INFORMÁCIÓ - TUDÁS ÉRVÉNYESÜLÉS
Kutatásmódszertan és prezentációkészítés 2. rész: Kutatási terv készítése Szerzők: Kmetty Zoltán Lektor: Fokasz Nikosz Második rész Kutatási terv készítése (Babbie 2008 alapján) Tartalomjegyzék Kutatási
STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM.
STATISZTIKA 5 4,5 4 3,5 3 2,5 2 1,5 1 0,5 0 MAGY. MAT. TÖRT. KÉM. ANNA BÉLA CILI András hármas. Béla Az átlag 3,5! kettes. Éva ötös. Nóri négyes. 1 mérés: dolgokhoz valamely szabály alapján szám rendelése
Függetlenségvizsgálat, Illeszkedésvizsgálat
Varga Beatrix, Horváthné Csolák Erika Függetlenségvizsgálat, Illeszkedésvizsgálat 4. előadás Üzleti statisztika A sokaság/minta több ismérv szerinti vizsgálata A statisztikai elemzés egyik ontos eladata
Dr. Király István Igazságügyi szakértő Varga Zoltán Igazságügyi szakértő Dr. Marosán Miklós Igazságügyi szakértő
Dr. Király István Igazságügyi szakértő Varga Zoltán Igazságügyi szakértő Dr. Marosán Miklós Igazságügyi szakértő Mintaterületek kijelölésének javasolt módjai kapás sortávú növényekre Miért is kell mintatér?
STATISZTIKA I. Mintavétel fogalmai. Mintavételi hiba. Statisztikai adatgyűjtés Nem véletlenen alapuló kiválasztás
Mintavétel fogalmai STATISZTIKA I.. Előadás Mintavétel, mintavételi technikák, adatbázis A mintavételt meg kell tervezni A sokaság elemei: X, X X N, lehet véges és végtelen Mintaelemek: x, x x n, mindig
A KUTATÁS TERVE ÉS FÁZISAI KUTATÁSMÓDSZERTANI ALAPOZÓ KURZUS
A KUTATÁS TERVE ÉS FÁZISAI KUTATÁSMÓDSZERTANI ALAPOZÓ KURZUS Mi a tudomány A VALÓSÁG KÉT TÍPUSA I.) TAPASZTALATI VALÓSÁG: olyan dolgok, amelyekről saját közvetlen tapasztalatunkból tudunk II.) KONSZENZUÁLIS
FİBB PONTOK PIACKUTATÁS (MARKETINGKUTATÁS) Kutatási terv október 20.
FİBB PONTOK PIACKUTATÁS (MARKETINGKUTATÁS) 2010. október 20. A kutatási terv fogalmának, a különbözı kutatási módszerek osztályozása, a feltáró és a következtetı kutatási módszerek közötti különbségtétel
Helyettesítő. kérdőív TÁRKI. 1 hullám EGÉSZSÉG KUTATÁS. A válaszadás önkéntes! Család sorszáma. Kire vonatkozó adatokat tartalmaz ez a kérdőív?
Család sorszáma Kire vonatkozó adatokat tartalmaz ez a kérdőív? TÁRKI EGÉSZSÉG KUTATÁS Egyén sorszáma A válaszoló személy sorszáma 1 hullám Helyettesítő kérdőív 1997 A válaszadás önkéntes! Település neve:...
Statisztika. Politológus képzés. Daróczi Gergely április 17. Politológia Tanszék
Statisztika Politológus képzés Daróczi Gergely Politológia Tanszék 2012. április 17. Outline 1 Leíró statisztikák 2 Középértékek Példa 3 Szóródási mutatók Példa 4 Néhány megjegyzés a grafikonokról 5 Számítások
E G É S Z S É G T E R V - k é r d ő í v -
Az egészség nem minden, de az egészség nélkül a minden is semmi. E G É S Z S É G T E R V - k é r d ő í v - (Arthur Schopenhauer) Életkora Neme (kérem, húzza alá) nő férfi Legmagasabb iskolai végzettsége
A kvantitatív kutatás folyamata
A kvantitatív kutatás folyamata A kvantitatív stratégia keretében zajló kutatómunka teljes ívét a következı szakaszokra lehet osztani: 1. Tájékozódás 2. Tervezés 3. Elıvizsgálat (Pilot vizsgálat) 4. Adatgyőjtés
Statisztika. Politológus képzés. Daróczi Gergely március 13. Politológia Tanszék
Statisztika Politológus képzés Daróczi Gergely Politológia Tanszék 2012. március 13. Outline 1 Beavatkozásmentes vizsgálatok 2 Kérdőíves vizsgálatok 3 Önkitöltős kérdőívek Postai kérdőív Online kérdőív
A statisztika alapjai - Bevezetés az SPSS-be -
A statisztika alapjai - Bevezetés az SPSS-be - Kvantitatív statisztikai módszerek Petrovics Petra, Géczi-Papp Renáta SPSS alapok Statistical Package for Social Sciences SPSS nézetek: Data View Variable
Módszertani Intézeti Tanszéki Osztály. A megoldás részletes mellékszámítások hiányában nem értékelhető!
BGF KKK Módszertani Intézeti Tanszéki Osztály Budapest, 2012.. Név:... Neptun kód:... Érdemjegy:..... STATISZTIKA II. VIZSGADOLGOZAT Feladatok 1. 2. 3. 4. 5. 6. Összesen Szerezhető pontszám 21 20 7 22
KÖFOP VEKOP A jó kormányzást megalapozó közszolgálat-fejlesztés
KÖFOP-2.1.2-VEKOP-15-2016-00001 A jó kormányzást megalapozó közszolgálat-fejlesztés A Jó Állam Véleményfelmérés bemutatása Demeter Endre Nemzeti Közszolgálati Egyetem JÓ ÁLLAM VÉLEMÉNYFELMÉRÉS CÉLJAI Hiányzó
Biometria gyakorló feladatok BsC hallgatók számára
Biometria gyakorló feladatok BsC hallgatók számára 1. Egy üzem alkalmazottainak megoszlása az elért teljesítmény %-a szerint a következı: Norma teljesítmény % Dolgozók száma 60-80 30 81-90 70 91-100 90
V. Gyakorisági táblázatok elemzése
V. Gyakorisági táblázatok elemzése Tartalom Diszkrét változók és eloszlásuk Gyakorisági táblázatok Populációk összehasonlítása diszkrét változók segítségével Diszkrét változók kapcsolatvizsgálata Példák
Bevezetés az SPSS program használatába
Bevezetés az SPSS program használatába Statisztikai szoftver alkalmazás Géczi-Papp Renáta SPSS alapok Statistical Package for Social Sciences SPSS nézetek: Data View Variable View Output Viewer Sintax
S atisztika 2. előadás
Statisztika 2. előadás 4. lépés Terepmunka vagy adatgyűjtés Kutatási módszerek osztályozása Kutatási módszer Feltáró kutatás Következtető kutatás Leíró kutatás Ok-okozati kutatás Keresztmetszeti kutatás
Területi statisztikai elemzések
Területi statisztikai elemzések KOTOSZ Balázs, SZTE, kotosz@eco.u-szeged.hu Módszertani dilemmák a statisztikában 2016. november 18. Budapest Apropó Miért különleges a területi adatok elemzése? A számításokhoz
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen
Kiválasztás. A változó szerint. Rangok. Nem-paraméteres eljárások. Rang: Egy valamilyen szabály szerint felállított sorban elfoglalt hely.
Kiválasztás A változó szerint Egymintás t-próba Mann-Whitney U-test paraméteres nem-paraméteres Varianciaanalízis De melyiket válasszam? Kétmintás t-próba Fontos, hogy mindig a kérdésnek és a változónak
Statisztika I. 11. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 11. előadás Előadó: Dr. Ertsey Imre Összefüggés vizsgálatok A társadalmi gazdasági élet jelenségei kölcsönhatásban állnak, összefüggnek egymással. Statisztika alapvető feladata: - tényszerűségek
STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás
ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 9. Előadás Binomiális eloszlás Egyenletes eloszlás Háromszög eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell 2/62 Matematikai statisztika
Korrelációs kapcsolatok elemzése
Korrelációs kapcsolatok elemzése 1. előadás Kvantitatív statisztikai módszerek Két változó közötti kapcsolat Független: Az X ismérv szerinti hovatartozás ismerete nem ad semmilyen többletinformációt az
A Statisztika alapjai
A Statisztika alapjai BME A3c Magyar Róbert 2016.05.12. Mi az a Statisztika? A statisztika a valóság számszerű információinak megfigyelésére, összegzésére, elemzésére és modellezésére irányuló gyakorlati
A kockázat fogalma. A kockázat fogalma. Fejezetek a környezeti kockázatok menedzsmentjéből 2 Bezegh András
Fejezetek a környezeti kockázatok menedzsmentjéből 2 Bezegh András A kockázat fogalma A kockázat (def:) annak kifejezése, hogy valami nem kívánt hatással lesz a valaki/k értékeire, célkitűzésekre. A kockázat
A magyar lakosság vitaminbevitelének. Schreiberné Molnár Erzsébet, Bakacs Márta
A magyar lakosság vitaminbevitelének vizsgálata az OTÁP2014 felmérés alapján Schreiberné Molnár Erzsébet, Bakacs Márta OTÁP felmérés A Központi Statisztikai Hivatal által szervezett Európai Lakossági Egészségfelmérés
EREDMÉNYEK, KÖVETKEZTETÉSEK, TERVEK
Felmérés a felsőoktatásban tanuló fiatalok pénzügyi kultúrájáról EREDMÉNYEK, KÖVETKEZTETÉSEK, TERVEK Prof. Dr. Németh Erzsébet Mit jelent a pénzügyi a) Nemzetközi kutatások: banki termékek ismertsége,
Vizsgáljuk elôször, hogy egy embernek mekkora esélye van, hogy a saját
376 Statisztika, valószínûség-számítás 1500. Az elsô kérdésre egyszerû válaszolni, elég egy ellenpélda, és biztosan nem lehet akkor így kiszámolni. Pl. legyen a három szám a 3; 5;. A két kisebb szám átlaga
A nagycsaládos mégis. A NOE tagság vizsgálatának tanulságai. Bálity Csaba bality.csaba@mental.usn.hu
A nagycsaládos mégis A NOE tagság vizsgálatának tanulságai Bálity Csaba bality.csaba@mental.usn.hu Válságban vagy változóban a család? 1. Értékrend és normák változása 2. Gazdasági tényezők 3. Családpolitikai
A társadalmi kapcsolatok jellemzői
A társadalmi kapcsolatok jellemzői A győri lakosság kapcsolati tőkekészletének sajátosságai Dr. Csizmadia Zoltán, tanszékvezető egyetemi docens SZE PLI Szociális Tanulmányok Tanszék Zárórendezvény Győr,
Dr. Szőrös Gabriella NRSZH. Előadás kivonat
Dr. Szőrös Gabriella NRSZH Előadás kivonat Alkalmassági vizsgálatok Rehabilitációs alkalmasság Motivációs vizsgálatok Gépjárművezetői alkalmasság Munkaszimulátoros vizsgálatok Jogszabályi változás Mkcs
y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell
Példa STATISZTIKA Egy gazdálkodó k kukorica hibrid termesztése között választhat. Jelöljük a fajtákat A, B, C, D-vel. Döntsük el, hogy a hibridek termesztése esetén azonos terméseredményre számíthatunk-e.
Mit mond a XXI. század emberének a statisztika?
Mit mond a XXI. század emberének a statisztika? Rudas Tamás Magyar Tudományos Akadémia Társadalomtudományi Kutatóközpont Eötvös Loránd Tudományegyetem Statisztika Tanszék Nehéz a jövőbe látni Változik
Elemi statisztika fizikusoknak
1. oldal Elemi statisztika fizikusoknak Pollner Péter Biológiai Fizika Tanszék pollner@elte.hu Tudnivalók 2. oldal Év utolsó órája: ZH, jegy 50% projekt feladat: 5 perc(10fólia) iskolás fokú előadás egymásnak
A közösségszervezés szerepe a vidéki gazdasági társulások létrejöttében
A közösségszervezés szerepe a vidéki gazdasági társulások létrejöttében A Erdélyben Ilyés Ferenc 6. szekció: Közösségvezérelt helyi fejlesztés, agrár- és vidékfejlesztés Az előadás során érintett témák
y ij = µ + α i + e ij
Elmélet STATISZTIKA 3. Előadás Variancia-analízis Lineáris modellek A magyarázat a függő változó teljes heterogenitásának két részre bontását jelenti. A teljes heterogenitás egyik része az, amelynek okai
Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió
SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás
MINTAVÉTELEZÉS. Alaptípusai: sampling. véletlen érvényesítésére v. mellőzzük azt. = preferenciális mintav. = véletlen mintav.
A teljes alapsokaságot nem ismerhetjük meg. MINTAVÉTELEZÉS Fontossága: minden későbbi értékelés ezen alapszik. Alaptípusai: Szubjektív folyamat Objektív folyamat (non-probabilistic) (probabilistic) sampling
Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt
Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt Galbács Gábor KIUGRÓ ADATOK KISZŰRÉSE STATISZTIKAI TESZTEKKEL Dixon Q-tesztje Gyakori feladat az analitikai kémiában, hogy kiugrónak
KUTATÁSMÓDSZERTAN. Miskolci Egyetem Gazdaságtudományi Kar Gazdaságelméleti Intézet MSc képzés (GTGKG251ML)
KUTATÁSMÓDSZERTAN Miskolci Egyetem Gazdaságtudományi Kar Gazdaságelméleti Intézet MSc képzés (GTGKG251ML) Tárgyjegyző: Sáfrányné Dr. Gubik Andrea, egyetemi docens Tantárgy feladata és célja: A tárgy célja,
Az idősek egészsége és egészségmagatartása
MEGÖREGEDNI MA Az idősek egészsége és egészségmagatartása Boros Julianna Központi Statisztikai Hivatal PTE Demográfia és Szociológia Doktori Iskola 2016. június 8. Önkéntes részvétel CAPI alapú felmérés,
Kiváltott agyi jelek informatikai feldolgozása Statisztika - Gyakorlat Kiss Gábor IB.157.
Kiváltott agyi jelek informatikai feldolgozása 2018 Statisztika - Gyakorlat Kiss Gábor IB.157. kiss.gabor@tmit.bme.hu Példa I (Vonat probléma) Aladár 25 éves és mindkét nagymamája él még: Borbála és Cecília.
A MIDAS_HU modell elemei és eredményei
A MIDAS_HU modell elemei és eredményei Tóth Krisztián Országos Nyugdíjbiztosítási Főigazgatóság A MIDAS_HU mikroszimulációs nyugdíjmodell eredményei további tervek Workshop ONYF, 2015. május 28. MIDAS_HU
Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1
Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában
Bevezetés az SPSS program statisztikai alapjaiba. Előadó: Dr. Balogh Péter
Bevezetés az SPSS program statisztikai Előadó: Dr Balogh Péter A statisztika olyan tudomány, amely adatok összegyűjtésével, rendszerezésével és értelmezésével foglalkozik abból a célból, hogy valamilyen
BETEGJOGI, ELLÁTOTTJOGI ÉS GYERMEKJOGI KUTATÁS
BETEGJOGI, ELLÁTOTTJOGI ÉS GYERMEKJOGI KUTATÁS Készült a Országos Betegjogi, Ellátottjogi, Gyermekjogi és Dokumentációs Központ megbízásából a Kutatópont műhelyében A kutatás elvégzésére a TÁMOP 5.5.7-08/1-2008-0001
Kutatásmódszertan és prezentációkészítés
Kutatásmódszertan és prezentációkészítés 8. rész: Statisztikai eszköztár: Alapfokú statisztikai ismeretek Szerző: Kmetty Zoltán Lektor: Fokasz Nikosz Nyolcadik rész Statisztikai eszköztár: Alapfokú statisztikai
Statisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus
Statisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus Gyakorisági sorok Mennyiségi ismérv jellemző rangsor készítünk. (pl. napi jegyeladások száma) A gyakorisági sor képzése igazából tömörítést jelent Nagyszámú