Vargha András Károli Gáspár Református Egyetem Budapest
|
|
- Júlia Nemesné
- 9 évvel ezelőtt
- Látták:
Átírás
1 Vargha András Károli Gáspár Református Egyetem Budapest
2 Kötelező irodalom a kurzushoz Vargha András: Matematikai statisztika pszichológiai, nyelvészeti és biológiai alkalmazásokkal (2. kiadás). Pólya Kiadó, Budapest, 2007.
3 Nélkülözhetetlen szoftver a kurzushoz: ROPstat Töltse le és próbálja ki a magyar nyelvű demó verziót!
4 A félév vázlata I. II. III. IV. V. Statisztikai alapfogalmak, leíró statisztikák A következtetési statisztika alapfogalmai Kvantitatív változók kapcsolata (korreláció, regresszió) Változók és csoportok összehasonlítása Gyakorisági táblázatok elemzése
5 I. Statisztikai alapfogalmak, leíró statisztikák
6 Tartalom Statisztikai alapfogalmak (adatok, adattáblázat, esetek, változók) Populáció és minta Változók és típusaik Leíró statisztika alapfogalmai Gyakorisági eloszlás Középértékek, szóródási mutatók stb. Normális eloszlás
7 Vágjunk bele!
8 Piaci szavak Karalábé Lilahagyma Padlizsán Cukkini Sárgarépa Tök Paprika Dinnye Jégsaláta Póréhagyma
9 Memóriajáték
10 Írja be a füzetébe, hogy milyen szavak fordultak elő az iménti dián!
11 Mely szavakra emlékezett helyesen? 1. Karalábé 2. Lilahagyma 3. Padlizsán 4. Cukkini 5. Sárgarépa 6. Tök 7. Paprika 8. Dinnye 9. Jégsaláta 10. Póréhagyma
12 Egy személlyel kapcsolatban mi érdekelhet bennünket? Emlékezeti teljesítmény Helyesen megjegyzett szavak száma Más? Egyéb jellemzők Személy neme Más?
13 Pszichológiai változók Pszichológusok által vizsgált egyedek, személyek, házaspárok (megfigyelési egységek) egyedi jellemzői GYAK
14 Példák változókra (megfigyelési egység = egy házaspár) Mióta házasok Mióta járnak együtt Férj életkora Feleség életkora Korkülönbség Gyerekeik száma IQ(férj) - IQ(feleség) GYAK
15 Más példák (megfigyelési egység = egy személy) Nem Életkor MAWI-IQ Diagnózis Iskolázottsági szint Végzett osztályok száma GYAK
16 Mit várunk el egy pszichológiai változó meghatározásakor? Egyértelműen definiált értékkészlet Minden esetnél egyértelműen eldönthető érték GYAK
17 Mi a statisztika? Akkor fordulunk hozzá, ha sok egyedünk van és mindenkit ugyanazon változó (vagy változók) segítségével jellemzünk
18 Emberek, gyümölcsök
19 Virágok
20 Kavicsok
21 A statisztika segítségével Jellemezhetünk leírhatunk egy egész csoportot, mintát. Hogyan? Különböző csoportokat összehasonlíthatunk (pl. férfiak és nők memóriája) Változók között összefüggéseket kereshetünk (pl. van-e kapcsolat a kor és az emlékezeti teljesítmény között?) Stb.
22 Hogy kell a statisztikai adatfeldolgozáshoz (elemzéshez) előkészíteni az adatokat? Elsődlegesen egy személyek és változók szerint rendezett adattáblázatot (statisztikai adatállományt) kell létrehozni Ennek neve: eset-változó adattáblázat (adatmátrix) ROPstat illusztráció GYAK
23 3 Eset-változó adattáblázat Eset Nem Életkor Magasság (X1) (X2) (X3) 1. Nő Férfi Nő
24 Példák más adatállományokra
25 5 Pszichológia szakra jelentkezők, 1981
26 6 Gyerekek antropometriai adatai, 1993
27 7 Problémás és normál családok, 2005
28 A változóról Eseteket (személyeket stb.) jellemzi Értékei vannak (pl. a személy neme változó értékei mik? Kor, testmagasság, szemszín, érettségi matek jegye értékei?) Ha egy változónak véges számú (2, 3, 4, ) különböző értéke van, diszkrét változónak nevezzük. Példa? Folytonos változók. Mi folytonos ezeknél? GYAK
29 9 Pszichometriai skálatípusok Osztályozás szempontja: milyen logikai, illetve számtani műveletek végezhetők értelmesen a változó értékeivel? Nominális skála Ordinális skála Intervallum-skála Arányskála Példák: GYAK
30 0 Kvantitatív és kvalitatív változók Kvalitatív változók Nominális és ordinális skálájú változók Hangsúly: az értékek kategóriáján Kvantitatív változók Intervallum- és arányskálájú változók Hangsúly: az értékek nagyságán
31 1 A változók eloszlása Azt tudjuk meg a változó eloszlásából, hogy milyen értékből mennyi (%, darab) van. Ha ismerjük egy változó eloszlását, ebből már minden jellemzőjét (pl. az átlagot is) ki lehet számítani, illetve meg lehet határozni. GYAK
32 2 NEM Percent férfi NEM nõ
33 3 Hogy tetszik?
34 4 EPIL Percent EPIL
35 5 ISK Percent ISK
36 6 ISKKOD Percent ISKKOD
37 7 Az iskolai végzettség eloszlása Alsófokú végzettség 29% Középfokú végzettség Felsőfokú végzettség 40% 31%
38 8 Statisztikai alapfogalmak o Megfigyelési egységek (esetek) személyek, egyedek, házaspárok o Változók (megfigyelési egységek jellemzői) IQ, Nem, Kor, Megtanult tételek száma, Házasság időtartama o o Populáció (sokaság): esetek elvi (elméleti) összessége Minta: a populáció kiválasztott része
39 9 Populáció és minta o A populáció nagyon nagy, ezért csak egy kis részét vizsgáljuk meg. Ez a MINTA (pl. 50 vagy 100 vagy 35 személy).
40 0 Minta o o Megfigyelési egységek csoportja, akiket bizonyos változók segítségével egy vizsgálat, kísérlet vagy megfigyelés során konkréten megvizsgálunk és adatokkal jellemzünk. E minta alapján nyert adatok együttese: az adatminta
41 1 Egy adatminta személy Nem Életkor Magasság 1. Nő Férfi Nő
42 2 Statisztikai elemzések két fő típusa Leíró statisztika o Fókusz a konkrét mintán: milyen ez a minta? (Pl. mi itt a fiúk és a lányok aránya?) Következtetési statisztika o Következtetés a mintáról a populációra. Fókusz a populáción. (Pl. ha a minta 20%-a fiú, akkor mekkora lehet az arányuk a populációban? Kijelenthető-e, hogy a fiúk a populációban is kisebbségben vannak?)
43 Kiknek jobb a verbális memóriája, a fiúknak, vagy a lányoknak?
44 4 Leíró statisztika o o Milyen ez az évfolyam az emlékezeti vizsgálat változói szempontjából? Az elemzést lehet változónként, változópáronként, vagy ennél is bonyolultabb változómintázatok segítségével végezni. o Nemi megoszlás o Emlékezeti teljesítmény eloszlása
45 5 Leíró statisztikai elemzések o o o o Gyakorisági eloszlás Középértékek Szóródási mutatók Az eloszlás alakja o Ferdeség o Csúcsosság GYAK
46 6 Az iskolázottság gyakorisági eloszlása (n = 277) Érték Gyak % Kum% Érték Gyak % Kum% 3 1 0,4 0, ,5 41, ,7 1, ,5 65, ,1 2, ,2 69, ,2 9, ,1 74, ,8 11, ,4 74, , , ,7 28, ,6 98, ,8 34, ,1 100
47 7 Mi olvasható ki a gyakorisági eloszlásból? o o o o o Minimum, maximum Milyen értékből mennyi van? Relatív gyakoriság (százalékos) Milyen értékből van a legtöbb? (módusz) Kumulatív gyakoriság GYAK
48 8 Kvantilisek A mintát adott arányban két részre osztó pontok Felezőpont: medián Negyedelő pontok: kvartilisek K1: alsó 25%-ot levágó osztópont K3: alsó 75%-ot levágó osztópont Percentilisek (centilisek): C1, C1,, C Med = C50, K1 = C25, K3 = C75, GYAK
49 9 A kvantilisekről A kum% segítségével határozhatók meg a legkönnyebben. Folytonos változók esetén lehet leginkább használni őket, mert a meghatározásuk itt a legtisztább. GYAK
50 % % 25% 0 K1 K3
51 1 Itt mi az alsó és a felső kvartilis? Érték Gyak 3 1 % Kum% 0,4 0,4 Érték Gyak % Kum% 6,5 41, ,7 1, , ,1 2, ,2 69, ,2 9, ,1 74, ,8 11, ,4 74, , , ,7 28, ,6 98, ,8 34, ,1 65,7 100 GYAK
52 2 Középértékek
53 3 Egy változó nagyságának jellemzése egyetlen adattal Legtipikusabb érték: Módusz Eloszlás centruma: Átlag Eloszlás közepe: C50 = Medián
54 4 Medián =? Érték Gyak % Kum% Érték Gyak % Kum% 3 1 0,4 0, ,5 41, ,7 1, ,5 65, ,1 2, ,2 69, ,2 9, ,1 74, ,8 11, ,4 74, , , ,7 28, ,6 98, ,8 34, ,1 100
55 5 Mi az IQ mediánja?
56 6 Az IQ mediánja = % 50%
57 7 Mintajellemzők n-elemű minta: (x1, x2, x3,..., xn) Mintaátlag: x = ( xi)/n = (x1+x2+x3+...+xn)/n Mintamedián: Adatok növekvő sorában a középső vagy a középső kettő átlaga Minta: 2 < 4 < 5 < 7 < 8 Medián: M = 5
58 8 Férfiak és nők testsúlyátlagai különböző életkori szinteken Férfiak Nők év
59 9 Szóródási mutatók
60 0 Miben különbözik az alábbi két minta?
61 1 Három bizonyítvány Magatartás Szorgalom Magyar irodalom Magyar nyelvtan Matematika Történelem ÁTLAG:
62 2 Mennyire szóródnak az adatok az átlag körül? Átlagtól való négyzetes eltérés egyetlen személy esetén: Pl. IQ = 105 esetén (105 - IQ = 80 esetén (80 - Ezen négyzetes eltérések átlaga: variancia (Var) A variancia négyzetgyöke: szórás (, s)
63 3 Mintabeli szóródási mutatók Négyzetes Variancia összeg: Q = xi -x)2 (korrigált): Var = Q/(n - 1) = a variancia négyzetgyöke: Szórás s = Var = Q/(n-1) Szabadságfok: f = n - 1 GYAK
64 4 Szokásos jelölések Mintabeli (tapasztalati) átlag: x (ejtsd: x-vonás) Populációbeli (elméleti) átlag: μ (ejtsd: mű) Mintabeli (tapasztalati) szórás: s Populációbeli (elméleti) szórás: σ (ejtsd: szigma)
65 5 Relatív szórás = Variációs együttható Cél: dimenziómentes szóródási mutató Mintában: VE = s/x Populációban: Feltétel: Pl.: VE = / X arányskálájú Ha s = 3 kg, x = 5 kg, akkor VE = 3kg/5kg = 0,60 = 60% GYAK
66 6 Adatok nagysága Milyen nagy egy 210 cm-es testmagasság (150-es IQ, 160-as vérnyomás)? Milyen kicsi egy 145 cm-es testmagasság (65-ös IQ, 80-as vérnyomás)? GYAK
67 7 Standard érték Az X változó x értékének standard értéke (z) azt mutatja meg, hogy x hány szórásnyi távolságra van az átlagtól: z = (x átlag)/szórás Pl. 10-es átlag és 2-es szórás esetén 15 z-értéke mennyi? A standard értékeknek mi a mértékegysége? GYAK
68 8 Standardizálás Mintában: zx = (x x)/s Mi lesz az átlag standard értéke? Mi lesz a standard értékek szórása? A nagy hibák standard értéke kiugróan nagy (vö. ROPstat)
69 9 Példák az IQ-val = E(IQ) = 100, = D(IQ) = 15 Ha IQ = 130, z =? Ha z = -1, IQ =? GYAK
70 0 Hogyan határozza meg az eloszlás alakját a ferdeség és a csúcsosság?
71 1 Szimmetrikus, átlagos csúcsosságú eloszlás
72 2 Szimmetrikus, átlagosnál nagyobb csúcsosságú eloszlás
73 3 Hogy nézhet ki egy átlagosnál kisebb csúcsosságú (pl. lapos) eloszlás??
74 4 Folytonos egyenletes eloszlás
75 5 Pozitív ferdeségű eloszlás
76 6 Negatív ferdeségű eloszlás
77 7 Szimmetrikus, kétcsúcsú (bimodális) eloszlás
78 8 Ferdeség és csúcsosság mérése Ferdeségi együttható (skewness): E(z3) Csúcsossági együttható (kurtosis): E(z4) 3 A normális eloszlás ferdeségi és csúcsossági együtthatója 0
79 9 A normális eloszlástípus
80 0
81 1 Milyen változó normális eloszlású? Például a fejek száma dobásból Sok apró hasonló, de független mennyiség összegeződése Egy véletlen minta átlaga (vö. ROPstat) Kis minta? Nagy minta? GYAK
82 2 Változó: fejek száma 50 dobásból (gyakorisági eloszlás, n = 15000)
83 3 A normális eloszlás kiterjedtsége
84 4 A normális eloszlás kiterjedtsége 68% 95% 99,8%
85 5 Például = 100 és = 15 esetén 68% 95% 99,8% GYAK
86 6 Példák normális és nem normális eloszlású változókra Hisztogram és kum% megtekintése az alábbi adatfájlok változóira Antr500.msw Új fájl 1000 esettel random normál változóval GYAK
Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók
Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz
Statisztikai alapok. Leíró statisztika Lineáris módszerek a statisztikában
Statisztikai alapok Leíró statisztika Lineáris módszerek a statisztikában Tudományosan és statisztikailag tesztelhető állítások? A keserűcsokoládé finomabb, mint a tejcsoki. A patkány a legrondább állat,
Kutatásmódszertan és prezentációkészítés
Kutatásmódszertan és prezentációkészítés 10. rész: Az adatelemzés alapjai Szerző: Kmetty Zoltán Lektor: Fokasz Nikosz Tizedik rész Az adatelemzés alapjai Tartalomjegyzék Bevezetés Leíró statisztikák I
Matematikai alapok és valószínőségszámítás. Statisztikai változók Adatok megtekintése
Matematikai alapok és valószínőségszámítás Statisztikai változók Adatok megtekintése Statisztikai változók A statisztikai elemzések során a vizsgálati, vagy megfigyelési egységeket különbözı jellemzık
Biomatematika 2 Orvosi biometria
Biomatematika 2 Orvosi biometria 2017.02.05. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)
STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM.
STATISZTIKA 5 4,5 4 3,5 3 2,5 2 1,5 1 0,5 0 MAGY. MAT. TÖRT. KÉM. ANNA BÉLA CILI András hármas. Béla Az átlag 3,5! kettes. Éva ötös. Nóri négyes. 1 mérés: dolgokhoz valamely szabály alapján szám rendelése
STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás
ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 9. Előadás Binomiális eloszlás Egyenletes eloszlás Háromszög eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell 2/62 Matematikai statisztika
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.08. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)
A valószínűségszámítás elemei
A valószínűségszámítás elemei Kísérletsorozatban az esemény relatív gyakorisága: k/n, ahol k az esemény bekövetkezésének abszolút gyakorisága, n a kísérletek száma. Pl. Jelenség: kockadobás Megfigyelés:
A leíró statisztikák
A leíró statisztikák A leíró statisztikák fogalma, haszna Gyakori igény az, hogy egy adathalmazt elemei egyenkénti felsorolása helyett néhány jellemző tulajdonságának megadásával jellemezzünk. Ezeket az
Feladatok: pontdiagram és dobozdiagram. Hogyan csináltuk?
Feladatok: pontdiagram és dobozdiagram Hogyan csináltuk? Alakmutatók: ferdeség, csúcsosság Alakmutatók a ferdeség és csúcsosság mérésére Ez eloszlás centrumát (középérték) és az adatok centrum körüli terpeszkedését
ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó június
GAZDASÁGSTATISZTIKA GAZDASÁGSTATISZTIKA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi
Mi az adat? Az adat elemi ismeret. Az adatokból információkat
Mi az adat? Az adat elemi ismeret. Tények, fogalmak olyan megjelenési formája, amely alkalmas emberi eszközökkel történő értelmezésre, feldolgozásra, továbbításra. Az adatokból gondolkodás vagy gépi feldolgozás
V. Gyakorisági táblázatok elemzése
V. Gyakorisági táblázatok elemzése Tartalom Diszkrét változók és eloszlásuk Gyakorisági táblázatok Populációk összehasonlítása diszkrét változók segítségével Diszkrét változók kapcsolatvizsgálata Példák
Segítség az outputok értelmezéséhez
Tanulni: 10.1-10.3, 10.5, 11.10. Hf: A honlapra feltett falco_exp.zip-ben lévő exploratív elemzések áttanulmányozása, érdekességek, észrevételek kigyűjtése. Segítség az outputok értelmezéséhez Leiro: Leíró
Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.
Valószín ségelméleti és matematikai statisztikai alapfogalmak összefoglalása (Kemény Sándor - Deák András: Mérések tervezése és eredményeik értékelése, kivonat) Véletlen jelenség: okok rendszere hozza
Biomatematika 2 Orvosi biometria
Biomatematika 2 Orvosi biometria 2017.02.13. Populáció és minta jellemző adatai Hibaszámítás Valószínűség 1 Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza)
STATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai
Változékonyság (szóródás) STATISZTIKA I. 5. Előadás Szóródási mutatók A középértékek a sokaság elemeinek értéknagyságbeli különbségeit eltakarhatják. A változékonyság az azonos tulajdonságú, de eltérő
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen
A Statisztika alapjai
A Statisztika alapjai BME A3c Magyar Róbert 2016.05.12. Mi az a Statisztika? A statisztika a valóság számszerű információinak megfigyelésére, összegzésére, elemzésére és modellezésére irányuló gyakorlati
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.15. Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza) alkotja az eseményteret. Esemény: az eseménytér részhalmazai.
Elemi statisztika fizikusoknak
1. oldal Elemi statisztika fizikusoknak Pollner Péter Biológiai Fizika Tanszék pollner@elte.hu Az adatok leírása, megismerése és összehasonlítása 2-1 Áttekintés 2-2 Gyakoriság eloszlások 2-3 Az adatok
Változók eloszlása, középértékek, szóródás
Változók eloszlása, középértékek, szóródás Populáció jellemzése Empirikus kutatás (statisztikai elemzés) célja: a mintából a populációra következtetni. Minta: egy adott változó a megfigyelési egységeken
A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015
A mérés problémája a pedagógiában Dr. Nyéki Lajos 2015 A mérés fogalma Mérésen olyan tevékenységet értünk, amelynek eredményeként a vizsgált jelenség számszerűen jellemezhetővé, más hasonló jelenségekkel
Adatok statisztikai értékelésének főbb lehetőségei
Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció
Orvosi szociológia (1. szeminárium) KUTATÁSMÓDSZERTAN
Orvosi szociológia (1. szeminárium) KUTATÁSMÓDSZERTAN (Babbie) 1. Konceptualizáció 2. Operacionalizálás 3. Mérés 4. Adatfeldolgozás 5. Elemzés 6. Felhasználás KUTATÁS LÉPÉSEI 1. Konceptualizáció 2. Operacionalizálás
Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés. Gazdaságstatisztika KGK VMI
Gazdaságstatisztika 2. előadás Egy ismérv szerinti rendezés Kóczy Á. László KGK VMI Áttekintés Gyakorisági sorok Grafikus ábrázolásuk Helyzetmutatók Szóródási mutatók Az aszimmetria mérőszámai Koncentráció
III. Kvantitatív változók kapcsolata (korreláció, regresszió)
III. Kvantitatív változók kapcsolata (korreláció, regresszió) Tartalom Változók kapcsolata Kétdimenziós minta (pontdiagram) Regressziós előrejelzés (predikció) Korreláció Tanuló Kétdimenziós minta Tanulással
GRADUÁLIS BIOSTATISZTIKAI KURZUS február hó 22. Dr. Dinya Elek egyetemi docens
GRADUÁLIS BIOSTATISZTIKAI KURZUS 2012. február hó 22. Dr. Dinya Elek egyetemi docens Biometria fogalma The active pursuit of biological knowledge by quantitative methods Sir R. A. Fisher, 1948 BIOMETRIA
Mintavétel fogalmai STATISZTIKA, BIOMETRIA. Mintavételi hiba. Statisztikai adatgyűjtés. Nem véletlenen alapuló kiválasztás
STATISZTIKA, BIOMETRIA. Előadás Mintavétel, mintavételi technikák, adatbázis Mintavétel fogalmai A mintavételt meg kell tervezni A sokaság elemei: X, X X N, lehet véges és végtelen Mintaelemek: x, x x
Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió
SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás
Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés
Gazdaságstatisztika 2. előadás Egy ismérv szerinti rendezés Kóczy Á. László KGK VMI Áttekintés Gyakorisági sorok Grafikus ábrázolásuk Helyzetmutatók Szóródási mutatók Az aszimmetria mérőszámai Koncentráció
Az empirikus vizsgálatok alapfogalmai
Az empirikus vizsgálatok alapfogalmai Az adatok forrása és jellege Milyen kísérleti típusok fordulnak elő a beszédtudományokban? Milyen adatok jönnek ki ezekből? Tudományosan (statisztikailag) megválaszolható
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát
STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Mi a modell? Matematikai statisztika. 300 dobás. sűrűségfüggvénye. Egyenletes eloszlás
ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 7. Előadás Egyenletes eloszlás Binomiális eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell /56 Matematikai statisztika Reprezentatív mintavétel
Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus
Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár PhD kurzus Mi a statisztika? A sokaság (a sok valami) feletti áttekintés megszerzése, a sokaságról való információszerzés eszköze. Célja: - a sokaságot
A sokaság elemei közül a leggyakrabban előforduló érték. diszkrét folytonos
Középérték Középérték A középérték a statisztikai adatok tömör számszerű jellemzése. helyzeti középérték: módusz medián számított középérték: számtani átlag kronológikus átlag harmonikus átlag mértani
STATISZTIKA. Egymintás u-próba. H 0 : Kefir zsírtartalma 3% Próbafüggvény, alfa=0,05. Egymintás u-próba vagy z-próba
Egymintás u-próba STATISZTIKA 2. Előadás Középérték-összehasonlító tesztek Tesztelhetjük, hogy a valószínűségi változónk értéke megegyezik-e egy konkrét értékkel. Megválaszthatjuk a konfidencia intervallum
Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása
Matematikai alapok és valószínőségszámítás Statisztikai becslés Statisztikák eloszlása Mintavétel A statisztikában a cél, hogy az érdeklõdés tárgyát képezõ populáció bizonyos paramétereit a populációból
Leíró statisztika. Adatok beolvasása az R-be és ezek mentése
Leíró statisztika. Adatok beolvasása az R-be és ezek mentése Leíró statisztika Definíciója: populáció egy ismert részhalmazára vonatkozó megfigyelések leírása és összegzése. Jelentősége: nominális adatok
Statisztika. Politológus képzés. Daróczi Gergely április 17. Politológia Tanszék
Statisztika Politológus képzés Daróczi Gergely Politológia Tanszék 2012. április 17. Outline 1 Leíró statisztikák 2 Középértékek Példa 3 Szóródási mutatók Példa 4 Néhány megjegyzés a grafikonokról 5 Számítások
Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1
Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában
Matematikai statisztika c. tárgy oktatásának célja és tematikája
Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:
Valószínűségszámítás összefoglaló
Statisztikai módszerek BMEGEVGAT Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:
Matematikai statisztika
Matematikai statisztika PROGRAMTERVEZŐ INFORMATIKUS alapszak, A szakiráy Arató Miklós Valószíűségelméleti és Statisztika Taszék Természettudomáyi Kar 2019. február 18. Arató Miklós (ELTE) Matematikai statisztika
Statisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus
Statisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus Gyakorisági sorok Mennyiségi ismérv jellemző rangsor készítünk. (pl. napi jegyeladások száma) A gyakorisági sor képzése igazából tömörítést jelent Nagyszámú
KÖVETKEZTETŐ STATISZTIKA
ÁVF GM szak 2010 ősz KÖVETKEZTETŐ STATISZTIKA A MINTAVÉTEL BECSLÉS A sokasági átlag becslése 2010 ősz Utoljára módosítva: 2010-09-07 ÁVF Oktató: Lipécz György 1 A becslés alapfeladata Pl. Hányan láttak
Biostatisztika. Sz cs Gábor. 2018/19 tavaszi félév. Szegedi Tudományegyetem, Bolyai Intézet
Biostatisztika Sz cs Gábor Szegedi Tudományegyetem, Bolyai Intézet 2018/19 tavaszi félév Bevezetés Tudnivalók, követelmények Tudnivalók, követelmények Félév tematikája: Értékelés: Valószín ségszámítás
Populációbecslés és monitoring. Eloszlások és alapstatisztikák
Populációbecslés és monitoring Eloszlások és alapstatisztikák Eloszlások Az eloszlás megadja, hogy milyen valószínűséggel kapunk egy adott intervallumba tartozó értéket, ha egy olyan populációból veszünk
Dr. Nagy Zita Barbara igazgatóhelyettes KÖVET Egyesület a Fenntartható Gazdaságért november 15.
Dr. Nagy Zita Barbara igazgatóhelyettes KÖVET Egyesület a Fenntartható Gazdaságért 2018. november 15. PÉNZ a boldogság bitorlója? A jövedelemegyenlőtlenség természetes határa A boldog ember gondolata a
Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás
Matematikai alapok és valószínőségszámítás Valószínőségi eloszlások Binomiális eloszlás Bevezetés A tudományos életben megfigyeléseket teszünk, kísérleteket végzünk. Ezek többféle különbözı eredményre
Matematika feladatbank I. Statisztika. és feladatgyűjtemény középiskolásoknak
Matematika feladatbank I. Statisztika Elméleti összefoglaló és feladatgyűjtemény középiskolásoknak ÍRTA ÉS ÖSSZEÁLLÍTOTTA: Dugasz János 2011 Fapadoskonyv.hu Kft. Dugasz János Tartalom Bevezető 7 Adatok
Matematika A3 Valószínűségszámítás, 6. gyakorlat 2013/14. tavaszi félév
Matematika A3 Valószínűségszámítás, 6. gyakorlat 2013/14. tavaszi félév 1. A várható érték és a szórás transzformációja 1. Ha egy valószínűségi változóhoz hozzáadunk ötöt, mínusz ötöt, egy b konstanst,
Matematikai alapok és valószínőségszámítás. Normál eloszlás
Matematikai alapok és valószínőségszámítás Normál eloszlás A normál eloszlás Folytonos változók esetén az eloszlás meghatározása nehezebb, mint diszkrét változók esetén. A változó értékei nem sorolhatóak
Leíró és matematikai statisztika el adásnapló Matematika alapszak, matematikai elemz szakirány 2016/2017. tavaszi félév
Leíró és matematikai statisztika el adásnapló Matematika alapszak, matematikai elemz szakirány 2016/2017. tavaszi félév A pirossal írt anyagrészeket nem fogom közvetlenül számon kérni a vizsgán, azok háttérismeretként,
3/29/12. Biomatematika 2. előadás. Biostatisztika = Biometria = Orvosi statisztika. Néhány egyszerű definíció:
Biostatisztika = Biometria = Orvosi statisztika Biomatematika 2. előadás Néhány egyszerű definíció: A statisztika olyan tudomány, amely a tömegjelenségekkel kapcsolatos tapasztalati törvényeket megfigyelések
Biostatisztika Összefoglalás
Biostatisztika Összefoglalás A biostatisztika vizsga A biostatisztika vizsga az Orvosi fizika és statisztika I. fizika vizsgájával egy napon történik. A vizsga keretében 30 perc alatt 0 kérdésre kell válaszolni
Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus. KOKI,
Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár PhD kurzus. KOKI, 2015.09.17. Mi a statisztika? A sokaság (a sok valami) feletti áttekintés megszerzése, a sokaságról való információszerzés eszköze.
Területi sor Kárpát medence Magyarország Nyugat-Európa
Területi sor Terület megnevezése Magyarok száma 2011.01.01. Kárpát medence 13 820 000 Magyarország 10 600 00 Nyugat-Európa 1 340 000 HIV prevalence (%) in adults in Africa, 2005 2.5 Daganatos halálozás
OKM ISKOLAI EREDMÉNYEK
OKM ISKOLAI EREDMÉNYEK Statisztikai alapfogalmak Item Statisztikai alapfogalmak Átlag Leggyakrabban: számtani átlag Egyetlen számadat jól jellemzi az eredményeket Óvatosan: elfed Statisztikai alapfogalmak
y ij = µ + α i + e ij
Elmélet STATISZTIKA 3. Előadás Variancia-analízis Lineáris modellek A magyarázat a függő változó teljes heterogenitásának két részre bontását jelenti. A teljes heterogenitás egyik része az, amelynek okai
Alkalmazott statisztika feladatok
Alkalmazott statisztika feladatok 1. Leíró statisztikák és grakonok 1.1. a. Olvassuk be a Davis adatsort a car vagy a cardata csomagból! Ábrázoljuk a weight változó boxplotját, majd értelmezzük az outlier
IV. Változók és csoportok összehasonlítása
IV. Változók és csoportok összehasonlítása Tartalom Összetartozó és független minták Csoportosító változók Két összetartozó minta összehasonlítása Két független minta összehasonlítása Több független minta
Egyszempontos variancia analízis. Statisztika I., 5. alkalom
Statisztika I., 5. alkalom Számos t-próba versus variancia analízis Kreativitás vizsgálata -nık -férfiak ->kétmintás t-próba I. Fajú hiba=α Kreativitás vizsgálata -informatikusok -építészek -színészek
STATISZTIKA. ( x) 2. Eloszlásf. 9. gyakorlat. Konfidencia intervallumok. átlag. 45% 40% 35% 30% 25% 20% 15% 10% 5% 0% (cm)
Normális eloszlás sűrűségfüggvénye STATISZTIKA 9. gyakorlat Konfidencia intervallumok f σ π ( µ ) σ ( ) = e /56 p 45% 4% 35% 3% 5% % 5% % 5% Normális eloszlás sűrűségfüggvénye % 46 47 48 49 5 5 5 53 54
STATISZTIKA I. A változók mérési szintjei. Nominális változók. Alacsony és magas mérési szint. Nominális változó ábrázolása
A változók mérési szintjei STATISZTIKA I. 3. Előadás Az adatok mérési szintjei, Viszonyszámok A változók az alábbi típusba tartozhatnak: Nominális (kategorikus és diszkrét) Ordinális Intervallum skála
Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.
Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,
STATISZTIKA I. Centrális mutatók. Helyzeti középértékek. Középértékek. Bimodális eloszlás, U. Módusz, Mo. 4. Előadás.
Centrális mutatók STATISZTIKA I. 4. Előadás Centrális mutatók 1/51 2/51 Középértékek Helyzeti középértékek A meghatározása gyakoriság vagy sorszám alapján Számítás nélkül Az elemek nagyság szerint rendezett
földtudományi BSc (geológus szakirány) Matematikai statisztika elıadás, 2014/ félév 6. elıadás
Matematikai statisztika elıadás, földtudományi BSc (geológus szakirány) 2014/2015 2. félév 6. elıadás Konfidencia intervallum Def.: 1-α megbízhatóságú konfidencia intervallum: Olyan intervallum, mely legalább
Sta t ti t s i zt z i t k i a 3. előadás
Statisztika 3. előadás Statisztika fogalma Gyakorlati tevékenység Adatok összessége Módszertan A statisztika, mint gyakorlati tevékenység a tömegesen előforduló jelenségek egyedeire vonatkozó információk
Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.
Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,
BIOSTATISZTIKA ÉS INFORMATIKA. Leíró statisztika
BIOSTATISZTIKA ÉS INFORMATIKA Leíró statisztika Első közelítésbe a statisztikai tevékeységeket égy csoportba sorolhatjuk, de ezek között ics éles határ:. adatgyűjtés, 2. az adatok áttekithetővé tétele,
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 8 VIII. REGREssZIÓ 1. A REGREssZIÓs EGYENEs Két valószínűségi változó kapcsolatának leírására az eddigiek alapján vagy egy numerikus
Biometria gyakorló feladatok BsC hallgatók számára
Biometria gyakorló feladatok BsC hallgatók számára 1. Egy üzem alkalmazottainak megoszlása az elért teljesítmény %-a szerint a következı: Norma teljesítmény % Dolgozók száma 60-80 30 81-90 70 91-100 90
Matematikai statisztikai elemzések 2.
Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematikai statisztikai elemzések 2. MSTE2 modul Helyzetmutatók, átlagok, kvantilisek. A szórás és szóródás egyéb mérőszámai.
Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok
STATISZTIKA 1. Előadás Hipotézisvizsgálatok Tematika 1. Hipotézis vizsgálatok 2. t-próbák 3. Variancia-analízis 4. A variancia-analízis validálása, erőfüggvény 5. Korreláció számítás 6. Kétváltozós lineáris
Statisztikai alapfogalmak
Statisztika I. KÉPLETEK 2011-2012-es tanév I. félév Statisztikai alapfogalmak Adatok pontossága Mért adat Abszolút hibakorlát Relatív hibakorlát Statisztikai elemzések viszonyszámokkal : a legutolsó kiírt
Matematikai statisztika
Matematikai statisztika Survey statisztika mesterszak + földtudomány alapszak Backhausz Ágnes agnes@math.elte.hu Fogadóóra: szerda 10 11 és 13 14, D 3-415 2018/2019. tavaszi félév Bevezetés A statisztika
Normális eloszlás tesztje
Valószínűség, pontbecslés, konfidenciaintervallum Normális eloszlás tesztje Kolmogorov-Szmirnov vagy Wilk-Shapiro próba. R-funkció: shapiro.test(vektor) balra ferde eloszlás jobbra ferde eloszlás balra
MINTAFELADATOK. 1. Az alábbi diagram egy kiskereskedelmi lánc boltjainak forgalomkoncentrációját szemlélteti:
1. Az alábbi diagram egy kiskereskedelmi lánc boltjainak forgalomkoncentrációját szemlélteti: 100% 90% 80% 70% 60% 50% 2010 2011 40% 30% 20% 10% 0% 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% a) Nevezze
Statisztikai programcsomagok gyakorlat Pót zárthelyi dolgozat megoldás
Statisztikai programcsomagok gyakorlat Pót zárthelyi dolgozat megoldás A feladatok megoldásához használandó adatállományok: potzh és potolando (weboldalon találhatók) Az állományok kiterjesztése sas7bdat,
VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA
VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA A VALÓSZÍNŰSÉGI SZEMLÉLET ALAPOZÁSA 1-6. OSZTÁLY A biztos, a lehetetlen és a lehet, de nem biztos események megkülünböztetése Valószínűségi játékok, kísérletek események
Statisztika I. 9. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 9. előadás Előadó: Dr. Ertsey Imre Statisztikai hipotézis vizsgálatok elsősorban a biometriában alkalmazzák, újabban reprezentatív jellegű ökonómiai vizsgálatoknál, üzemi szinten élelmiszeripari
Közlemény. Biostatisztika és informatika alapjai. Alapsokaság és minta
Közlemény Biostatisztika és informatika alajai. előadás: Az orvostudományban előforduló nevezetes eloszlások 6. szetember 9. Veres Dániel Statisztika és Informatika tankönyv (Herényi Levente) már kaható
Bevezető Mi a statisztika? Mérés Csoportosítás
Gazdaságstatisztika 1. előadás Kóczy Á. László Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Oktatók Előadó Kóczy Á. László (koczy.laszlo@kgk.bmf.hu) Fogadóóra: szerda 11:30 11:55, TA125 Gyakorlatvezető
6. Előadás. Vereb György, DE OEC BSI, október 12.
6. Előadás Visszatekintés: a normális eloszlás Becslés, mintavételezés Reprezentatív minta A statisztika, mint változó Paraméter és Statisztika Torzítatlan becslés A mintaközép eloszlása - centrális határeloszlás
Biostatisztika Összefoglalás
Biostatisztika Összefoglalás A biostatisztika vizsga A biostatisztika vizsga az Orvosi fizika és statisztika I. fizika vizsgájával egy napon történik. A vizsga keretében 30 perc alatt 0 kérdésre kell válaszolni
biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás
Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani
Többváltozós lineáris regressziós modell feltételeinek tesztelése I.
Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Kvantitatív statisztikai módszerek Petrovics Petra Többváltozós lineáris regressziós
Statisztikai módszerek 7. gyakorlat
Statisztikai módszerek 7. gyakorlat A tanult nem paraméteres próbák: PRÓBA NEVE Illeszkedés-vizsgálat Χ 2 próbával Homogenitás-vizsgálat Χ 2 próbával Normalitás-vizsgálataΧ 2 próbával MIRE SZOLGÁL? A val.-i
Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 8. előadás Előadó: Dr. Ertsey Imre Minták alapján történő értékelések A statisztika foglalkozik. a tömegjelenségek vizsgálatával Bizonyos esetekben lehetetlen illetve célszerűtlen a teljes
Statisztikai becslés
Kabos: Statisztika II. Becslés 1.1 Statisztikai becslés Freedman, D. - Pisani, R. - Purves, R.: Statisztika. Typotex, 2005. Reimann J. - Tóth J.: Valószínűségszámítás és matematikai statisztika. Tankönyvkiadó,
Vizuális adatelemzés
Vizuális adatelemzés Rendszermodellezés 2017. Budapest University of Technology and Economics Fault Tolerant Systems Research Group Budapest University of Technology and Economics Department of Measurement
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria Bódis Emőke 2016. 04. 25. J J 9 Korrelációanalízis Regresszióanalízis: hogyan változik egy vizsgált változó értéke egy másik változó változásának függvényében. Korrelációs
STATISZTIKA. A Föld pályája a Nap körül. Philosophiae Naturalis Principia Mathematica (A természetfilozófia matematikai alapelvei, 1687)
STATISZTIKA 10. Előadás Megbízhatósági tartományok (Konfidencia intervallumok) Sir Isaac Newton, 1643-1727 Philosophiae Naturalis Principia Mathematica (A természetfilozófia matematikai alapelvei, 1687)
A gyakorló feladatok számozása a bevezetı órát követı órán, azaz a második órán indul. Gyakorló feladatok megoldásai 1
A gyakorló feladatok számozása a bevezetı órát követı órán, azaz a második órán indul. Gyakorló feladatok megoldásai 1 1. A populációt a számunkra érdekes egységek (személyek, csalások, iskolák stb.) alkotják,
Többváltozós lineáris regressziós modell feltételeinek
Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Petrovics Petra Doktorandusz Többváltozós lineáris regressziós modell x 1, x 2,, x p
Korrelációs kapcsolatok elemzése
Korrelációs kapcsolatok elemzése 1. előadás Kvantitatív statisztikai módszerek Két változó közötti kapcsolat Független: Az X ismérv szerinti hovatartozás ismerete nem ad semmilyen többletinformációt az
Gazdasági matematika II. vizsgadolgozat megoldása A csoport
Gazdasági matematika II. vizsgadolgozat megoldása A csoport Definiálja az alábbi fogalmakat!. Egy eseménynek egy másik eseményre vonatkozó feltételes valószínűsége. ( pont) Az A esemény feltételes valószínűsége