Többváltozós Regresszió-számítás
|
|
- Lóránd Vörös
- 6 évvel ezelőtt
- Látták:
Átírás
1 Töváltozós Regresszió-számítás 3. előadás Döntéselőkészítés módszertana Dr. Szilágyi Roland
2 Korreláció Célja a kacsolat szorosságának mérése. Regresszió Célja a kacsolatan megfigyelhető törvényszerűség megfogalmazása, amelyet valamilyen függvény ír le. X (X, X,, X ): magyarázó változó(k), független változó(k) Y: eredményváltozó, függő változó Ok-okozati kacsolat: X okozza Y változását
3 Töváltozós lineáris regressziós modell,,, és y közötti kacsolatot árázoló egyenes. Az y függ:,,, d magyarázó változótól A véletlen ingadozásától (ε) β 0, β,, β regressziós együtthatóktól. Y = β 0 + β + β + + β +ε
4 Töváltozós lineáris regresszió adatstruktúrája y y y y n X n n n 0
5 5 Töváltozós lineáris regresszió min ) ( ;) ; ; ; ( 0 0 y f y y y n y
6 6 Az egyenletrendszer mátri alakan felírva n y y y y 0 X X y X T T
7 Az egyenletrendszer mátri alakan felírva X T y X T X X T X X T y
8 ANOVA A variancia forrása Eltérésnégyzetösszeg (SS) Szaadságfok (DF) Átlagos négyzetösszeg (MS) F-érték SSR S = (ŷ y ŷ i ) Regresszió (R) MSR=SSR/ Hiatényező (E) SSE S = (y ŷ e i ) n-- MSE=SSE/(n--) F MSR MSE Teljes (T) SST S = (y y n- - y i )
9 Modell tesztelés H 0 : 0 H : j 0. F SSR SSE n
10 β araméterek tesztelése Ha t számított <t kritikus H 0 Ha t számított >t kritikus H 0 : 0 : 0 i i H H ii e i i i i v s s( = t ) ; n t kritikus t
11 Töváltozós lineáris regressziós modell feltételrendszere A hiatagra vonatkozó feltételek. Várható értéke 0 M(ε) = 0. Varianciája konstans Var(ε) = 3. A hiatag értékei nem autokorreláltak. 4. Normális eloszlású valószínűségi változó.
12 A magyarázó változókra vonatkozó feltételek. Egymástól lineárisan függetlenek legyenek. (egyik magyarázó változót se lehessen a töi magyarázó változó lineáris kominációjaként előállítani). Értékeik rögzítettek legyenek, ne változzanak mintáról mintára. 3. Mérési hiát nem tartalmaznak. 4. Nem korrelálnak a hiatényezővel.
13 Feltétel Felt. sérülése Köv. Ellenőrzés Megjegyzés Linearitás Független (egymástól) Normális eloszlás Nem korreláltak Függő és független változókra vonatkozó feltétel Nem lineáris kacsolat Multikollinearitás Nem normális eloszlás Autokorreláció Homoszkedaszticitás Heteroszkedaszticitás; korrelál az X i -vel Becsült értékek sérülése Megízhatatlan ecslés, magas st. hia a regr. koefficiensnél Pontdiagram, r F szignifikáns, t nem; Korrelációs mátri; VIF-mutató Hiatagokra vonatkozó feltétel F-teszt, t-teszt érvénytelen Nem hatásos, nagy KI Nem hatásos, nagy KI Reziduumok standardizált eloszlásának hisztogramjai Reziduumok árázolása az idő / a megfigyelések sorrendjéen; Durin- Watson teszt Pontdiagram a standardizált reziduumok szórásáról Kizárólag töváltozós regr. esetéen Legkise négyzetek módszere kiküszööli Idősornál merülhet fel a roléma. Logaritmizálás vagy a súlyozottan LNM segít Forrás: Sajtos-Mitev [006], 7.o.
14 Standard lineáris regressziós modell Ahol az elő említett feltételek teljesülnek. Amennyien a mintaeli adatok nem igazolják a feltételek teljesülését, onyolulta modellre és ecslési eljárásokra van szükség.
15 A hiatagra vonatkozó feltételek ellenőrzése. Várható értéke 0 M(ε) = 0. Varianciája konstans Var(ε) = 3. A hiatag értékei nem autokorreláltak. 4. Normális eloszlású valószínűségi változó.
16 . M(ε) = 0 A hiatagok ozitív és negatív értékei kiegyenlítik egymást. Ha eltér a 0-tól, annak oka lehet, hogy kihagytunk a modellől egy szignifikáns magyarázó változót. Nehéz a gyakorlatan ellenőrizni. Ha feltételezzük, hogy a legkise négyzetek módszere érvényesül, akkor teljesül ez a feltétel.
17 A hiatagra vonatkozó feltételek ellenőrzése. Várható értéke 0 M(ε) = 0. Varianciája konstans Var(ε) = 3. A hiatag értékei nem autokorreláltak. 4. Normális eloszlású valószínűségi változó.
18 . Homoszkedaszticitás (Var(ε) = ) A hiatag varianciája állandó. Ha nem: heteroszkedaszticitás Tesztelése: o Grafikus a ecsült reziduumokat a kiválasztott magyarázó változó vagy az ŷ függvényéen árázoljuk o Statisztikai tesztek Goldfeld-Quandt-féle teszt, (Különösen akkor, ha a heteroszkedaszticitás valamelyik magyarázó változóhoz kacsolódik.)
19 Homoszkedaszticitás grafikus tesztelése e e e i ŷ i ŷ i ŷ Homoszkedasztikus hiatag Heteroszkedasztikus hiatag e reziduum
20 H 0 : j = H : j Léései: Homoszkedaszticitás Goldfeld- Quandt-féle tesztelése n-r. Rangsor: a keresztmetszeti adatokat y szerint rangsora rendezzük.. Független részminták, (ahol r > 0, > ) 3. Regressziós függvények, reziduális szórásnégyzet (s e ) számítása az. és 3. csoortra 4. F-róa: e s F H 0 e s (a varianciák eloszlást követnek és ezek egymástól függetlenek) n r n - r n - r ; r; F (α/) n - r F (-α/); ν,ν
21 A hiatagra vonatkozó feltételek ellenőrzése. Várható értéke 0 M(ε) = 0. Varianciája konstans Var(ε) = 3. A hiatag értékei nem autokorreláltak. 4. Normális eloszlású valószínűségi változó.
22 A hiatag értékei korrelálatlanok Keresztmetszeti adatokól történő egyszerű véletlen mintavétel esetéen ez a feltétel automatikusan teljesül. Ha a modell idősoros adatokra éül, gyakran előfordul a hiatagok autokorreláltsága. Autokorreláció oka: Nem megfelelő függvénytíus. Nem véletlen jellegű mérési hia. A modellen nem szereel valamennyi lényeges magyarázó változó (nem ismerjük fel a szereét / túl rövid idősor / nincs adat).
23 Autokorreláció grafikus tesztelése e t t e e A kihagyott változók miatt a reziduumok nem véletlenszerűek, hanem az egymást követő értékek között jelentős korreláció van. t Az autokorreláció a függvénytíus helytelen megválasztásának a következménye. + KVANTITATÍV TESZTEK!
24 Autokorreláció tesztelése Durin- H 0 : ρ = 0 korrelálatlan Watson róával H : ρ 0 autokorreláció + zavaró autokorreláció - zavaró autokorreláció 0 d l d u 4-d u 4-d l 4 Elfogadási tartomány d Határai: n t ( e t 0 d 4 Pozitív autokorreláció: 0 d Negatív autokorreláció: d 4 t Bizonytalansági tartomány: nem tudunk dönteni Növelni kell a megfigyelések számát Új változót kell evonni a modelle t n e e t )
25 A Durin-Watson róa döntési H >0 Pozitív autokorreláció <0 Negatív autokorreláció tálázata Elfogadjuk H 0 :=0 Elvetjük Nincs döntés d>d u d<d l d l <d<d u d<4-d u d>4-d l 4-dl <d<4-d u d u illetve d l értékét a Durin-Watson tálázatól határozzuk meg Forrás: Kerékgyártó-Mundruczó [999]
26 A hiatagra vonatkozó feltételek ellenőrzése. Várható értéke 0 M(ε) = 0. Varianciája konstans Var(ε) = 3. A hiatag értékei nem autokorreláltak. 4. Normális eloszlású valószínűségi változó.
27 A hiatag eloszlása normális Tesztelése: Grafikusan árákkal Kvantitatív módszerekkel illeszkedésvizsgálat - róa Ferdeségi, csúcsossági mérőszámokkal
28 A reziduumok eloszlásának grafikus tesztelése e z A reziduumokat várható értékük függvényéen árázoljuk. Ha az ára megközelítően lineáris, akkor a feltétel teljesült.
29 Illeszkedésvizsgálat H 0 : P r (ε j ) = P j (normális eloszláshoz tartozó megfelelő valószínűségi érték) H : J j : P r (ε j ) P j r ( f ) i npi np i H 0 ( ),( r )
30 A magyarázó változókra vonatkozó feltételek. Egymástól lineárisan függetlenek legyenek. (egyik magyarázó változót se lehessen a töi magyarázó változó lineáris kominációjaként előállítani). Értékeik rögzítettek legyenek, ne változzanak mintáról mintára. 3. Mérési hiát nem tartalmaznak. 4. Nem korrelálnak a hiatényezővel.
31 Multikollinearitás Mintaeli tulajdonság alkalmazható. mintán kívül nem Ellenőrzése: X j =f(x, X,,X j-, kézése után: X j+,,x ) regressziós modell Töszörös determinációs együtthatóval F-róával (F>F krit ) VIF-mutatóval
32 VIF-mutató Variancianövelő tényező VIF VIF= VIF ha R j =0 (amikor a j. magyarázó változó nem korrelál a töi magyarázó változóval) VIF R j = (a j. magyarázó változó ontosan kifejezhető a töi lineáris kominációjaként) VIF - gyenge multikollinearitás 5 VIF VIF 5 - erős zavaró multikollinearitás R - nagyon erős, káros multikollinearitás j j
33 Káros multikollinearitás esetén megkeressük azokat a magyarázó változókat, amelyek a zavart okozzák, és elhagyjuk őket a modellől; az egymással nagyon szoros kacsolatan álló magyarázó változókat egy új változóan összevonjuk (főkomonensek), amely mása lesz, mint az eredeti, de hordozza azok információtartalmát.
34 Köszönöm a figyelmet! stcsera@uni-miskolc.hu
Többváltozós lineáris regressziós modell feltételeinek tesztelése I.
Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Kvantitatív statisztikai módszerek Petrovics Petra Többváltozós lineáris regressziós
Többváltozós lineáris regressziós modell feltételeinek
Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Petrovics Petra Doktorandusz Többváltozós lineáris regressziós modell x 1, x 2,, x p
Többváltozós lineáris regressziós modell feltételeinek tesztelése II.
Többváltozós lineáris regressziós modell feltételeinek tesztelése II. - A magyarázó változóra vonatkozó feltételek tesztelése - Optimális regressziós modell kialakítása - Kvantitatív statisztikai módszerek
Statisztikai következtetések Nemlineáris regresszió Feladatok Vége
[GVMGS11MNC] Gazdaságstatisztika 10. előadás: 9. Regressziószámítás II. Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet A standard lineáris modell
Többváltozós Regresszió-számítás
Töváltozós Regresszó-számítás 4.-5. előadás Kvanttatív statsztka módszerek Dr. Szlág Roland Korrelácó Célja a kacsolat szorosságának mérése. X (X, X,, X ): magarázó változó(k), független változó(k) Y:
Statisztika elméleti összefoglaló
1 Statisztika elméleti összefoglaló Tel.: 0/453-91-78 1. Tartalomjegyzék 1. Tartalomjegyzék.... Becsléselmélet... 3 3. Intervallumbecslések... 5 4. Hipotézisvizsgálat... 8 5. Regresszió-számítás... 11
2013 ŐSZ. 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét!
GAZDASÁGSTATISZTIKA KIDOLGOZOTT ELMÉLETI KÉRDÉSEK A 3. ZH-HOZ 2013 ŐSZ Elméleti kérdések összegzése 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét! 2. Mutassa be az
Fogalom STATISZTIKA. Alkalmazhatósági feltételek. A standard lineáris modell. Projekciós mátrix, P
Fogalom STATISZTIKA 8 Előadás Többszörös lineáris regresszió Egy jelenség vizsgálata során általában az adott jelenséget több tényező befolyásolja, vagyis többnyire nem elegendő a kétváltozós modell elemzése
STATISZTIKA. Fogalom. A standard lineáris regressziós modell mátrixalgebrai jelölése. A standard lineáris modell. Eredménytáblázat
Fogalom STATISZTIKA 8 Előadás Többszörös lineáris regresszió Egy jelenség vizsgálata során általában az adott jelenséget több tényező befolyásolja, vagyis többnyire nem elegendő a kétváltozós modell elemzése
Korreláció és lineáris regresszió
Korreláció és lineáris regresszió Két folytonos változó közötti összefüggés vizsgálata Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi Fizika és Statisztika I. előadás 2016.11.02.
Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János
Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 12. Regresszió- és korrelációanaĺızis Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision
Regressziós vizsgálatok
Regressziós vizsgálatok Regresszió (regression) Általános jelentése: visszaesés, hanyatlás, visszafelé mozgás, visszavezetés. Orvosi területen: visszafejlődés, involúció. A betegség tünetei, vagy maga
Korreláció számítás az SPSSben
Korreláció számítás az SPSSben Kvantitatív statisztikai módszerek Petrovics Petra Statisztikai kapcsolatok Asszociáció 2 minőségi/területi ismérv között Vegyes kapcsolat minőségi/területi és egy mennyiségi
Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió
SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás
Bevezetés a Korreláció &
Bevezetés a Korreláció & Regressziószámításba Petrovics Petra Doktorandusz Statisztikai kapcsolatok Asszociáció 2 minőségi/területi ismérv között Vegyes kapcsolat minőségi/területi és egy mennyiségi ismérv
Regresszió számítás az SPSSben
Regresszió számítás az SPSSben Kvantitatív statisztikai módszerek Petrovics Petra Lineáris regressziós modell X és Y közötti kapcsolatot ábrázoló egyenes. Az Y függ: x 1, x 2,, x p p db magyarázó változótól
Lineáris regressziószámítás 1. - kétváltozós eset
Lineáris regressziószámítás 1. - kétváltozós eset Orlovits Zsanett 2019. február 6. Adatbázis - részlet eredmény- és magyarázó jellegű változók Cél: egy eredményváltozó alakulásának jellemzése a magyarázó
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria Bódis Emőke 2016. 04. 25. J J 9 Korrelációanalízis Regresszióanalízis: hogyan változik egy vizsgált változó értéke egy másik változó változásának függvényében. Korrelációs
GVMST22GNC Statisztika II.
GVMST22GNC Statisztika II. 4. előadás: 9. Kétváltozós korreláció- és regressziószámítás Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Korrelációszámítás
Diagnosztika és előrejelzés
2018. november 28. A diagnosztika feladata A modelldiagnosztika alapfeladatai: A modellillesztés jóságának vizsgálata (idősoros adatok esetén, a regressziónál már tanultuk), a reziduumok fehérzaj voltának
Varianciaanalízis 4/24/12
1. Feladat Egy póker kártya keverő gép a kártyákat random módon választja ki. A vizsgálatban 1600 választott kártya színei az alábbi gyakorisággal fordultak elő. Vizsgáljuk meg, hogy a kártyák kiválasztása
4/24/12. Regresszióanalízis. Legkisebb négyzetek elve. Regresszióanalízis
1. feladat Regresszióanalízis. Legkisebb négyzetek elve 2. feladat Az iskola egy évfolyamába tartozó diákok átlagéletkora 15,8 év, standard deviációja 0,6 év. A 625 fős évfolyamból hány diák fiatalabb
Regressziós vizsgálatok
Regressziós vizsgálatok Regresszió (regression) Általános jelentése: visszaesés, hanyatlás, visszafelé mozgás, visszavezetés. Orvosi területen: visszafejlődés, involúció. A betegség tünetei, vagy maga
ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó június
GAZDASÁGSTATISZTIKA GAZDASÁGSTATISZTIKA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi
Statisztika II előadáslapok. 2003/4. tanév, II. félév
Statisztika II előadáslapok 3/4 tanév, II félév BECSLÉS ÉS HIPOTÉZISVIZSGÁLAT Egyik konzervgyár vágott zöldbabot exportál A szabvány szerint az üvegek nettó töltősúlyának az átlaga 3 g, a szórása 5 g Az
Faktoranalízis az SPSS-ben
Faktoranalízis az SPSS-ben Kvantitatív statisztikai módszerek Petrovics Petra Feladat Megnyitás: faktor.sav Fogyasztók materialista vonásai (Richins-skála) Forrás: Sajtos-Mitev, 250.oldal Faktoranalízis
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 8 VIII. REGREssZIÓ 1. A REGREssZIÓs EGYENEs Két valószínűségi változó kapcsolatának leírására az eddigiek alapján vagy egy numerikus
GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet
GVMST22GNC Statisztika II. 3. előadás: 8. Hipotézisvizsgálat Kóczy Á. László Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Hipotézisvizsgálat v becslés Becslés Ismeretlen paraméter Közeĺıtő
A standard modellfeltevések, modelldiagnosztika
A standard modellfeltevések, modelldiagnosztika Ferenci Tamás tamas.ferenci@medstat.hu 2018. február 7. Tartalom Tartalomjegyzék 1. Erős exogenitás 1 2. Heteroszkedaszticitás 3 2.1. A heteroszkedaszticitás
5. előadás - Regressziószámítás
5. előadás - Regressziószámítás 2016. október 3. 5. előadás 1 / 18 Kétváltozós eset A modell: Y i = α + βx i + u i, i = 1,..., T, ahol X i független u i -től minden i esetén, (u i ) pedig i.i.d. sorozat
Korrelációs kapcsolatok elemzése
Korrelációs kapcsolatok elemzése 1. előadás Kvantitatív statisztikai módszerek Két változó közötti kapcsolat Független: Az X ismérv szerinti hovatartozás ismerete nem ad semmilyen többletinformációt az
Diszkriminancia-analízis
Diszkriminancia-analízis az SPSS-ben Petrovics Petra Doktorandusz Diszkriminancia-analízis folyamata Feladat Megnyitás: Employee_data.sav Milyen tényezőktől függ a dolgozók beosztása? Nem metrikus Független
Ökonometriai modellek paraméterei: számítás és értelmezés
Ökonometriai modellek paraméterei: számítás és értelmezés Írta: Werger Adrienn, Renczes Nóra, Pereszta Júlia, Vörösházi Ágota, Őzse Adrienn Javította és szerkesztette: Ferenci Tamás (tamas.ferenci@medstat.hu)
Függetlenségvizsgálat, Illeszkedésvizsgálat
Varga Beatrix, Horváthné Csolák Erika Függetlenségvizsgálat, Illeszkedésvizsgálat 4. előadás Üzleti statisztika A sokaság/minta több ismérv szerinti vizsgálata A statisztikai elemzés egyik ontos eladata
A többváltozós lineáris regresszió 1.
2018. szeptember 17. Lakásár adatbázis - részlet eredmény- és magyarázó jellegű változók Cél: egy eredményváltozó alakulásának jellemzése a magyarázó változók segítségével Legegyszerűbb eset - kétváltozós
Elemi statisztika. >> =weiszd= << december 20. Szerintem nincs sok szükségünk erre... [visszajelzés esetén azt is belerakom] x x = n
Elemi statisztika >> =weiszd=
Leíró és matematikai statisztika el adásnapló Matematika alapszak, matematikai elemz szakirány 2016/2017. tavaszi félév
Leíró és matematikai statisztika el adásnapló Matematika alapszak, matematikai elemz szakirány 2016/2017. tavaszi félév A pirossal írt anyagrészeket nem fogom közvetlenül számon kérni a vizsgán, azok háttérismeretként,
y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell
Példa STATISZTIKA Egy gazdálkodó k kukorica hibrid termesztése között választhat. Jelöljük a fajtákat A, B, C, D-vel. Döntsük el, hogy a hibridek termesztése esetén azonos terméseredményre számíthatunk-e.
Logisztikus regresszió
Logisztikus regresszió 9. előadás Kvantitatív statisztikai módszerek Dr. Szilágyi Roland Függő változó (y) Nem metrikus Metri kus Gazdaságtudományi Kar Független változó () Nem metrikus Metrikus Kereszttábla
VIZSGADOLGOZAT. I. PÉLDÁK (60 pont)
VIZSGADOLGOZAT (100 pont) A megoldások csak szöveges válaszokkal teljes értékűek! I. PÉLDÁK (60 pont) 1. példa (13 pont) Az egyik budapesti könyvtárban az olvasókból vett 400 elemű minta alapján a következőket
Esettanulmány. A homoszkedaszticitás megsértésének hatása a regressziós paraméterekre. Tartalomjegyzék. 1. Bevezetés... 2
Esettanulmány A homoszkedaszticitás megsértésének hatása a regressziós paraméterekre Tartalomjegyzék 1. Bevezetés... 2 2. A lineáris modell alkalmazhatóságának feltételei... 2 3. A feltételek teljesülésének
Matematikai geodéziai számítások 6.
Matematikai geodéziai számítások 6. Lineáris regresszió számítás elektronikus távmérőkre Dr. Bácsatyai, László Matematikai geodéziai számítások 6.: Lineáris regresszió számítás elektronikus távmérőkre
Korreláció és Regresszió
Korreláció és Regresszió 9. elıadás (17-18. lecke) Korrelációs együtthatók 17. lecke Áttekintés (korreláció és regresszió) A Pearson-féle korrelációs együttható Korreláció és Regresszió (témakörök) Kapcsolat
Több valószínűségi változó együttes eloszlása, korreláció
Tartalomjegzék Előszó... 6 I. Valószínűségelméleti és matematikai statisztikai alapok... 8 1. A szükséges valószínűségelméleti és matematikai statisztikai alapismeretek összefoglalása... 8 1.1. Alapfogalmak...
Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1
Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában
Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok
STATISZTIKA 1. Előadás Hipotézisvizsgálatok Tematika 1. Hipotézis vizsgálatok 2. t-próbák 3. Variancia-analízis 4. A variancia-analízis validálása, erőfüggvény 5. Korreláció számítás 6. Kétváltozós lineáris
Faktoranalízis az SPSS-ben
Faktoranalízis az SPSS-ben = Adatredukciós módszer Petrovics Petra Doktorandusz Feladat Megnyitás: faktoradat_msc.sav Forrás: Sajtos-Mitev 250.oldal Fogyasztók materialista vonásai (Richins-skála) Faktoranalízis
Matematikai geodéziai számítások 6.
Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr. Bácsatyai László Matematikai geodéziai számítások 6. MGS6 modul Lineáris regresszió számítás elektronikus távmérőkre SZÉKESFEHÉRVÁR 2010 Jelen szellemi
STATISZTIKA. Egymintás u-próba. H 0 : Kefir zsírtartalma 3% Próbafüggvény, alfa=0,05. Egymintás u-próba vagy z-próba
Egymintás u-próba STATISZTIKA 2. Előadás Középérték-összehasonlító tesztek Tesztelhetjük, hogy a valószínűségi változónk értéke megegyezik-e egy konkrét értékkel. Megválaszthatjuk a konfidencia intervallum
Statisztika I. 11. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 11. előadás Előadó: Dr. Ertsey Imre Összefüggés vizsgálatok A társadalmi gazdasági élet jelenségei kölcsönhatásban állnak, összefüggnek egymással. Statisztika alapvető feladata: - tényszerűségek
Statisztika I. 12. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 1. előadás Előadó: Dr. Ertsey Imre Regresszió analízis A korrelációs együttható megmutatja a kapcsolat irányát és szorosságát. A kapcsolat vizsgálata során a gyakorlatban ennél messzebb
y ij = µ + α i + e ij
Elmélet STATISZTIKA 3. Előadás Variancia-analízis Lineáris modellek A magyarázat a függő változó teljes heterogenitásának két részre bontását jelenti. A teljes heterogenitás egyik része az, amelynek okai
AZ ENERGIA GAZDASÁGI SZEREPÉNEK MAKROSZINTŰ ÉRTÉKELÉSE KELET- KÖZÉP-EURÓPÁBAN, 1990 ÉS 2009 KÖZÖTT
AZ ENERGIA GAZDASÁGI SZEREPÉNEK MAKROSZINTŰ ÉRTÉKELÉSE KELET- KÖZÉP-EURÓPÁBAN, 199 ÉS 29 KÖZÖTT Sebestyénné Szép Tekla Egyetemi tanársegéd Miskolci Egyetem, Gazdaságtudományi Kar, Világ- és Regionális
TÖBBVÁLTOZÓS KORRELÁCIÓ- ÉS
Miskolci Egyetem GAZDASÁGTUDOMÁNYI KAR Üzleti Információgazdálkodási és Módszertani Intézet TÖBBVÁLTOZÓS KORRELÁCIÓ- ÉS REGRESSZIÓSZÁMÍTÁS Oktatási segédlet Készítette: Domán Csaba egyetemi tanársegéd
Van-e kapcsolat a változók között? (példák: fizetés-távolság; felvételi pontszám - görgetett átlag)
, rangkorreláció Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-16-80 Fax: 463-30-91 http://www.vizgep.bme.hu
Gazdaságtudományi Kar. Gazdaságelméleti és Módszertani Intézet. Regresszió-számítás. 2. előadás. Kvantitatív statisztikai módszerek. Dr.
Gazdaságtudomán Kar Gazdaságelmélet és Módszertan Intézet Regresszó-számítás. előadás Kvanttatív statsztka módszerek Dr. Varga Beatr Gazdaságtudomán Kar Gazdaságelmélet és Módszertan Intézet Korrelácós
Adatok statisztikai értékelésének főbb lehetőségei
Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció
Tárgy- és névmutató. C Cox & Snell R négyzet 357 Cramer-V 139, , 151, 155, 159 csoportok közötti korrelációs mátrix 342 csúcsosság 93 95, 102
Tárgy- és névmutató A a priori kontraszt 174 175 a priori kritérium 259, 264, 276 adatbevitel 43, 47, 49 52 adatbeviteli nézet (data view) 45 adat-elôkészítés 12, 37, 62 adatgyûjtés 12, 15, 19, 20, 23,
Gazdaságtudományi Kar. Gazdaságelméleti és Módszertani Intézet. Faktoranalízis előadás. Kvantitatív statisztikai módszerek
Faktoranalízis 6.-7. előadás Kvantitatív statisztikai módszerek Faktoranalízis Olyan többváltozós statisztikai módszer, amely adattömörítésre, a változók számának csökkentésére, az adatstruktúra feltárására
Gyakorlat 8 1xANOVA. Dr. Nyéki Lajos 2016
Gyakorlat 8 1xANOVA Dr. Nyéki Lajos 2016 A probléma leírása Azt vizsgáljuk, hogy milyen hatása van a család jövedelmének a tanulók szövegértés teszten elért tanulmányi eredményeire. A minta 59 iskola adatait
III. Kvantitatív változók kapcsolata (korreláció, regresszió)
III. Kvantitatív változók kapcsolata (korreláció, regresszió) Tartalom Változók kapcsolata Kétdimenziós minta (pontdiagram) Regressziós előrejelzés (predikció) Korreláció Tanuló Kétdimenziós minta Tanulással
Kettőnél több csoport vizsgálata. Makara B. Gábor
Kettőnél több csoport vizsgálata Makara B. Gábor Három gyógytápszer elemzéséből az alábbi energia tartalom adatok származtak (kilokalória/adag egységben) Három gyógytápszer elemzésébô A B C 30 5 00 10
Diverzifikáció Markowitz-modell MAD modell CAPM modell 2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 11. Előadás Portfólió probléma Portfólió probléma Portfólió probléma Adott részvények (kötvények,tevékenységek,
Logisztikus regresszió
Logisztikus regresszió Kvantitatív statisztikai módszerek Dr. Szilágyi Roland Függő változó (y) Nem metrikus Metri kus Gazdaságtudományi Kar Független változó (x) Nem metrikus Metrikus Kereszttábla elemzés
Kiválasztás. A változó szerint. Rangok. Nem-paraméteres eljárások. Rang: Egy valamilyen szabály szerint felállított sorban elfoglalt hely.
Kiválasztás A változó szerint Egymintás t-próba Mann-Whitney U-test paraméteres nem-paraméteres Varianciaanalízis De melyiket válasszam? Kétmintás t-próba Fontos, hogy mindig a kérdésnek és a változónak
STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése
4. A modell érvényességének ellenőrzése STATISZTIKA 4. Előadás Variancia-analízis Lineáris modellek 1. Függetlenség 2. Normális eloszlás 3. Azonos varianciák A maradék független a kezelés és blokk hatástól
Bevezetés a hipotézisvizsgálatokba
Bevezetés a hipotézisvizsgálatokba Nullhipotézis: pl. az átlag egy adott µ becslése : M ( x -µ ) = 0 Alternatív hipotézis: : M ( x -µ ) 0 Szignifikancia: - teljes bizonyosság csak teljes enumerációra -
[Biomatematika 2] Orvosi biometria. Visegrády Balázs
[Biomatematika 2] Orvosi biometria Visegrády Balázs 2016. 03. 27. Probléma: Klinikai vizsgálatban három különböző antiaritmiás gyógyszert (ß-blokkoló) alkalmaznak, hogy kipróbálják hatásukat a szívműködés
Hipotézis vizsgálatok
Hipotézis vizsgálatok Hipotézisvizsgálat Hipotézis: az alapsokaság paramétereire vagy az alapsokaság eloszlására vonatkozó feltevés. Hipotézis ellenőrzés: az a statisztikai módszer, amelynek segítségével
Intervallumbecsle s Mintave tel+ Hipote zisvizsga lat Egyminta s pro ba k Ke tminta s pro ba k Egye b vizsga latok O sszef.
Intervallumbecsle s Mintave tel+ Hipote zisvizsga lat Egyminta s pro ba k Ke tminta s pro ba k Egye b vizsga latok O sszef. Feladatok Gazdaságstatisztika 7. Statisztikai becslések (folyt.); 8. Hipotézisvizsgálat
Feladatok: pontdiagram és dobozdiagram. Hogyan csináltuk?
Feladatok: pontdiagram és dobozdiagram Hogyan csináltuk? Alakmutatók: ferdeség, csúcsosság Alakmutatók a ferdeség és csúcsosság mérésére Ez eloszlás centrumát (középérték) és az adatok centrum körüli terpeszkedését
Autoregresszív és mozgóátlag folyamatok
Géczi-Papp Renáta Autoregresszív és mozgóátlag folyamatok Autoregresszív folyamat Az Y t diszkrét paraméterű sztochasztikus folyamatok k-ad rendű autoregresszív folyamatnak nevezzük, ha Y t = α 1 Y t 1
LINEÁRIS REGRESSZIÓ (I. MODELL) ÉS KORRELÁCIÓ FELADATOK
LINEÁRIS REGRESSZIÓ (I. MODELL) ÉS KORRELÁCIÓ FELADATOK 2004 november 29. 1.) Lisztbogarak súlyvesztése 9 lisztbogár-csapat súlyát megmérték, (mindegyik 25 bogárból állt, mert egyenként túl kis súlyúak
Hipotézis, sejtés STATISZTIKA. Kétmintás hipotézisek. Tudományos hipotézis. Munkahipotézis (H a ) Nullhipotézis (H 0 ) 11. Előadás
STATISZTIKA Hipotézis, sejtés 11. Előadás Hipotézisvizsgálatok, nem paraméteres próbák Tudományos hipotézis Nullhipotézis felállítása (H 0 ): Kétmintás hipotézisek Munkahipotézis (H a ) Nullhipotézis (H
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát
Tartalomjegyzék I. RÉSZ: KÍSÉRLETEK MEGTERVEZÉSE
Tartalomjegyzék 5 Tartalomjegyzék Előszó I. RÉSZ: KÍSÉRLETEK MEGTERVEZÉSE 1. fejezet: Kontrollált kísérletek 21 1. A Salk-oltás kipróbálása 21 2. A porta-cava sönt 25 3. Történeti kontrollok 27 4. Összefoglalás
Kvantitatív statisztikai módszerek
Kvantitatív statisztikai módszerek 1. konzultáció tárgyjegyző Dr. Szilágyi Roland Mérési skálák Számok meghatározott szabályok szerinti hozzárendelése jelenségekhez, bizonyos tulajdonságokhoz. 4 féle szabály
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen
Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )
Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:
Mérési adatok illesztése, korreláció, regresszió
Mérési adatok illesztése, korreláció, regresszió Korreláció, regresszió Két változó mennyiség közötti kapcsolatot vizsgálunk. Kérdés: van-e kapcsolat két, ugyanabban az egyénben, állatban, kísérleti mintában,
Valószínűségszámítás összefoglaló
Statisztikai módszerek BMEGEVGAT Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:
Matematikai statisztikai elemzések 6.
Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematikai statisztikai elemzések 6. MSTE6 modul Regressziószámítás: kétváltozós lineáris és nemlineáris regresszió, többváltozós
Nemparaméteres próbák
Nemparaméteres próbák Budapesti Mőszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Mőegyetem rkp. 3. D ép. 334. Tel: 463-16-80 Fax: 463-30-91 http://www.vizgep.bme.hu
Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat
Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi fizika és statisztika I. előadás 2016.11.09 Orvosi
Hipotéziselmélet - paraméteres próbák. eloszlások. Matematikai statisztika Gazdaságinformatikus MSc szeptember 10. 1/58
u- t- Matematikai statisztika Gazdaságinformatikus MSc 2. előadás 2018. szeptember 10. 1/58 u- t- 2/58 eloszlás eloszlás m várható értékkel, σ szórással N(m, σ) Sűrűségfüggvénye: f (x) = 1 e (x m)2 2σ
Biomatematika 13. Varianciaanaĺızis (ANOVA)
Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 13. Varianciaanaĺızis (ANOVA) Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date:
STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás
ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 9. Előadás Binomiális eloszlás Egyenletes eloszlás Háromszög eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell 2/62 Matematikai statisztika
1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása
HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat
Autoregresszív és mozgóátlag folyamatok. Géczi-Papp Renáta
Autoregresszív és mozgóátlag folyamatok Géczi-Papp Renáta Autoregresszív folyamat Az Y t diszkrét paraméterű sztochasztikus folyamatok k-ad rendű autoregresszív folyamatnak nevezzük, ha Y t = α 1 Y t 1
Matematikai statisztika Gazdaságinformatikus MSc október 8. lineáris regresszió. Adatredukció: Faktor- és főkomponensanaĺızis.
i Matematikai statisztika Gazdaságinformatikus MSc 6. előadás 2018. október 8. 1/52 - Hol tartottunk? Modell. Y i = β 0 + β 1 X 1,i + β 2 X 2,i +... + β k X k,i + u i i minden t = 1,..., n esetén. X i
2012. április 18. Varianciaanaĺızis
2012. április 18. Varianciaanaĺızis Varianciaanaĺızis (analysis of variance, ANOVA) Ismételt méréses ANOVA Kérdések: (1) van-e különbség a csoportok között (t-próba általánosítása), (2) van-e hatása a
Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet
Fkt Faktoranalízis líi Olyan többváltozós statisztikai módszer, amely adattömörítésre, a változók számának csökkentésére, az adatstruktúra feltárására szolgál. A kiinduló változók számát úgynevezett faktorváltozókba
biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás
Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani
Hipotézisvizsgálat az Excel adatelemző eljárásaival. Dr. Nyéki Lajos 2018
Hipotézisvizsgálat az Excel adatelemző eljárásaival Dr. Nyéki Lajos 2018 Egymintás t-próba Az egymintás T-próba azt vizsgálja, hogy különbözik-e a változó M átlaga egy megadott m konstanstól. Az a feltételezés,
A modellben az X és Y változó szerepe nem egyenrangú: Y (x n )
Kabos: Adatelemzés Regresszió-1 Regresszió (az adatelemzésben): Y (x n ) = l(x n ) + ε n, n = 1, 2,.., N, ahol ε 1,.., ε N független N(0, σ 2 ) eloszlású valószínűségi változók, és σ ismeretlen paraméter,
Számítógépes döntéstámogatás. Statisztikai elemzés
SZDT-03 p. 1/22 Számítógépes döntéstámogatás Statisztikai elemzés Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Előadás SZDT-03 p. 2/22 Rendelkezésre
Hipotézis vizsgálatok
Hipotézis vizsgálatok Hipotézisvizsgálat Hipotézis: az alapsokaság paramétereire vagy az alapsokaság eloszlására vonatkozó feltevés. Hipotézis ellenőrzés: az a statisztikai módszer, amelynek segítségével
Statisztikai módszerek a skálafüggetlen hálózatok
Statisztikai módszerek a skálafüggetlen hálózatok vizsgálatára Gyenge Ádám1 1 Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Számítástudományi és Információelméleti
Biostatisztika VIII. Mátyus László. 19 October
Biostatisztika VIII Mátyus László 19 October 2010 1 Ha σ nem ismert A gyakorlatban ritkán ismerjük σ-t. Ha kiszámítjuk s-t a minta alapján, akkor becsülhetjük σ-t. Ez további bizonytalanságot okoz a becslésben.