Korreláció és lineáris regresszió
|
|
- Sára Siposné
- 8 évvel ezelőtt
- Látták:
Átírás
1 Korreláció és lineáris regresszió Két folytonos változó közötti összefüggés vizsgálata Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi Fizika és Statisztika I. előadás Orvosi Fizika és Statisztika I. előadás
2 Bevezetés Élettudományokkal foglalkozó kutatások során gyakran mérnek több változót ugyanazokon a mintavételi egységeken. (pl.: testtömeg, vérnyomás, vércukorszint, testmagasság) Felmerülő kérdések: Van-e kapcsolat a két változó között? Ha van kapcsolat a változók között, akkor le lehet-e írni valamilyen formulával? Meg lehet-e "jósolni" az egyik változó ismeretében a másik valószínű értékét. A folytonos változók közötti összefüggést pont-diagramon ábrázoljuk. Orvosi Fizika és Statisztika I. előadás
3 Lehetséges kapcsolatok Pozitív kapcsolat Ido Baktériumok mennyisége Pozitív, lineáris kapcsolat ps positive microvesicles Glycophorin A positive microvasicle Negatív lineáris kapcsolat Times (hours) Blood alcohol concentration (mg%) Negatív kapcsolat Time Unresolved sugar Nem monoton kapcsolat Time Nincs kapcsolat Actual weight (kg) Number of countries visited Orvosi Fizika és Statisztika I. előadás
4 Főbb pontok 1 Korrelációszámítás Pearson féle korrelációs együttható Hipotézisvizsgálat a korrelációs együtthatóra Kiugró értékek hatása 2 Regressziószámítás Lineáris regresszió 3 Nem lineáris kapcsolatok 4 Összefoglaló kérdések Orvosi Fizika és Statisztika I. előadás
5 Pearson féle korrelációs együttható Pearson féle korrelációs együttható Definíció A Pearson féle korrelációs együttható a lineáris kapcsolat erősségét méri. ρ: a korrelációs együttható a populációban (nem ismert) r: a korrelációs együttható a mintában (ezzel becsüljük ρ-t) Formula r = ahol x i, y i : a változók értékei x, y: a mintaátlagok n: mintaelemszám n i=1 (x i x) (y i y) n i=1 (x i x) 2 n i=1 (y i y) 2 Orvosi Fizika és Statisztika I. előadás
6 Pearson féle korrelációs együttható r tulajdonságai mértékegység nélküli 1 r 1 ha a két változó független, akkor r = 0 r = 0 a lineáris kapcsolat hiányát és NEM az összefüggés hiányát jelenti r 1 erős pozitív, lineáris kapcsolat r 1 erős negatív, lineáris kapcsolat r 0 gyenge lineáris kapcsolat r és ρ csak a lineáris kapcsolat erősségét méri, nem alkalmas ok-okozati kapcsolat kimutatására. Orvosi Fizika és Statisztika I. előadás
7 Hipotézisvizsgálat a korrelációs együtthatóra Hipotézisvizsgálat a korrelációs együtthatóra Célja: megmutatni, hogy a két változó közötti lineáris összefüggés valódi, vagy csak a véletlen műve, azaz a populációra vonatkozó korrelációs együttható (ρ) eltér-e 0-tól. Hipotézisek: H 0 : ρ = 0, nincs lineáris kapcsolat a két változó között, a változók lineárisan függetlenek H 1 : ρ 0, van lineáris kapcsolat a két változó között, a változók összefüggenek Feltétel: a minta kétdimenziós normális eloszlásból származik (populáció követ kétdimenziós normális eloszlást) Orvosi Fizika és Statisztika I. előadás
8 Hipotézisvizsgálat a korrelációs együtthatóra Kétdimenziós normális eloszlás µ Orvosi Fizika és Statisztika I. előadás
9 Hipotézisvizsgálat a korrelációs együtthatóra Hipotézisvizsgálat a korrelációs együtthatóra Próbastatisztika: Ha a null-hipotézis igaz, t n 2 szabadságfokú t-eloszlást követ n 2 t = r 1 r 2 Kritikus érték: t α,n 2 táblázatból Orvosi Fizika és Statisztika I. előadás
10 Hipotézisvizsgálat a korrelációs együtthatóra Hipotézisvizsgálat a korrelációs együtthatóra Döntés és értelmezés: próbastatisztika alapján Ha t < t α,n 2, t ( t α,n 2, t α,n 2 ) : elfogadjuk H 0 -t, a különbség nem szignifikáns α szinten, a populáció korrelációs együtthatója nem tér el 0-tól, azaz a két változó lineárisan független. Ha t > t α,n 2, t / ( t α,n 2, t α,n 2 ) : H 0 -t elvetjük, a különbség szignifikáns α szinten, a populáció korrelációs együtthatója eltér 0-tól, azaz a két változó között lineáris kapcsolat van. p érték alapján Ha p > α : H 0 -t elfogadjuk Ha p < α : H 0 -t elvetjük Orvosi Fizika és Statisztika I. előadás
11 Egy tanulmányban a hemoglobin (HGB) és a hermatokrit (HTC) értékek közötti kapcsolatot vizsgálták. Betegek HGB (g/dl) HTC ( %) Orvosi Fizika és Statisztika I. előadás
12 Hemoglobin szint (g/dl) Hematokrit szint (%) Orvosi Fizika és Statisztika I. előadás
13 Korrelációs együttható: r = Hipotézisek: H 0 : ρ = 0 Nincs lineáris kapcsolat a hematokrit és a hemoglobin értékek között. H 1 : ρ 0 A hematokrit és a hemoglobin értékek között van lineáris kapcsolat. Számolás: mintaelemszám: n = 10 szabadsági fok: df = 10 2 = 8 Próbastatisztika: 10 2 t = = Kritikus érték: t α,n 2 = Orvosi Fizika és Statisztika I. előadás
14 Döntés: t > t α,n > H 0 -t elvetjük. A különbség szignifikáns, a hemoglobin és a hematokrit értékek között valóban van lineáris kapcsolat, azaz nem függetlenek. Hemoglobin szint (g/dl) Hematokrit szint (%) Orvosi Fizika és Statisztika I. előadás
15 Megoldás R-rel > HGB=c ( , , , , , , 9. 6, , , ) > HTC=c ( 3 5, 4 5, 4 7, 5 0, 3 1, 3 0, 2 5, 3 3, 3 5, 4 0 ) > p l o t (HTC,HGB, pch =19) > c o r (HGB,HTC ) [ 1 ] > c o r. t e s t (HDB,HTC) Pearson s product moment c o r r e l a t i o n data : HGB and HTC t = , d f = 8, p v a l u e = a l t e r n a t i v e h y p o t h e s i s : t r u e c o r r e l a t i o n i s not e q u a l to 0 95 p e r c e n t c o n f i d e n c e i n t e r v a l : sample e s t i m a t e s : c o r Orvosi Fizika és Statisztika I. előadás
16 Kiugró értékek hatása Kiugró értékek hatása Egyetlen kiugró érték jelentősen meg tudja változtatni a korrelációs együttható értékét. r= r= r= r= Orvosi Fizika és Statisztika I. előadás
17 Főbb pontok 1 Korrelációszámítás Pearson féle korrelációs együttható Hipotézisvizsgálat a korrelációs együtthatóra Kiugró értékek hatása 2 Regressziószámítás Lineáris regresszió 3 Nem lineáris kapcsolatok 4 Összefoglaló kérdések Orvosi Fizika és Statisztika I. előadás
18 Regressziószámítás Ha van összefüggés a két változó között szükségessé válik a függvényszerű kapcsolat felírása. Csak lineáris kapcsolatot vizsgálunk. Orvosi Fizika és Statisztika I. előadás
19 Lineáris regresszió Lineáris regresszió Ha a feltételezett kapcsolat lineáris, szükséges a legjobban illeszkedő egyenes felírása (regressziós egyenes) Egyenlet: y = a x + b a: az illesztett egyenes meredeksége, regressziós együttható b: a regressziós egyenes y-tengelymetszete Az egyenes illesztése a legkisebb négyzetek módszerével történik. Orvosi Fizika és Statisztika I. előadás
20 Lineáris regresszió A legkisebb négyzetek módszere Meghatározzuk a minimumát a mintapontok és az egyenes függőleges távolságainak (reziduumok) négyzetösszegeinek. n (y i (a x i + b)) 2 min i=1 Orvosi Fizika és Statisztika I. előadás
21 Lineáris regresszió A legkisebb négyzetek módszere A minimum meghatározása parciális deriválással történik. a = n i=1 (x i x) (y i y) n i=1 (x i x) 2 a regressziós együttható b = y a x Kapcsolat a korrelációs és a regressziós együttható között. r = a sd x sd y Orvosi Fizika és Statisztika I. előadás
22 Lineáris regresszió Hipotézisvizsgálat a regressziós együtthatóra t próbával Célja: Van-e kapcsolat a függő (y) és független (x) változó között? Hipotézisek: H 0 : a pop = 0 a regressziós egyenes együtthatója 0, nincs kapcsolat a két változó között. H 1 : a pop 0 a regressziós egyenes együtthatója nem 0, van kapcsolat a két változó között. Számolás: próbastatisztika: t = a SE(a) Ha a nullhipotézis igaz t Student féle t-eloszlást követ n 2 szabadságfokkal. kritikus érték: t α,n 2 táblázatból Döntés: Orvosi afizika t-próbáknál és Statisztikahasználatos I. előadás módszerekkel 22
23 Lineáris regresszió Hipotézisvizsgálat a regressziós együtthatóra F-próbával Célja: Van-e kapcsolat a függő (y) és független (x) változó között? Hipotézisek: H 0 : a population = 0 a regressziós egyenes együtthatója 0, nincs kapcsolat a két változó között. H 1 : a population 0 a regressziós egyenes együtthatója nem 0, van kapcsolat a két változó között. Számolás: próbastatisztika: F = a 2 (1 a 2 ) 1 n 2 Ha a nullhipotézis teljesül, a próbastatisztika F eloszlást követ 1 és n 2 szabadsági fokokkal. kritikus érték: F α,1,n 2 táblázatból Orvosi Fizika és Statisztika I. előadás
24 Lineáris regresszió Hipotézisvizsgálat a regressziós együtthatóra F-próbával Döntés: Ha F < F α,1,n 2 H 0 -t elfogadjuk. Ha F > F α,1,n 2 H 0 -t elvetjük. A teljes szórás felbontása: ahol, SST = SSR + SSE SST = n i=1 (y i y) 2 Az y teljes szórása SSR = n i=1 (ŷ i y) 2 Az x-től való függésből eredő szórás SSE = n i=1 (y i ŷ i ) 2 egyéb hatásokból adódó szórás (véletlen hiba) Orvosi Fizika és Statisztika I. előadás y i y^ i y x i
25 Lineáris regresszió Determinációs együttható Definíció A korrelációs együttható négyzete * 100% Jelentése Megmutatja, hogy a függő változó y teljes varianciájának hány százaléka magyarázható az x-től való függéssel. Orvosi Fizika és Statisztika I. előadás
26 Egy tanulmányban a hemoglobin (HB) és a hermatokrit (HTC) értékek közötti kapcsolatot vizsgálták. Betegek HGB (g/dl) HTC ( %) Orvosi Fizika és Statisztika I. előadás
27 Hipotézisek: H 0 : R = 0 Nincs kapcsolat a hematokrit és a hemoglobin értékek között. H 1 : R 0 A hematokrit és a hemoglobin értékek között van kapcsolat. Számolás R-rel > p l o t (HTC, HGB) > a b l i n e ( lm (HGB~HTC), c o l=" r e d ", lwd =2) >lm (HGB~HTC) C a l l : lm ( f o r m u l a = HB ~ PCV) C o e f f i c i e n t s : ( I n t e r c e p t ) PCV Orvosi Fizika és Statisztika I. előadás
28 Megoldás R-rel > summary ( lm (HGB~HTC) ) C a l l : lm ( f o r m u l a = HGB ~ HTC) R e s i d u a l s : Min 1Q Median 3Q Max C o e f f i c i e n t s : E s t i m a t e Std. E r r o r t v a l u e Pr ( > t ) ( I n t e r c e p t ) e 05 PCV R e s i d u a l s t a n d a r d e r r o r : on 8 d e g r e e s o f freedom M u l t i p l e R s q u a r e d : , A d j u s t e d R s q u a r e d : F s t a t i s t i c : on 1 and 8 DF, p v a l u e : Orvosi Fizika és Statisztika I. előadás
29 Eredmények A regressziós egyenes egyenlete: próbastatisztika: t = p-érték: p < HB = PCV Döntés: H 0 -t elvetjük. A regressziós egyenes egyenlete szignifikánsan eltér 0-tól. A determinációs együttható: R 2 = A hemoglobin értékek teljes varinaciájának 80%- a a hematokrit szinttel való függéssel magyarázható. Orvosi Fizika és Statisztika I. előadás
30 Főbb pontok 1 Korrelációszámítás Pearson féle korrelációs együttható Hipotézisvizsgálat a korrelációs együtthatóra Kiugró értékek hatása 2 Regressziószámítás Lineáris regresszió 3 Nem lineáris kapcsolatok 4 Összefoglaló kérdések Orvosi Fizika és Statisztika I. előadás
31 Nem lineáris kapcsolatok Ha nem lineáris (exponenciális, logaritmikus, hatvány) kapcsolatot feltételezünk, a változók transzformálásával a probláma visszavezethető lineáris regresszióra. Kapcsolat független változó függő változó lineáris x y exponenciális x log y logaritmikus log x y hatvány log x log y Orvosi Fizika és Statisztika I. előadás
32 Exponenciális kapcsolat x y log y y log y x x Orvosi Fizika és Statisztika I. előadás
33 Logaritmikus kapcsolat x y log x y y x log x Orvosi Fizika és Statisztika I. előadás
34 Hatvány kapcsolat x y log x log y y log y x log x Orvosi Fizika és Statisztika I. előadás
35 Főbb pontok 1 Korrelációszámítás Pearson féle korrelációs együttható Hipotézisvizsgálat a korrelációs együtthatóra Kiugró értékek hatása 2 Regressziószámítás Lineáris regresszió 3 Nem lineáris kapcsolatok 4 Összefoglaló kérdések Orvosi Fizika és Statisztika I. előadás
36 Összefoglaló kérdések Két folytonos változó közötti kapcsolat grafikus reprezentálása A korrelációs együttható jelentése és tulajdonságai A korrelációs együttható szignifikanciája: nullhipotézis, t-érték, szabadságfok, döntés A determinációs együttható A regressziós egyenes együtthatóinak jelentése A regressziós egyenes együtthatóinak meghatározásának elve Regresszió transzformációkkal Orvosi Fizika és Statisztika I. előadás
37 Köszönöm a figyelmet! Orvosi Fizika és Statisztika I. előadás
Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió
SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás
2013 ŐSZ. 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét!
GAZDASÁGSTATISZTIKA KIDOLGOZOTT ELMÉLETI KÉRDÉSEK A 3. ZH-HOZ 2013 ŐSZ Elméleti kérdések összegzése 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét! 2. Mutassa be az
Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat
Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi fizika és statisztika I. előadás 2016.11.09 Orvosi
Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János
Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 12. Regresszió- és korrelációanaĺızis Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision
Regressziós vizsgálatok
Regressziós vizsgálatok Regresszió (regression) Általános jelentése: visszaesés, hanyatlás, visszafelé mozgás, visszavezetés. Orvosi területen: visszafejlődés, involúció. A betegség tünetei, vagy maga
Statisztikai következtetések Nemlineáris regresszió Feladatok Vége
[GVMGS11MNC] Gazdaságstatisztika 10. előadás: 9. Regressziószámítás II. Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet A standard lineáris modell
Korreláció, regresszió. Boda Krisztina PhD SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet
Korreláció, regresszió Boda Krisztina PhD SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet Két folytonos változó közötti kapcsolat Tegyük fel, hogy 6 hallgató a következő válaszokat adta egy felmérés
Adatok statisztikai értékelésének főbb lehetőségei
Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria Bódis Emőke 2016. 04. 25. J J 9 Korrelációanalízis Regresszióanalízis: hogyan változik egy vizsgált változó értéke egy másik változó változásának függvényében. Korrelációs
4/24/12. Regresszióanalízis. Legkisebb négyzetek elve. Regresszióanalízis
1. feladat Regresszióanalízis. Legkisebb négyzetek elve 2. feladat Az iskola egy évfolyamába tartozó diákok átlagéletkora 15,8 év, standard deviációja 0,6 év. A 625 fős évfolyamból hány diák fiatalabb
Bevezetés a hipotézisvizsgálatokba
Bevezetés a hipotézisvizsgálatokba Nullhipotézis: pl. az átlag egy adott µ becslése : M ( x -µ ) = 0 Alternatív hipotézis: : M ( x -µ ) 0 Szignifikancia: - teljes bizonyosság csak teljes enumerációra -
Bevezetés a Korreláció &
Bevezetés a Korreláció & Regressziószámításba Petrovics Petra Doktorandusz Statisztikai kapcsolatok Asszociáció 2 minőségi/területi ismérv között Vegyes kapcsolat minőségi/területi és egy mennyiségi ismérv
Többváltozós lineáris regressziós modell feltételeinek
Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Petrovics Petra Doktorandusz Többváltozós lineáris regressziós modell x 1, x 2,, x p
Többváltozós lineáris regressziós modell feltételeinek tesztelése I.
Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Kvantitatív statisztikai módszerek Petrovics Petra Többváltozós lineáris regressziós
A biostatisztika alapfogalmai, hipotézisvizsgálatok. Dr. Boda Krisztina PhD SZTE ÁOK Orvosi Informatikai Intézet
A biostatisztika alapfogalmai, hipotézisvizsgálatok Dr. Boda Krisztina PhD SZTE ÁOK Orvosi Informatikai Intézet Hipotézis Állítás a populációról (vagy annak paraméteréről) Példák H1: p=0.5 (a pénzérme
Regresszió számítás az SPSSben
Regresszió számítás az SPSSben Kvantitatív statisztikai módszerek Petrovics Petra Lineáris regressziós modell X és Y közötti kapcsolatot ábrázoló egyenes. Az Y függ: x 1, x 2,, x p p db magyarázó változótól
Hipotézis vizsgálatok
Hipotézis vizsgálatok Hipotézisvizsgálat Hipotézis: az alapsokaság paramétereire vagy az alapsokaság eloszlására vonatkozó feltevés. Hipotézis ellenőrzés: az a statisztikai módszer, amelynek segítségével
Statisztika elméleti összefoglaló
1 Statisztika elméleti összefoglaló Tel.: 0/453-91-78 1. Tartalomjegyzék 1. Tartalomjegyzék.... Becsléselmélet... 3 3. Intervallumbecslések... 5 4. Hipotézisvizsgálat... 8 5. Regresszió-számítás... 11
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 8 VIII. REGREssZIÓ 1. A REGREssZIÓs EGYENEs Két valószínűségi változó kapcsolatának leírására az eddigiek alapján vagy egy numerikus
Statisztika I. 11. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 11. előadás Előadó: Dr. Ertsey Imre Összefüggés vizsgálatok A társadalmi gazdasági élet jelenségei kölcsönhatásban állnak, összefüggnek egymással. Statisztika alapvető feladata: - tényszerűségek
Mérési adatok illesztése, korreláció, regresszió
Mérési adatok illesztése, korreláció, regresszió Korreláció, regresszió Két változó mennyiség közötti kapcsolatot vizsgálunk. Kérdés: van-e kapcsolat két, ugyanabban az egyénben, állatban, kísérleti mintában,
Többváltozós Regresszió-számítás
Töváltozós Regresszió-számítás 3. előadás Döntéselőkészítés módszertana Dr. Szilágyi Roland Korreláció Célja a kacsolat szorosságának mérése. Regresszió Célja a kacsolatan megfigyelhető törvényszerűség
Elemi statisztika. >> =weiszd= << december 20. Szerintem nincs sok szükségünk erre... [visszajelzés esetén azt is belerakom] x x = n
Elemi statisztika >> =weiszd=
GVMST22GNC Statisztika II.
GVMST22GNC Statisztika II. 4. előadás: 9. Kétváltozós korreláció- és regressziószámítás Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Korrelációszámítás
Hipotézis, sejtés STATISZTIKA. Kétmintás hipotézisek. Tudományos hipotézis. Munkahipotézis (H a ) Nullhipotézis (H 0 ) 11. Előadás
STATISZTIKA Hipotézis, sejtés 11. Előadás Hipotézisvizsgálatok, nem paraméteres próbák Tudományos hipotézis Nullhipotézis felállítása (H 0 ): Kétmintás hipotézisek Munkahipotézis (H a ) Nullhipotézis (H
Statisztika I. 12. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 1. előadás Előadó: Dr. Ertsey Imre Regresszió analízis A korrelációs együttható megmutatja a kapcsolat irányát és szorosságát. A kapcsolat vizsgálata során a gyakorlatban ennél messzebb
A biostatisztika alapfogalmai, hipotézisvizsgálatok. Dr. Boda Krisztina Boda PhD SZTE ÁOK Orvosi Informatikai Intézet
A biostatisztika alapfogalmai, hipotézisvizsgálatok Dr. Boda Krisztina Boda PhD SZTE ÁOK Orvosi Informatikai Intézet Hipotézisvizsgálatok A hipotézisvizsgálat során a rendelkezésre álló adatok (statisztikai
III. Kvantitatív változók kapcsolata (korreláció, regresszió)
III. Kvantitatív változók kapcsolata (korreláció, regresszió) Tartalom Változók kapcsolata Kétdimenziós minta (pontdiagram) Regressziós előrejelzés (predikció) Korreláció Tanuló Kétdimenziós minta Tanulással
1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása
HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat
Egyszempontos variancia analízis. Statisztika I., 5. alkalom
Statisztika I., 5. alkalom Számos t-próba versus variancia analízis Kreativitás vizsgálata -nık -férfiak ->kétmintás t-próba I. Fajú hiba=α Kreativitás vizsgálata -informatikusok -építészek -színészek
Biomatematika 13. Varianciaanaĺızis (ANOVA)
Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 13. Varianciaanaĺızis (ANOVA) Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date:
Tartalomjegyzék I. RÉSZ: KÍSÉRLETEK MEGTERVEZÉSE
Tartalomjegyzék 5 Tartalomjegyzék Előszó I. RÉSZ: KÍSÉRLETEK MEGTERVEZÉSE 1. fejezet: Kontrollált kísérletek 21 1. A Salk-oltás kipróbálása 21 2. A porta-cava sönt 25 3. Történeti kontrollok 27 4. Összefoglalás
Anyagvizsgálati módszerek Mérési adatok feldolgozása. Anyagvizsgálati módszerek
Anyagvizsgálati módszerek Mérési adatok feldolgozása Anyagvizsgálati módszerek Pannon Egyetem Mérnöki Kar Anyagvizsgálati módszerek Statisztika 1/ 22 Mérési eredmények felhasználása Tulajdonságok hierarchikus
Matematikai statisztikai elemzések 6.
Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematikai statisztikai elemzések 6. MSTE6 modul Regressziószámítás: kétváltozós lineáris és nemlineáris regresszió, többváltozós
Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok
STATISZTIKA 1. Előadás Hipotézisvizsgálatok Tematika 1. Hipotézis vizsgálatok 2. t-próbák 3. Variancia-analízis 4. A variancia-analízis validálása, erőfüggvény 5. Korreláció számítás 6. Kétváltozós lineáris
Statisztika I. 9. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 9. előadás Előadó: Dr. Ertsey Imre Statisztikai hipotézis vizsgálatok elsősorban a biometriában alkalmazzák, újabban reprezentatív jellegű ökonómiai vizsgálatoknál, üzemi szinten élelmiszeripari
ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó június
GAZDASÁGSTATISZTIKA GAZDASÁGSTATISZTIKA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi
Biostatisztika Összefoglalás
Biostatisztika Összefoglalás A biostatisztika vizsga A biostatisztika vizsga az Orvosi fizika és statisztika I. fizika vizsgájával egy napon történik. A vizsga keretében 30 perc alatt 0 kérdésre kell válaszolni
Normális eloszlás paramétereire vonatkozó próbák
Normális eloszlás paramétereire vonatkozó próbák Az alábbi próbák akkor használhatók, ha a meggyelések függetlenek, és feltételezhetjük, hogy normális eloszlásúak a meggyelések függetlenek, véges szórású
biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás
Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria Bódis Emőke 2016. 04. 18. J J 9 Információk a 2. ZH-ról és a vizsgáról 12. hét: gyakorló óra 13. hét: teszt 14. hét: a teszt megbeszélése, vizsgajegyek megajánlása. Minden
Leíró és matematikai statisztika el adásnapló Matematika alapszak, matematikai elemz szakirány 2016/2017. tavaszi félév
Leíró és matematikai statisztika el adásnapló Matematika alapszak, matematikai elemz szakirány 2016/2017. tavaszi félév A pirossal írt anyagrészeket nem fogom közvetlenül számon kérni a vizsgán, azok háttérismeretként,
GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet
GVMST22GNC Statisztika II. 3. előadás: 8. Hipotézisvizsgálat Kóczy Á. László Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Hipotézisvizsgálat v becslés Becslés Ismeretlen paraméter Közeĺıtő
Egymintás próbák. Alapkérdés: populáció <paramétere/tulajdonsága> megegyezik-e egy referencia paraméter értékkel/tulajdonsággal?
Egymintás próbák σ s μ m Alapkérdés: A populáció egy adott megegyezik-e egy referencia paraméter értékkel/tulajdonsággal? egymintás t-próba Wilcoxon-féle előjeles
STATISZTIKA. Fogalom. A standard lineáris regressziós modell mátrixalgebrai jelölése. A standard lineáris modell. Eredménytáblázat
Fogalom STATISZTIKA 8 Előadás Többszörös lineáris regresszió Egy jelenség vizsgálata során általában az adott jelenséget több tényező befolyásolja, vagyis többnyire nem elegendő a kétváltozós modell elemzése
Hipotézis vizsgálatok
Hipotézis vizsgálatok Hipotézisvizsgálat Hipotézis: az alapsokaság paramétereire vagy az alapsokaság eloszlására vonatkozó feltevés. Hipotézis ellenőrzés: az a statisztikai módszer, amelynek segítségével
STATISZTIKA. Egymintás u-próba. H 0 : Kefir zsírtartalma 3% Próbafüggvény, alfa=0,05. Egymintás u-próba vagy z-próba
Egymintás u-próba STATISZTIKA 2. Előadás Középérték-összehasonlító tesztek Tesztelhetjük, hogy a valószínűségi változónk értéke megegyezik-e egy konkrét értékkel. Megválaszthatjuk a konfidencia intervallum
Lineáris regressziószámítás 1. - kétváltozós eset
Lineáris regressziószámítás 1. - kétváltozós eset Orlovits Zsanett 2019. február 6. Adatbázis - részlet eredmény- és magyarázó jellegű változók Cél: egy eredményváltozó alakulásának jellemzése a magyarázó
LINEÁRIS REGRESSZIÓ (I. MODELL) ÉS KORRELÁCIÓ FELADATOK
LINEÁRIS REGRESSZIÓ (I. MODELL) ÉS KORRELÁCIÓ FELADATOK 2004 november 29. 1.) Lisztbogarak súlyvesztése 9 lisztbogár-csapat súlyát megmérték, (mindegyik 25 bogárból állt, mert egyenként túl kis súlyúak
Populációbecslés és monitoring. Eloszlások és alapstatisztikák
Populációbecslés és monitoring Eloszlások és alapstatisztikák Eloszlások Az eloszlás megadja, hogy milyen valószínűséggel kapunk egy adott intervallumba tartozó értéket, ha egy olyan populációból veszünk
[Biomatematika 2] Orvosi biometria. Visegrády Balázs
[Biomatematika 2] Orvosi biometria Visegrády Balázs 2016. 03. 27. Probléma: Klinikai vizsgálatban három különböző antiaritmiás gyógyszert (ß-blokkoló) alkalmaznak, hogy kipróbálják hatásukat a szívműködés
Módszertani Intézeti Tanszéki Osztály. A megoldás részletes mellékszámítások hiányában nem értékelhető!
BGF KKK Módszertani Intézeti Tanszéki Osztály Budapest, 2012.. Név:... Neptun kód:... Érdemjegy:..... STATISZTIKA II. VIZSGADOLGOZAT Feladatok 1. 2. 3. 4. 5. 6. Összesen Szerezhető pontszám 21 20 7 22
Biostatisztika Összefoglalás
Biostatisztika Összefoglalás A biostatisztika vizsga A biostatisztika vizsga az Orvosi fizika és statisztika I. fizika vizsgájával egy napon történik. A vizsga keretében 30 perc alatt 0 kérdésre kell válaszolni
Fogalom STATISZTIKA. Alkalmazhatósági feltételek. A standard lineáris modell. Projekciós mátrix, P
Fogalom STATISZTIKA 8 Előadás Többszörös lineáris regresszió Egy jelenség vizsgálata során általában az adott jelenséget több tényező befolyásolja, vagyis többnyire nem elegendő a kétváltozós modell elemzése
Esettanulmány. A homoszkedaszticitás megsértésének hatása a regressziós paraméterekre. Tartalomjegyzék. 1. Bevezetés... 2
Esettanulmány A homoszkedaszticitás megsértésének hatása a regressziós paraméterekre Tartalomjegyzék 1. Bevezetés... 2 2. A lineáris modell alkalmazhatóságának feltételei... 2 3. A feltételek teljesülésének
Korreláció számítás az SPSSben
Korreláció számítás az SPSSben Kvantitatív statisztikai módszerek Petrovics Petra Statisztikai kapcsolatok Asszociáció 2 minőségi/területi ismérv között Vegyes kapcsolat minőségi/területi és egy mennyiségi
Biometria, haladó biostatisztika EA+GY biometub17vm Szerda 8:00-9:00, 9:00-11:00 Déli Tömb 0-804, Lóczy Lajos terem
Biometria, haladó biostatisztika EA+GY biometub17vm Szerda 8:00-9:00, 9:00-11:00 Déli Tömb 0-804, Lóczy Lajos terem Előadások-gyakorlatok 2018-ban (13 alkalom) IX.12, 19, 26, X. 3, 10, 17, 24, XI. 7, 14,
A modellben az X és Y változó szerepe nem egyenrangú: Y (x n )
Kabos: Adatelemzés Regresszió-1 Regresszió (az adatelemzésben): Y (x n ) = l(x n ) + ε n, n = 1, 2,.., N, ahol ε 1,.., ε N független N(0, σ 2 ) eloszlású valószínűségi változók, és σ ismeretlen paraméter,
Hipotéziselmélet - paraméteres próbák. eloszlások. Matematikai statisztika Gazdaságinformatikus MSc szeptember 10. 1/58
u- t- Matematikai statisztika Gazdaságinformatikus MSc 2. előadás 2018. szeptember 10. 1/58 u- t- 2/58 eloszlás eloszlás m várható értékkel, σ szórással N(m, σ) Sűrűségfüggvénye: f (x) = 1 e (x m)2 2σ
Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.
Valószín ségelméleti és matematikai statisztikai alapfogalmak összefoglalása (Kemény Sándor - Deák András: Mérések tervezése és eredményeik értékelése, kivonat) Véletlen jelenség: okok rendszere hozza
Regressziós vizsgálatok
Regressziós vizsgálatok Regresszió (regression) Általános jelentése: visszaesés, hanyatlás, visszafelé mozgás, visszavezetés. Orvosi területen: visszafejlődés, involúció. A betegség tünetei, vagy maga
Biostatisztika VIII. Mátyus László. 19 October
Biostatisztika VIII Mátyus László 19 October 2010 1 Ha σ nem ismert A gyakorlatban ritkán ismerjük σ-t. Ha kiszámítjuk s-t a minta alapján, akkor becsülhetjük σ-t. Ez további bizonytalanságot okoz a becslésben.
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát
Feladatok: pontdiagram és dobozdiagram. Hogyan csináltuk?
Feladatok: pontdiagram és dobozdiagram Hogyan csináltuk? Alakmutatók: ferdeség, csúcsosság Alakmutatók a ferdeség és csúcsosság mérésére Ez eloszlás centrumát (középérték) és az adatok centrum körüli terpeszkedését
Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )
Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:
Biometria gyakorló feladatok BsC hallgatók számára
Biometria gyakorló feladatok BsC hallgatók számára 1. Egy üzem alkalmazottainak megoszlása az elért teljesítmény %-a szerint a következı: Norma teljesítmény % Dolgozók száma 60-80 30 81-90 70 91-100 90
A konfidencia intervallum képlete: x± t( α /2, df )
1. feladat. Egy erdőben az egy fészekben levő tojásszámokat vizsgáltuk egy madárfajnál. A következő tojásszámokat találtuk: 1, 1, 1,,,,,,, 3, 3, 3, 3, 3, 4, 4, 5, 6, 7. Mi a mintának a minimuma, maximuma,
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:
Virág Katalin. Szegedi Tudományegyetem, Bolyai Intézet
Függetleségvizsgálat Virág Katali Szegedi Tudomáyegyetem, Bolyai Itézet Függetleség Függetleség Két változó függetle, ha az egyik változó megfigyelése a másik változóra ézve em szolgáltat iformációt; azaz
Az állat becsült kor. teljes súly. teljes hossz orrtól. törzs hossza. pocak körkörös méret. hátsó láb hossza kör
Korreláció- és regresszió-analízis Az X és Y véletlen változók között az alábbi ábrákon pozitív összefüggés nem lineáris összefüggés negatív összefüggés van Előfordulhat, hogy X és Y között van kapcsolat,
Statisztika II előadáslapok. 2003/4. tanév, II. félév
Statisztika II előadáslapok 3/4 tanév, II félév BECSLÉS ÉS HIPOTÉZISVIZSGÁLAT Egyik konzervgyár vágott zöldbabot exportál A szabvány szerint az üvegek nettó töltősúlyának az átlaga 3 g, a szórása 5 g Az
Korrelációs kapcsolatok elemzése
Korrelációs kapcsolatok elemzése 1. előadás Kvantitatív statisztikai módszerek Két változó közötti kapcsolat Független: Az X ismérv szerinti hovatartozás ismerete nem ad semmilyen többletinformációt az
Matematikai geodéziai számítások 6.
Matematikai geodéziai számítások 6. Lineáris regresszió számítás elektronikus távmérőkre Dr. Bácsatyai, László Matematikai geodéziai számítások 6.: Lineáris regresszió számítás elektronikus távmérőkre
Khi-négyzet eloszlás. Statisztika II., 3. alkalom
Khi-négyzet eloszlás Statisztika II., 3. alkalom A khi négyzet eloszlást (Pearson) leggyakrabban kategorikus adatok elemzésére használjuk. N darab standard normális eloszlású változó négyzetes összegeként
Varianciaanalízis 4/24/12
1. Feladat Egy póker kártya keverő gép a kártyákat random módon választja ki. A vizsgálatban 1600 választott kártya színei az alábbi gyakorisággal fordultak elő. Vizsgáljuk meg, hogy a kártyák kiválasztása
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,
x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel:
Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel: Valószínűségi változó általános fogalma: A : R leképezést valószínűségi változónak nevezzük, ha : ( ) x, x R, x rögzített esetén esemény.
Statisztika Elıadások letölthetık a címrıl
Statisztika Elıadások letölthetık a http://www.cs.elte.hu/~arato/stat*.pdf címrıl Konfidencia intervallum Def.: 1-α megbízhatóságú konfidencia intervallum: Olyan intervallum, mely legalább 1-α valószínőséggel
Biomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János
Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 15. Nemparaméteres próbák Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date: November
Számítógépes döntéstámogatás. Statisztikai elemzés
SZDT-03 p. 1/22 Számítógépes döntéstámogatás Statisztikai elemzés Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Előadás SZDT-03 p. 2/22 Rendelkezésre
LOGIT-REGRESSZIÓ a függő változó: névleges vagy sorrendi skála
LOGIT-REGRESSZIÓ a függő változó: névleges vagy sorrendi skála a független változó: névleges vagy sorrendi vagy folytonos skála BIOMETRIA2_NEMPARAMÉTERES_5 1 Y: visszafizeti-e a hitelt x: fizetés (életkor)
A mérési eredmény megadása
A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk meg: a determinisztikus és a véletlenszerű
Az átlagra vonatkozó megbízhatósági intervallum (konfidencia intervallum)
Az átlagra voatkozó megbízhatósági itervallum (kofidecia itervallum) Határozzuk meg körül azt az itervallumot amibe előre meghatározott valószíűséggel esik a várható érték (µ). A várható értéket potosa
A bergengóc lakosság szemszín szerinti megoszlása a négy tartományban azonos:
A. Matematikai Statisztika 2.MINTA ZH. 2003 december Név (olvasható) :... A feladatmegoldásnak az alkalmazott matematikai modell valószínűségszámítási ill. statisztikai szóhasználat szerinti megfogalmazását,
y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell
Példa STATISZTIKA Egy gazdálkodó k kukorica hibrid termesztése között választhat. Jelöljük a fajtákat A, B, C, D-vel. Döntsük el, hogy a hibridek termesztése esetén azonos terméseredményre számíthatunk-e.
Matematikai geodéziai számítások 6.
Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr. Bácsatyai László Matematikai geodéziai számítások 6. MGS6 modul Lineáris regresszió számítás elektronikus távmérőkre SZÉKESFEHÉRVÁR 2010 Jelen szellemi
Korreláció és Regresszió (folytatás) Logisztikus telítıdési függvény Több független változós regressziós függvények
Korreláció és Regresszió (folytatás) 12. elıadás (23-24. lecke) Logisztikus telítıdési függvény Több független változós regressziós függvények 23. lecke A logisztikus telítıdési függvény Több független
Több valószínűségi változó együttes eloszlása, korreláció
Tartalomjegzék Előszó... 6 I. Valószínűségelméleti és matematikai statisztikai alapok... 8 1. A szükséges valószínűségelméleti és matematikai statisztikai alapismeretek összefoglalása... 8 1.1. Alapfogalmak...
Intervallumbecsle s Mintave tel+ Hipote zisvizsga lat Egyminta s pro ba k Ke tminta s pro ba k Egye b vizsga latok O sszef.
Intervallumbecsle s Mintave tel+ Hipote zisvizsga lat Egyminta s pro ba k Ke tminta s pro ba k Egye b vizsga latok O sszef. Feladatok Gazdaságstatisztika 7. Statisztikai becslések (folyt.); 8. Hipotézisvizsgálat
Statisztikai alapismeretek (folytatás) 4. elıadás (7-8. lecke) Becslések, Hipotézis vizsgálat
Statisztikai alapismeretek (folytatás) 4. elıadás (7-8. lecke) Becslések, Hipotézis vizsgálat 7. lecke Paraméter becslés Konfidencia intervallum Hipotézis vizsgálat feladata Paraméter becslés és konfidencia
Kiválasztás. A változó szerint. Rangok. Nem-paraméteres eljárások. Rang: Egy valamilyen szabály szerint felállított sorban elfoglalt hely.
Kiválasztás A változó szerint Egymintás t-próba Mann-Whitney U-test paraméteres nem-paraméteres Varianciaanalízis De melyiket válasszam? Kétmintás t-próba Fontos, hogy mindig a kérdésnek és a változónak
5. előadás - Regressziószámítás
5. előadás - Regressziószámítás 2016. október 3. 5. előadás 1 / 18 Kétváltozós eset A modell: Y i = α + βx i + u i, i = 1,..., T, ahol X i független u i -től minden i esetén, (u i ) pedig i.i.d. sorozat
Kiváltott agyi jelek informatikai feldolgozása Statisztika - Gyakorlat Kiss Gábor IB.157.
Kiváltott agyi jelek informatikai feldolgozása 2018 Statisztika - Gyakorlat Kiss Gábor IB.157. kiss.gabor@tmit.bme.hu Példa I (Vonat probléma) Aladár 25 éves és mindkét nagymamája él még: Borbála és Cecília.
Diszkriminancia-analízis
Diszkriminancia-analízis az SPSS-ben Petrovics Petra Doktorandusz Diszkriminancia-analízis folyamata Feladat Megnyitás: Employee_data.sav Milyen tényezőktől függ a dolgozók beosztása? Nem metrikus Független
Korreláció és Regresszió
Korreláció és Regresszió 9. elıadás (17-18. lecke) Korrelációs együtthatók 17. lecke Áttekintés (korreláció és regresszió) A Pearson-féle korrelációs együttható Korreláció és Regresszió (témakörök) Kapcsolat
Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a
Kabos: Statisztika II. t-próba 9.1 Egymintás z-próba Ha ismert a doboz szórása de nem ismerjük a doboz várhatóértékét, akkor a H 0 : a doboz várhatóértéke = egy rögzített érték hipotézisről úgy döntünk,
Nemparaméteres próbák
Nemparaméteres próbák Budapesti Mőszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Mőegyetem rkp. 3. D ép. 334. Tel: 463-16-80 Fax: 463-30-91 http://www.vizgep.bme.hu
Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók
Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz
y ij = µ + α i + e ij
Elmélet STATISZTIKA 3. Előadás Variancia-analízis Lineáris modellek A magyarázat a függő változó teljes heterogenitásának két részre bontását jelenti. A teljes heterogenitás egyik része az, amelynek okai
K oz ep ert ek es variancia azonoss ag anak pr ob ai: t-pr oba, F -pr oba m arcius 21.
Középérték és variancia azonosságának próbái: t-próba, F -próba 2012. március 21. Hipotézis álĺıtása Feltételezés: a minta egy adott szempont alapján más populációhoz tartozik, mint b minta. Nullhipotézis