Statisztikai következtetések Nemlineáris regresszió Feladatok Vége
|
|
- Gergő Sipos
- 8 évvel ezelőtt
- Látták:
Átírás
1
2 [GVMGS11MNC] Gazdaságstatisztika 10. előadás: 9. Regressziószámítás II. Kóczy Á. László Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet
3 A standard lineáris modell A lineáris sztochasztikus kapcsolat: M(Y X = X i ) = β 0 + β 1 X i. Ȳ i = β 0 + β 1 X i, azaz ha Y i = β 0 + β 1 X i + E i, akkor M(E) = 0. minta alapján η i = β 0 + β 1 X i + ε i, ε i valószínűségi változó. Bármi lehet! Standard lineáris modell 1 ε i (illetve η i ) normális eloszlásúak 2 cov(ε i, ε j ) = 0 ha i j 3 M(ε i ) = 0 4 D(ε i ) = σ (független X i -től)
4 Becslés során elkövetett hibák Kétféle hiba: 1 Mintából becsült paraméterek; becslés tehát nem pontos. 2 Az ismérvek között csak sztochasztikus kapcsolat van, nem függvényszerű, csak azt a részt kapjuk meg Y -ból, ami X -ből következik. Ha X i rögzített, a becslőfüggvények ˆβ 0 = ( η i ) ( Xi 2 ) ( Xi ) ( X i η i ) n Xi 2 ( X i ) 2 ˆβ 1 = n X i η i ( X i ) ( η i ) n Xi 2 ( X i ) 2 = ( (Xi X ) 2 η i ) (Xi X ) 2 Mindkettő az η i valószínűségi változók lineáris kombinációja.
5 A becslőfüggvények tulajdonságai 1 M( ˆβ 0 ) = β 0, M( ˆβ 1 ) = β 1 torzítatlanok 2 Szórásuk, azaz a becslés standard hibája megadható: D( ˆβ 0 ) = σ ˆβ0 = σ D( ˆβ 1 ) = σ ˆβ1 = σ 3 A becslés konzisztens. X 2 i n d 2 X 1 n d 2 X Itt σ az ε (nem ismert) szórása külön becsülni kell a mintából.
6 Minta szórásának becslése Az elméleti szórás: D(ε) = σ ε A mintából becsült szórás: ˆσ ε = 1 n (ηi ŷ i ) 2 Konkrét mintából becsült szórás: s e = e 2 i n 2 Itt ei 2 a minimalizálni kívánt négyzetösszeg, n 2 pedig a szabadságfokok száma torzítatlan becslés.
7 A regressziós becslés abszolút és relatív hibája Abszolút hiba Kifejezi, hogy a regressziós becslések (ŷ i ) átlagosan mennyivel térnek el az eredményváltozó (y i ) megfigyelt értékeitől. Itt s e, ld. fent, vagy s e = s y 1 r 2 Relatív hiba Kifejezi, hogy a regressziós becslések átlagosan hány %-kal térnek el az eredményváltozó megfigyelt értékeitől. Itt: V e = sē y. A gyakorlatban 10% alatti relatív hiba esetén jó a regressziós becslés.
8 A paraméterek intervallumbecslése Belátható, hogy β 1 ˆβ 1 σ ˆβ 1 n 2 szabadságfokú Student t-eloszlást követ. 1 α valószínűségi szint esetén ( ) β 1 b 1 t α (1 2 ) s b 1 ; b 1 + t α (1 2 ) s b 1 ( ) β 0 b 0 t α (1 2 ) s b 0 ; b 0 + t α (1 2 ) s b 0
9 Regressziós becslések és prognózisok A regressziós függvény minden x 0 értékre kidob egy ŷ 0 -t. Ez mit jelent? 1 Az Ȳ 0 = M(Y X = X 0 ) becslése. 2 Annak becslése, hogy (X 0, Y 0 ) minta esetén y 0 mekkora lehet. 1. Az x 0 értékhez tartozó feltételes várható érték intervallumbecslése. A ŷ 0 szórása meghatározható (itt: konkrét mintára): 1 sŷ0 = s e n + (x 0 x) 2 (x x) 2 (Ez x közelében a legjobb, távolodva romlik a becslés.) A konfidenciaintervallum pedig: ( ) ŷ 0 t α (1 2 ) s 1 e n + (x 0 x) 2 (x x) 2 ; ŷ 0 + t α (1 2 ) s 1 e n + (x 0 x) 2 (x x) 2
10 Regressziós becslések és prognózisok 2. Az egyedi y 0 becslések konfidenciaintervalluma... ha egy hiányzó Y 0 adatot kívánunk becsülni adott X 0 helyen. Y 0 = ˆβ 0 + ˆβ 1 X 1 + ε 0 = ŷ 0 + ε 0 σ 2 Y 0 = σ 2 ŷ 0 + σ 2 e A Y 0 szórása meghatározható (itt: konkrét mintára): 1 sŷ0 = s e n + (x 0 x) 2 (x x) A ( konfidenciaintervallum pedig: ŷ 0 t α (1 2 ) s e 1 n + (x 0 x) 2 (x x) 2 + 1; ŷ 0 + t (1 α 2 ) s e ) 1 n + (x 0 x) 2 (x x) 2 + 1
11 A regressziófüggvény hipotézis-ellenőrzése A regressziófüggvény mintából származik, kérdés érvényes-e a sokaságra is. 1 Szignifikáns-e β 1? 2 Szignifikáns-e maga a regressziófüggvény? (két ismérv esetén a kettő ugyanaz)
12 A regressziós együttható (β 1 ) tesztelése Feltételezzük, hogy nincs korreláció, a tapasztalati paraméter b 1 0-tól való eltérését a véletlen okozza. H 0 : β 1 = 0, H 1 : β 1 0. n elemű minta esetén β 1 ˆβ 1 ˆσ ˆβ1 n 2 szabadságfokú t-eloszlást követ. α szignifikanciaszinten elfogadjuk, ha t = b 1 s b1 < t (n 2) 1 α 2
13 Varianciaanaĺızis a regressziószámításban y i = ŷ i + e i 1 y i : az Y megfigyelt értéke (X = x i ) 2 ŷ i = b 0 + b 1 x i : az x i -hez tartozó regressziós becslés 3 e i : maradéktag v. reziduum. n i=1 (y i ȳ) 2 = n i=1 (ŷ i ȳ) 2 + n i=1 (y i ŷ) 2 SST = SSR + SSE reziduális négyzetösszeg SSE = 0 függvényszerű kapcsolat. SSE 0 sztochasztikus kapcsolat.
14 Varianciaanaĺızis 2 A szórásnégyzet Eltérés- Szabadságfok Átlagos forrása négyzetösszeg négyzetösszeg Regresszió SSR = (ŷ i ȳ) 2 1 (ŷi ȳ) 2 1 (yi ŷ) 2 Hibatényező SSE = (y i ŷ) 2 n 2 Teljes SST = (y i ȳ) 2 n 1 Hipotézisvizsgálat: tagadjuk a regresszió létezését. H 0 : β 1 = 0 és H 1 : β 1 0 SSR = külső; SSE = belső szórás F -próba. Konkrét minta esetén: F 0 = SSR 1 SSE F (1) (n 2) n 2 n 2
15 Szorosság mérése varianciaanaĺızis-tábla alapján Determinációs együttható (r 2 ) A regresszió által megmagyarázott eltérés-négyzetösszegnek az y teljes eltérés-négyzetösszegéhez való aránya. r 2 = SSR SST = SST SSE SST = 1 SSE SST
16 Diagnosztikai tesztek Diagnosztikai teszt Értékeli a modellt; levont következtetések valódiságát támasztja alá. A reziduális változó tapasztalati értékeit (e i ) vizsgáljuk. Megfelel az elméleti ε i -nek hasonló tulajdonságokkal kell, hogy rendelkezzen. Például: a hibatényező szórása állandó nem jó, ha nő a szórás!
17 Robusztus becslési módszerek Mérési hibák: pontatlan adatok, eĺırás, stb. robusztus becslési módszerek: kevésbé érzékenyek. Nyesett átlag: elhagyunk nα megfigyelést a rangsor két szélén, majd újra becslés.
18 Nemlineáris regresszió Ha az X változó hatása Y -ra függ X nagyságától nemlineáris regresszió. Fontosabb típusai: hatványkitevős exponenciális parabolikus hiperbolikus A paraméterek meghatározására legkisebb négyzetek módszere.
19 Parabolikus regressziófüggvény Az eltérés-négyzetösszeg: ŷ = b 0 + b 1 x + b 2 x 2 f (b 0, b 1, b 2 ) = (y i ŷ i ) 2 = (y i b 0 b 1 x i b 2 x 2 i ) 2 A 0-val egyenlővé tett b 0, b 1, b 2 szerinti parciális deriváltakból kapjuk a normálegyenleteket: yi =b 0 n +b 1 xi +b 2 x 2 i xi y 1 =b 0 xi +b i x 2 i +b 2 x 3 i x 2 i y i =b 0 x 2 i +b 1 x 3 i +b 2 x 4 i Mikor használjuk? Ha a két változó közötti összefüggés iránya megváltozik Gyakori, hogy azt vizsgáljuk, hol maximális.
20 Hatványkitevős regressziófüggvény ŷ = b 0 x b 1 log ŷ = log b 0 + b 1 log x lineáris kapcsolat log x és log y között. Megoldás, mint a lineáris regressziónál A hatványkitevő a rugalmassági együtthatóval azonos. 1%-kal nagyobb x értékhez hány %-kal nagyobb y tartozik.
21 Exponenciális regressziófüggvény ŷ = b 0 b 1 x log ŷ = log b 0 + log b 1 x lineáris kapcsolat x és log y között. A b 1 arra ad választ, hogy a tényezőváltozó egységnyi növekedése hányszorosára változtatja az eredményváltozó értékét.
22 9.8. Feladat 19 ország adatai alapján vizsgálták az 1 lakosra jutó GDP, X és az 1000 lakosra jutó személygépkocsik száma, Y közötti összefüggést. Számítási eredmények: Lineáris regressziófüggvény: ŷ = 83, 4 + 0, 0935x. A megfigyelt változók szórásai: σ (x) = 1149; σ (y) = 120, 5. lg x = 67, 57, (lg y) 2 = 107, 5812, lg y = 44, 7463, (lg x lg y) = 160, 0585, (lg x) 2 = 240, 8056.
23 9.8. Feladat Feladat: a) Milyen szoros a kapcsolat a két ismérv között? b) Hány %-ban játszik szerepet az X ismérv az Y szórásában? c) Írjuk fel a hatványkitevős regresszió normálegyenleteit és számítsuk ki a paramétereket! d) Értelmezzük mindkét regressziófüggvény b 1 paraméterét! e) Adjunk becslést egy olyan országra, amelynek az 1 lakosra jutó GDP-mutatója 7200 dollár!
24 9.8. Feladat Megoldás a) Milyen szoros a kapcsolat a két ismérv között? A kapcsolat szorosságát a kovarianciával, vagy lineáris korrelációs együtthatóval mérhetjük. Tudjuk, hogy β 1 = cov(ξ, η) D 2 (ξ) cov(ξ, η) = β 1 D 2 (ξ) cov(ξ, η) = 0, = R(ξ, η) = cov(ξ, η) D(ξ)D(η) R(ξ, η) = = 89, 1% , 5
25 9.8. Feladat Megoldás b) Hány %-ban játszik szerepet az X ismérv az Y szórásában? A determinációs együttható (r 2 ) határozza meg. r 2 = R 2 (ξ, η) = 0, = 79, 5%. Az X ismérv az Y szórását 79,5%-ban határozza meg.
26 9.8. Feladat Megoldás c) Írjuk fel a hatványkitevős regresszió normálegyenleteit és számítsuk ki a paramétereket! Hatványkitevős regressziófüggvény:ŷ = b 0 x b 1 azaz lg ŷ = lg b 0 + b 1 lg x. Normálegyenletek: lg yi = n lg b 0 + b 1 lg xi lg xi lg y i = lg b 0 lg xi + b 1 lg x 2 i 44, 75 = 19 lg b , 57b 1 160, 06 = 67, 57 lg b , 81b 1 b 1 = 1, 83, lg b 0 = 4, 165, azaz b 0 = 0, , így ŷ = 0, x 1,83.
27 9.8. Feladat Megoldás d) Értelmezzük mindkét regressziófüggvény b 1 paraméterét! Lineáris regresszió: Ha a GDP 1000 dollárral nő, akkor 1000 lakosonként 93,5 autóval több lesz. Hatványkitevős regresszió: Ha a GDP 1%-kal nő, (kb.) hány %-kal nő az 1000 lakosra jutó gépkocsik száma.
28 9.8. Feladat Megoldás e) Adjunk becslést egy olyan országra, amelynek az 1 lakosra jutó GDP-mutatója 7200 dollár! Lineáris regresszió: ŷ = 83, 4 + 0, 0935x = 83, 4 + 0, = 589, 8. Hatványkitevős regresszió: ŷ = 0, x 1,83 = 0, ,83 = 807, 2.
29
GVMST22GNC Statisztika II.
GVMST22GNC Statisztika II. 4. előadás: 9. Kétváltozós korreláció- és regressziószámítás Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Korrelációszámítás
Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János
Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 12. Regresszió- és korrelációanaĺızis Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision
Statisztika elméleti összefoglaló
1 Statisztika elméleti összefoglaló Tel.: 0/453-91-78 1. Tartalomjegyzék 1. Tartalomjegyzék.... Becsléselmélet... 3 3. Intervallumbecslések... 5 4. Hipotézisvizsgálat... 8 5. Regresszió-számítás... 11
Statisztika I. 12. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 1. előadás Előadó: Dr. Ertsey Imre Regresszió analízis A korrelációs együttható megmutatja a kapcsolat irányát és szorosságát. A kapcsolat vizsgálata során a gyakorlatban ennél messzebb
2013 ŐSZ. 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét!
GAZDASÁGSTATISZTIKA KIDOLGOZOTT ELMÉLETI KÉRDÉSEK A 3. ZH-HOZ 2013 ŐSZ Elméleti kérdések összegzése 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét! 2. Mutassa be az
Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió
SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás
Regressziós vizsgálatok
Regressziós vizsgálatok Regresszió (regression) Általános jelentése: visszaesés, hanyatlás, visszafelé mozgás, visszavezetés. Orvosi területen: visszafejlődés, involúció. A betegség tünetei, vagy maga
Többváltozós lineáris regressziós modell feltételeinek
Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Petrovics Petra Doktorandusz Többváltozós lineáris regressziós modell x 1, x 2,, x p
Lineáris regressziószámítás 1. - kétváltozós eset
Lineáris regressziószámítás 1. - kétváltozós eset Orlovits Zsanett 2019. február 6. Adatbázis - részlet eredmény- és magyarázó jellegű változók Cél: egy eredményváltozó alakulásának jellemzése a magyarázó
Matematikai statisztikai elemzések 6.
Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematikai statisztikai elemzések 6. MSTE6 modul Regressziószámítás: kétváltozós lineáris és nemlineáris regresszió, többváltozós
Bevezetés a Korreláció &
Bevezetés a Korreláció & Regressziószámításba Petrovics Petra Doktorandusz Statisztikai kapcsolatok Asszociáció 2 minőségi/területi ismérv között Vegyes kapcsolat minőségi/területi és egy mennyiségi ismérv
Többváltozós Regresszió-számítás
Töváltozós Regresszió-számítás 3. előadás Döntéselőkészítés módszertana Dr. Szilágyi Roland Korreláció Célja a kacsolat szorosságának mérése. Regresszió Célja a kacsolatan megfigyelhető törvényszerűség
Korreláció és lineáris regresszió
Korreláció és lineáris regresszió Két folytonos változó közötti összefüggés vizsgálata Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi Fizika és Statisztika I. előadás 2016.11.02.
Többváltozós lineáris regressziós modell feltételeinek tesztelése I.
Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Kvantitatív statisztikai módszerek Petrovics Petra Többváltozós lineáris regressziós
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 8 VIII. REGREssZIÓ 1. A REGREssZIÓs EGYENEs Két valószínűségi változó kapcsolatának leírására az eddigiek alapján vagy egy numerikus
VIZSGADOLGOZAT. I. PÉLDÁK (60 pont)
VIZSGADOLGOZAT (100 pont) A megoldások csak szöveges válaszokkal teljes értékűek! I. PÉLDÁK (60 pont) 1. példa (13 pont) Az egyik budapesti könyvtárban az olvasókból vett 400 elemű minta alapján a következőket
Regresszió számítás az SPSSben
Regresszió számítás az SPSSben Kvantitatív statisztikai módszerek Petrovics Petra Lineáris regressziós modell X és Y közötti kapcsolatot ábrázoló egyenes. Az Y függ: x 1, x 2,, x p p db magyarázó változótól
Korrelációs kapcsolatok elemzése
Korrelációs kapcsolatok elemzése 1. előadás Kvantitatív statisztikai módszerek Két változó közötti kapcsolat Független: Az X ismérv szerinti hovatartozás ismerete nem ad semmilyen többletinformációt az
Intervallumbecsle s Mintave tel+ Hipote zisvizsga lat Egyminta s pro ba k Ke tminta s pro ba k Egye b vizsga latok O sszef.
Intervallumbecsle s Mintave tel+ Hipote zisvizsga lat Egyminta s pro ba k Ke tminta s pro ba k Egye b vizsga latok O sszef. Feladatok Gazdaságstatisztika 7. Statisztikai becslések (folyt.); 8. Hipotézisvizsgálat
GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet
GVMST22GNC Statisztika II. 3. előadás: 8. Hipotézisvizsgálat Kóczy Á. László Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Hipotézisvizsgálat v becslés Becslés Ismeretlen paraméter Közeĺıtő
4/24/12. Regresszióanalízis. Legkisebb négyzetek elve. Regresszióanalízis
1. feladat Regresszióanalízis. Legkisebb négyzetek elve 2. feladat Az iskola egy évfolyamába tartozó diákok átlagéletkora 15,8 év, standard deviációja 0,6 év. A 625 fős évfolyamból hány diák fiatalabb
KÖVETKEZTETŐ STATISZTIKA
ÁVF GM szak 2010 ősz KÖVETKEZTETŐ STATISZTIKA A MINTAVÉTEL BECSLÉS A sokasági átlag becslése 2010 ősz Utoljára módosítva: 2010-09-07 ÁVF Oktató: Lipécz György 1 A becslés alapfeladata Pl. Hányan láttak
Módszertani Intézeti Tanszéki Osztály. A megoldás részletes mellékszámítások hiányában nem értékelhető!
BGF KKK Módszertani Intézeti Tanszéki Osztály Budapest, 2012.. Név:... Neptun kód:... Érdemjegy:..... STATISZTIKA II. VIZSGADOLGOZAT Feladatok 1. 2. 3. 4. 5. 6. Összesen Szerezhető pontszám 21 20 7 22
5. előadás - Regressziószámítás
5. előadás - Regressziószámítás 2016. október 3. 5. előadás 1 / 18 Kétváltozós eset A modell: Y i = α + βx i + u i, i = 1,..., T, ahol X i független u i -től minden i esetén, (u i ) pedig i.i.d. sorozat
Gyakorló feladatok a kétváltozós regresszióhoz 2. Nemlineáris regresszió
Gyakorló feladatok a kétváltozós regresszióhoz 2. Nemlineáris regresszió 1. A fizetés (Y, órabér dollárban) és iskolázottság (X, elvégzett iskolai év) közti kapcsolatot vizsgáljuk az Y t α + β X 2 t +
Regressziós vizsgálatok
Regressziós vizsgálatok Regresszió (regression) Általános jelentése: visszaesés, hanyatlás, visszafelé mozgás, visszavezetés. Orvosi területen: visszafejlődés, involúció. A betegség tünetei, vagy maga
Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )
Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:
III. Kvantitatív változók kapcsolata (korreláció, regresszió)
III. Kvantitatív változók kapcsolata (korreláció, regresszió) Tartalom Változók kapcsolata Kétdimenziós minta (pontdiagram) Regressziós előrejelzés (predikció) Korreláció Tanuló Kétdimenziós minta Tanulással
STATISZTIKA. Egymintás u-próba. H 0 : Kefir zsírtartalma 3% Próbafüggvény, alfa=0,05. Egymintás u-próba vagy z-próba
Egymintás u-próba STATISZTIKA 2. Előadás Középérték-összehasonlító tesztek Tesztelhetjük, hogy a valószínűségi változónk értéke megegyezik-e egy konkrét értékkel. Megválaszthatjuk a konfidencia intervallum
Korreláció számítás az SPSSben
Korreláció számítás az SPSSben Kvantitatív statisztikai módszerek Petrovics Petra Statisztikai kapcsolatok Asszociáció 2 minőségi/területi ismérv között Vegyes kapcsolat minőségi/területi és egy mennyiségi
Statisztika I. 10. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 10. előadás Előadó: Dr. Ertsey Imre Varianciaanalízis A különböző tényezők okozta szórás illetőleg szórásnégyzet összetevőire bontásán alapszik Segítségével egyszerre több mintát hasonlíthatunk
Biometria gyakorló feladatok BsC hallgatók számára
Biometria gyakorló feladatok BsC hallgatók számára 1. Egy üzem alkalmazottainak megoszlása az elért teljesítmény %-a szerint a következı: Norma teljesítmény % Dolgozók száma 60-80 30 81-90 70 91-100 90
Az idősorok összetevői Trendszámítás Szezonalitás Prognosztika ZH
Idősorok Idősor Statisztikai szempontból: az egyes időpontokhoz rendelt valószínűségi változók összessége. Speciális sztochasztikus kapcsolat; a magyarázóváltozó az idő Determinisztikus idősorelemzés esetén
Matematikai geodéziai számítások 6.
Matematikai geodéziai számítások 6. Lineáris regresszió számítás elektronikus távmérőkre Dr. Bácsatyai, László Matematikai geodéziai számítások 6.: Lineáris regresszió számítás elektronikus távmérőkre
Statisztika I. 11. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 11. előadás Előadó: Dr. Ertsey Imre Összefüggés vizsgálatok A társadalmi gazdasági élet jelenségei kölcsönhatásban állnak, összefüggnek egymással. Statisztika alapvető feladata: - tényszerűségek
Matematikai geodéziai számítások 6.
Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr. Bácsatyai László Matematikai geodéziai számítások 6. MGS6 modul Lineáris regresszió számítás elektronikus távmérőkre SZÉKESFEHÉRVÁR 2010 Jelen szellemi
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,
y ij = µ + α i + e ij
Elmélet STATISZTIKA 3. Előadás Variancia-analízis Lineáris modellek A magyarázat a függő változó teljes heterogenitásának két részre bontását jelenti. A teljes heterogenitás egyik része az, amelynek okai
y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell
Példa STATISZTIKA Egy gazdálkodó k kukorica hibrid termesztése között választhat. Jelöljük a fajtákat A, B, C, D-vel. Döntsük el, hogy a hibridek termesztése esetén azonos terméseredményre számíthatunk-e.
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen
STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése
4. A modell érvényességének ellenőrzése STATISZTIKA 4. Előadás Variancia-analízis Lineáris modellek 1. Függetlenség 2. Normális eloszlás 3. Azonos varianciák A maradék független a kezelés és blokk hatástól
Hipotézis, sejtés STATISZTIKA. Kétmintás hipotézisek. Tudományos hipotézis. Munkahipotézis (H a ) Nullhipotézis (H 0 ) 11. Előadás
STATISZTIKA Hipotézis, sejtés 11. Előadás Hipotézisvizsgálatok, nem paraméteres próbák Tudományos hipotézis Nullhipotézis felállítása (H 0 ): Kétmintás hipotézisek Munkahipotézis (H a ) Nullhipotézis (H
ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó június
GAZDASÁGSTATISZTIKA GAZDASÁGSTATISZTIKA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi
Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a
Kabos: Statisztika II. t-próba 9.1 Egymintás z-próba Ha ismert a doboz szórása de nem ismerjük a doboz várhatóértékét, akkor a H 0 : a doboz várhatóértéke = egy rögzített érték hipotézisről úgy döntünk,
Hipotéziselmélet - paraméteres próbák. eloszlások. Matematikai statisztika Gazdaságinformatikus MSc szeptember 10. 1/58
u- t- Matematikai statisztika Gazdaságinformatikus MSc 2. előadás 2018. szeptember 10. 1/58 u- t- 2/58 eloszlás eloszlás m várható értékkel, σ szórással N(m, σ) Sűrűségfüggvénye: f (x) = 1 e (x m)2 2σ
Tartalomjegyzék I. RÉSZ: KÍSÉRLETEK MEGTERVEZÉSE
Tartalomjegyzék 5 Tartalomjegyzék Előszó I. RÉSZ: KÍSÉRLETEK MEGTERVEZÉSE 1. fejezet: Kontrollált kísérletek 21 1. A Salk-oltás kipróbálása 21 2. A porta-cava sönt 25 3. Történeti kontrollok 27 4. Összefoglalás
e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma:
Normális eloszlás ξ valószínűségi változó normális eloszlású. ξ N ( µ, σ 2) Paraméterei: µ: várható érték, σ 2 : szórásnégyzet (µ tetszőleges, σ 2 tetszőleges pozitív valós szám) Normális eloszlás sűrűségfüggvénye:
Fogalom STATISZTIKA. Alkalmazhatósági feltételek. A standard lineáris modell. Projekciós mátrix, P
Fogalom STATISZTIKA 8 Előadás Többszörös lineáris regresszió Egy jelenség vizsgálata során általában az adott jelenséget több tényező befolyásolja, vagyis többnyire nem elegendő a kétváltozós modell elemzése
Matematikai statisztika c. tárgy oktatásának célja és tematikája
Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:
TÖBBVÁLTOZÓS KORRELÁCIÓ- ÉS
Miskolci Egyetem GAZDASÁGTUDOMÁNYI KAR Üzleti Információgazdálkodási és Módszertani Intézet TÖBBVÁLTOZÓS KORRELÁCIÓ- ÉS REGRESSZIÓSZÁMÍTÁS Oktatási segédlet Készítette: Domán Csaba egyetemi tanársegéd
Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok
STATISZTIKA 1. Előadás Hipotézisvizsgálatok Tematika 1. Hipotézis vizsgálatok 2. t-próbák 3. Variancia-analízis 4. A variancia-analízis validálása, erőfüggvény 5. Korreláció számítás 6. Kétváltozós lineáris
Bevezetés a hipotézisvizsgálatokba
Bevezetés a hipotézisvizsgálatokba Nullhipotézis: pl. az átlag egy adott µ becslése : M ( x -µ ) = 0 Alternatív hipotézis: : M ( x -µ ) 0 Szignifikancia: - teljes bizonyosság csak teljes enumerációra -
Statisztika II előadáslapok. 2003/4. tanév, II. félév
Statisztika II előadáslapok 3/4 tanév, II félév BECSLÉS ÉS HIPOTÉZISVIZSGÁLAT Egyik konzervgyár vágott zöldbabot exportál A szabvány szerint az üvegek nettó töltősúlyának az átlaga 3 g, a szórása 5 g Az
A többváltozós lineáris regresszió 1.
2018. szeptember 17. Lakásár adatbázis - részlet eredmény- és magyarázó jellegű változók Cél: egy eredményváltozó alakulásának jellemzése a magyarázó változók segítségével Legegyszerűbb eset - kétváltozós
Ökonometriai modellek paraméterei: számítás és értelmezés
Ökonometriai modellek paraméterei: számítás és értelmezés Írta: Werger Adrienn, Renczes Nóra, Pereszta Júlia, Vörösházi Ágota, Őzse Adrienn Javította és szerkesztette: Ferenci Tamás (tamas.ferenci@medstat.hu)
földtudományi BSc (geológus szakirány) Matematikai statisztika elıadás, 2014/ félév 6. elıadás
Matematikai statisztika elıadás, földtudományi BSc (geológus szakirány) 2014/2015 2. félév 6. elıadás Konfidencia intervallum Def.: 1-α megbízhatóságú konfidencia intervallum: Olyan intervallum, mely legalább
Hipotézis vizsgálatok
Hipotézis vizsgálatok Hipotézisvizsgálat Hipotézis: az alapsokaság paramétereire vagy az alapsokaság eloszlására vonatkozó feltevés. Hipotézis ellenőrzés: az a statisztikai módszer, amelynek segítségével
Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1
Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában
Biostatisztika VIII. Mátyus László. 19 October
Biostatisztika VIII Mátyus László 19 October 2010 1 Ha σ nem ismert A gyakorlatban ritkán ismerjük σ-t. Ha kiszámítjuk s-t a minta alapján, akkor becsülhetjük σ-t. Ez további bizonytalanságot okoz a becslésben.
1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása
HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat
Statisztikai alapismeretek (folytatás) 4. elıadás (7-8. lecke) Becslések, Hipotézis vizsgálat
Statisztikai alapismeretek (folytatás) 4. elıadás (7-8. lecke) Becslések, Hipotézis vizsgálat 7. lecke Paraméter becslés Konfidencia intervallum Hipotézis vizsgálat feladata Paraméter becslés és konfidencia
A Statisztika alapjai
A Statisztika alapjai BME A3c Magyar Róbert 2016.05.12. Mi az a Statisztika? A statisztika a valóság számszerű információinak megfigyelésére, összegzésére, elemzésére és modellezésére irányuló gyakorlati
A valószínűségszámítás elemei
A valószínűségszámítás elemei Kísérletsorozatban az esemény relatív gyakorisága: k/n, ahol k az esemény bekövetkezésének abszolút gyakorisága, n a kísérletek száma. Pl. Jelenség: kockadobás Megfigyelés:
Ökonometria gyakorló feladatok 1.
Ökonometria gyakorló feladatok 1. 018. szeptember 6. 1. Egy vállalatnál megvizsgálták 0 üzletkötő éves teljesítményét és prémiumát. A megfigyelt eredményeket, és a belőlük számolt regressziós részeredményeket
Diagnosztika és előrejelzés
2018. november 28. A diagnosztika feladata A modelldiagnosztika alapfeladatai: A modellillesztés jóságának vizsgálata (idősoros adatok esetén, a regressziónál már tanultuk), a reziduumok fehérzaj voltának
Kiválasztás. A változó szerint. Rangok. Nem-paraméteres eljárások. Rang: Egy valamilyen szabály szerint felállított sorban elfoglalt hely.
Kiválasztás A változó szerint Egymintás t-próba Mann-Whitney U-test paraméteres nem-paraméteres Varianciaanalízis De melyiket válasszam? Kétmintás t-próba Fontos, hogy mindig a kérdésnek és a változónak
Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.
Valószín ségelméleti és matematikai statisztikai alapfogalmak összefoglalása (Kemény Sándor - Deák András: Mérések tervezése és eredményeik értékelése, kivonat) Véletlen jelenség: okok rendszere hozza
STATISZTIKA. Fogalom. A standard lineáris regressziós modell mátrixalgebrai jelölése. A standard lineáris modell. Eredménytáblázat
Fogalom STATISZTIKA 8 Előadás Többszörös lineáris regresszió Egy jelenség vizsgálata során általában az adott jelenséget több tényező befolyásolja, vagyis többnyire nem elegendő a kétváltozós modell elemzése
Elemi statisztika. >> =weiszd= << december 20. Szerintem nincs sok szükségünk erre... [visszajelzés esetén azt is belerakom] x x = n
Elemi statisztika >> =weiszd=
egyetemi jegyzet Meskó Balázs
egyetemi jegyzet 2011 Előszó 2. oldal Tartalomjegyzék 1. Bevezetés 4 1.1. A matematikai statisztika céljai.............................. 4 1.2. Alapfogalmak......................................... 4 2.
Varianciaanalízis 4/24/12
1. Feladat Egy póker kártya keverő gép a kártyákat random módon választja ki. A vizsgálatban 1600 választott kártya színei az alábbi gyakorisággal fordultak elő. Vizsgáljuk meg, hogy a kártyák kiválasztása
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,
Normális eloszlás tesztje
Valószínűség, pontbecslés, konfidenciaintervallum Normális eloszlás tesztje Kolmogorov-Szmirnov vagy Wilk-Shapiro próba. R-funkció: shapiro.test(vektor) balra ferde eloszlás jobbra ferde eloszlás balra
Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 8. előadás Előadó: Dr. Ertsey Imre Minták alapján történő értékelések A statisztika foglalkozik. a tömegjelenségek vizsgálatával Bizonyos esetekben lehetetlen illetve célszerűtlen a teljes
Kvantitatív statisztikai módszerek
Kvantitatív statisztikai módszerek 1. konzultáció tárgyjegyző Dr. Szilágyi Roland Mérési skálák Számok meghatározott szabályok szerinti hozzárendelése jelenségekhez, bizonyos tulajdonságokhoz. 4 féle szabály
20 PONT Aláírás:... A megoldások csak szöveges válaszokkal teljes értékőek!
SPEC 2009-2010. II. félév Statsztka II HÁZI dolgozat Név:... Neptun kód: 20 PONT Aláírás:... A megoldások csak szöveges válaszokkal teljes értékőek! 1. példa Egy üzemben tejport csomagolnak zacskókba,
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria Bódis Emőke 2016. 04. 25. J J 9 Korrelációanalízis Regresszióanalízis: hogyan változik egy vizsgált változó értéke egy másik változó változásának függvényében. Korrelációs
Hipotézisvizsgálat az Excel adatelemző eljárásaival. Dr. Nyéki Lajos 2018
Hipotézisvizsgálat az Excel adatelemző eljárásaival Dr. Nyéki Lajos 2018 Egymintás t-próba Az egymintás T-próba azt vizsgálja, hogy különbözik-e a változó M átlaga egy megadott m konstanstól. Az a feltételezés,
Van-e kapcsolat a változók között? (példák: fizetés-távolság; felvételi pontszám - görgetett átlag)
, rangkorreláció Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-16-80 Fax: 463-30-91 http://www.vizgep.bme.hu
Leíró és matematikai statisztika el adásnapló Matematika alapszak, matematikai elemz szakirány 2016/2017. tavaszi félév
Leíró és matematikai statisztika el adásnapló Matematika alapszak, matematikai elemz szakirány 2016/2017. tavaszi félév A pirossal írt anyagrészeket nem fogom közvetlenül számon kérni a vizsgán, azok háttérismeretként,
biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás
Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani
Elméleti összefoglaló a Sztochasztika alapjai kurzushoz
Elméleti összefoglaló a Sztochasztika alapjai kurzushoz 1. dolgozat Véletlen kísérletek, események valószín sége Deníció. Egy véletlen kísérlet lehetséges eredményeit kimeneteleknek nevezzük. A kísérlet
Több valószínűségi változó együttes eloszlása, korreláció
Tartalomjegzék Előszó... 6 I. Valószínűségelméleti és matematikai statisztikai alapok... 8 1. A szükséges valószínűségelméleti és matematikai statisztikai alapismeretek összefoglalása... 8 1.1. Alapfogalmak...
Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem
agy számok törvényei Statisztikai mintavétel Várható érték becslése Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem A mérés mint statisztikai mintavétel A méréssel az eloszlásfüggvénnyel
Anyagvizsgálati módszerek Mérési adatok feldolgozása. Anyagvizsgálati módszerek
Anyagvizsgálati módszerek Mérési adatok feldolgozása Anyagvizsgálati módszerek Pannon Egyetem Mérnöki Kar Anyagvizsgálati módszerek Statisztika 1/ 22 Mérési eredmények felhasználása Tulajdonságok hierarchikus
Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása
Matematikai alapok és valószínőségszámítás Statisztikai becslés Statisztikák eloszlása Mintavétel A statisztikában a cél, hogy az érdeklõdés tárgyát képezõ populáció bizonyos paramétereit a populációból
Hipotézis vizsgálatok
Hipotézis vizsgálatok Hipotézisvizsgálat Hipotézis: az alapsokaság paramétereire vagy az alapsokaság eloszlására vonatkozó feltevés. Hipotézis ellenőrzés: az a statisztikai módszer, amelynek segítségével
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria Bódis Emőke 2016. 04. 18. J J 9 Információk a 2. ZH-ról és a vizsgáról 12. hét: gyakorló óra 13. hét: teszt 14. hét: a teszt megbeszélése, vizsgajegyek megajánlása. Minden
Adatok statisztikai értékelésének főbb lehetőségei
Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció
TARTALOMJEGYZÉK. 1. téma Átlagbecslés (Barna Katalin) téma Hipotézisvizsgálatok (Nagy Mónika Zita)... 23
TARTALOMJEGYZÉK 1. téma Átlagbecslés (Barna Katalin).... 7 2. téma Hipotézisvizsgálatok (Nagy Mónika Zita)... 23 3. téma Összefüggések vizsgálata, korrelációanalízis (Dr. Molnár Tamás)... 73 4. téma Összefüggések
A standard modellfeltevések, modelldiagnosztika
A standard modellfeltevések, modelldiagnosztika Ferenci Tamás tamas.ferenci@medstat.hu 2018. február 7. Tartalom Tartalomjegyzék 1. Erős exogenitás 1 2. Heteroszkedaszticitás 3 2.1. A heteroszkedaszticitás
Matematikai statisztikai elemzések 3.
Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematikai statisztikai elemzek 3. MSTE3 modul Becslelmélet: alapfogalmak, nevezetes statisztikák, intervallum-becsl SZÉKESFEHÉRVÁR
Az átlagra vonatkozó megbízhatósági intervallum (konfidencia intervallum)
Az átlagra voatkozó megbízhatósági itervallum (kofidecia itervallum) Határozzuk meg körül azt az itervallumot amibe előre meghatározott valószíűséggel esik a várható érték (µ). A várható értéket potosa
Statisztika Elıadások letölthetık a címrıl
Statisztika Elıadások letölthetık a http://www.cs.elte.hu/~arato/stat*.pdf címrıl Konfidencia intervallum Def.: 1-α megbízhatóságú konfidencia intervallum: Olyan intervallum, mely legalább 1-α valószínőséggel
H0 hipotézis: μ1 = μ2 = μ3 = μ (a különböző talpú cipők eladási ára megegyezik)
5.4: 3 különböző talpat hasonlítunk egymáshoz Varianciaanalízis. hipotézis: μ1 = μ2 = μ3 = μ (a különböző talpú cipők eladási ára megegyezik) hipotézis: Létezik olyan μi, amely nem egyenlő a többivel (Van
Többváltozós lineáris regressziós modell feltételeinek tesztelése II.
Többváltozós lineáris regressziós modell feltételeinek tesztelése II. - A magyarázó változóra vonatkozó feltételek tesztelése - Optimális regressziós modell kialakítása - Kvantitatív statisztikai módszerek
Valószínűségszámítás összefoglaló
Statisztikai módszerek BMEGEVGAT Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:
Statisztika I. 9. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 9. előadás Előadó: Dr. Ertsey Imre Statisztikai hipotézis vizsgálatok elsősorban a biometriában alkalmazzák, újabban reprezentatív jellegű ökonómiai vizsgálatoknál, üzemi szinten élelmiszeripari
Egyszempontos variancia analízis. Statisztika I., 5. alkalom
Statisztika I., 5. alkalom Számos t-próba versus variancia analízis Kreativitás vizsgálata -nık -férfiak ->kétmintás t-próba I. Fajú hiba=α Kreativitás vizsgálata -informatikusok -építészek -színészek