Ökonometria gyakorló feladatok 1.
|
|
- János Fazekas
- 6 évvel ezelőtt
- Látták:
Átírás
1 Ökonometria gyakorló feladatok szeptember Egy vállalatnál megvizsgálták 0 üzletkötő éves teljesítményét és prémiumát. A megfigyelt eredményeket, és a belőlük számolt regressziós részeredményeket az alábbi táblázatban foglaljuk össze: eladott termékek (db/év) (X) prémium (ezer Ft/év) (Y ) számítási részeredmények 7 80 X = 46, Ȳ = Xi Y i = X i = Y i = (Yi Ŷi) = 7 a) Írja fel a becsült kétváltozós lineáris regressziós modellt, és értelmezze a β paraméter értékét! b) Határozza meg, hogy a teljesítmény hány százalékban magyarázza a prémium szóródását! c) Vizsgálja meg a prémium teljesítményre vonatkozó rugalmasságát az átlagos szinten! Értelmezze az eredményt! d) Adjon 95%-os konfidencia intervallumot a 45 üzletet kötő dolgozó várható prémiumának nagyságára!. Egy New England székhelyű légitársaság 15 repülőjegy értékesítéssel foglalkozó irodájában megvizsgálták, hogy hogyan befolyásolja a reklámkiadás nagysága a repülőjegy értékesítésből származó bevétel alakulását. Az adott év egyik hónapjára vonatkozó adatokat (mindkettő ezer dollárban mérve), és a belőlük számolt regressziós részeredményeket az alábbi táblázatban foglaljuk össze: értékesítés bevétele (Y ) reklámkiadás (X) számítási részeredmények 79,3,5 X = 5, 5, Ȳ = ,1 5,5 (Xi X)(Y i Ȳ ) = 91, 5 (Xi X) = 87, 5 146,0 5, (Yi Ȳ ) = ,7 7,6 a) Írja fel a becsült kétváltozós lineáris regressziós modellt, és értelmezze a β paraméter értékét! b) Határozza meg, hogy a reklámkiadás hány százalékban magyarázza a bevétel szóródását! c) Határozza meg a bevétel reklámkiadásra vonatkozó rugalmasságát 5000 dolláros reklámkiadás esetén, majd vizsgálja meg a bevétel reklámkiadásra vonatkozó rugalmasságát az átlagos szinten is! Értelmezze az eredményt! d) Adjon 95%-os konfidencia intervallumot a 6000 dolláros reklámkiadáshoz tartozó értékesítés várható bevételének nagyságára! 1
2 3. Ön egy életbiztosító társaságnak dolgozik, és egy igazgatói értekezletre készül. Közgazdász múltja azt súgja, hogy az életbiztosításban lekötött vagyont (lins) legjobban a jövedelem jelzi előre. Összegyűjti a fontos adatokat (családi életbiztosítás és családi jövedelem, mindkettő ezer dollárban) és elemezni kívánja kapcsolatukat egy, az életbiztosításban lekötött vagyon és a jövedelem (x) közötti regresszió becslésével. Az eredmények a következők: Model 1: OLS, using observations 1 0 Dependent variable: lins Coefficient Std. Error t-ratio p-value const 6, , ,9844 0, jovedelem 3, , , ,0000 Mean of dep. var S.D. of dep. bariable Error Sum of Sq (ESS) Std Err of Resid. (sgmahat) Unadjusted R-squared Adjusted R-squared F -statistic (1, 18) Prob. F > is < a) El kell magyaráznia a regresszió eredményeit, és mivel az igazgatótanács nem élvezi e kurzus elvégzésének előnyeit, egyszerű szavakkal is le kell tudnia írnia, mi történt. Magyarázza meg, mit jelentenek a következő (ne csak a számokat ismertesse, hanem mutassa be, hogy ezek mit jelentenek a probléma szempontjából): (1) A konstans együttható (α). () A jövedelem együtthatója (β). (3) Az ˆα + ˆβx 0 érték néhány tetszőleges x 0 -ra. (4) Az illeszkedés jóságát mérő R determinációs együttható értéke. b) Az egyik menedzser azzal érvel, hogy a piaci hüvelykujjszabály szerint az embereknek öt dollár életbiztosításuk van a jövedelmük minden egyes dollárjára. Egy másik azt mondja, hogy ez valószínűtlen, ez a szám túl magas. Meg szeretné vizsgálni ezt a véleménykülönbséget. (1) Milyen null- és alternatív hipotézist használna ezen feltételezések megkülönböztetésére? () Tesztelje a hipotézist 5%-os elsőfajú hibát használva. (3) Számolja ki és értelmezze a próba tesztstatisztikáit. (4) Készítsen 95%-os konfidencia-intervallumot a jövedelem együtthatójának becslésére. 4. A következő adófüggvényt az 50 amerikai állam és Washington szövetségi főváros keresztmetszeti adatainak felhasználásával becsülték. T ax = 0.1 (0.087) (<0.0001) Income n = 51 R = ˆσ = 0.687, ahol Tax az összes befizetett adó, az Income pedig a teljes jövedelem, mindkettő milliárd dollárban mérve. A zárójelben lévő számok az adott változó együtthatójának szignifikanciáját tesztelő statisztikából számolt p-értékek.
3 a) A regressziós együtthatók megfigyelt előjelei egyeznek-e az előzetes elképzeléseivel? Magyarázza meg! b) Hogyan értelmezné a jövedelem együtthatóját? c) Fogalmazza meg a null- és alternatív hipotézist, amit a fönt megadott p-értékkel tesztelhet. Szignifikánsak-e az együtthatók 5%-os szinten? Igazolja válaszát! d) A fenti eredmények a Ramanathan könyv D) függelékében bemutatott DATA3-4 fájl használatával ellenőrizhetőek. Az adatbázis ugyanezen a néven a Gretl saját adatbázisai közt is elérhető. Töltse be az adatbázist a Gretl programba, és ellenőrizze a fenti eredményeket a számítógép segítségével is! 5. Egy cég építkezéseknél használt szigetelőanyagot gyárt. A szigetelő keresletére felírt egyszerű modell Q t = α + βp t + u t, ahol Q t adott hónapban leszállított szigetőanyag mennyisége gallonban mérve, és P t a szigetelőanyag gallononkénti ára dollárban. A modellt 89 hónap adatainak felhasználásával becsültük. A következő táblázat a számítógépes output egy részlete (az adatok a Ramanathan könyv DATA3-5 adatbázisában találhatóak meg). Model 1: OLS, using observations 1 89 Dependent variable: Q Coefficient Std. Error const 596, , P -381, ,76575 Error Sum of Sq (ESS) e + 08 Std Err of Resid. (sgmahat) Unadjusted R-squared 0.13 Adjusted R-squared 0.1 a) Milyen előjelet vár α-ra és β-ra, és miért? A regressziós együtthatók megfigyelt előjelei egyeznek-e az elvárásaival? b) Mi az ár együtthatójának értelmezése? Írja le, mennyivel változik a kereslet, amikor a gallononkénti ár megnő egy dollárral. c) Mit tud mondani az illeszkedés jóságáról? d) Tesztelje, hogy minden regressziós együttható szignifikánsan különbözik-e nullától, vagy sem (1%-os szignifikancia szinten szinten). Írja fel a null- és alternatív hipotézist, a tesztstatisztikákat, azok eloszlásait és a szabadságfokokat, és a nullhipotézis elvetésének kritériumát! Mit állapít meg? e) Véleménye szerint megfelelő a modell? Mit gondol, milyen más változókat kellene a modellbe fölvenni? 3
4 6. Egy gépkocsi fenntartási költségeinek következő két modelljét becsültük: E t = α 1 + β 1 Miles t + u t E t = α + β Age t + u t ahol E a kumulált fenntartási költség (az üzemagyag nélkül) dollárban, a Miles változó a megtett út kumulált mennyisége (ezer mérföldben), az Age változó pedig a jármű életkorát jelöli hetekben mérve. A két modellt 57 elemű minta felhasználásával becsültük. A futási eredményeket az alábbi táblázatok foglalják össze: Model A: OLS, using observations 1 57 Dependent variable: E Coefficient Std. Error t-ratio p-value const -65, , , ,0000 Age 7, ,3958, ,0000 Error Sum of Sq (ESS) e + 06 Std Err of Resid. (sgmahat) R-squared Model B: OLS, using observations 1 57 Dependent variable: E Coefficient Std. Error t-ratio p-value const -796, , , ,0000 Miles 53,45074, , ,0000 Error Sum of Sq (ESS) e + 07 Std Err of Resid. (sgmahat) R-squared a) Milyen előjelet vár β 1 -re és β -re? A megfigyelt előjelek megfelelnek-e várakozásainak? b) Melyik modellt gondolja "jobbnak" a kettő közül? Fogalmazza meg az alkalmazott kritériumot. c) A jobbnak ítélt modellben a t-statisztikák segítségével végezzen el a megfelelő próbákat az együtthatók szignifikanciájának tesztelésére. Ne felejtse el felírni a null- és alternatív hipotézist, a tesztstatisztika eloszlását, beleértve a szabadságfokot, és a nullhipotézis elvetésének kritériumát. Mit állapít meg? d) Az A modellben tegyük fel, hogy az Age változót hetek helyett napokban mértük. Írja át a táblázatot ennek megfelelően. e) A fenti eredmények a Ramanathan könyv D) függelékében bemutatott DATA3-7 fájl használatával ellenőrizhetőek. Az adatbázis ugyanezen a néven a Gretl saját adatbázisai közt is elérhető. Töltse be az adatbázist a Gretl programba, és ellenőrizze a fenti eredményeket a számítógép segítségével is! 4
5 7. Egy nagy állami egyetemen hét véletlenszerűen kiválasztott alsóéves közgazdászhallgatónak a következő két kérdést tették fel. (a) Mennyi volt az előző félévben elért tanulmányi átlaga (grade-point average, GPA)? (b) Hetente átlagosan hány órát töltött az Orange and Brew-ban, mely az egyetemi kampusz egyetlen és legnépszerűbb kocsmája? A diákok által adott válaszok az alábbi táblázatban szerepelnek: Diák GPA, G Az Orange and Brew-ban töltött órák száma jetente, H 1. 3,6 3., , ,5 9 5.,7 1 6., ,9 4 a) A fent szereplő adatok felhasználásával becsüljük a legkisebb négyzetek módszerével a modellt! G = α + βh + u b) Milyen előjelet vár a β együtthatóra? Igazolják-e az adatok a várakozásainkat? c) Tegyük fel, hogy az egyik elsőéves hallgató a tanulmányi időszak első két hetében heti 15 órát töltött az Orange and Brew-ban. Adja meg az első negyedév végi tanulmányi átlagának 90 százalékos konfidenciaintervallumát, ha a hallgató továbbra is heti 15 órát tölt az Orange and Brew-ban. d) Tegyük fel, hogy diákunk négy évig jár az alsóéves képzésre, és teljesíti a végzéshez szükséges 1 szemesztert. Számítsuk ki a végső, kumulált tanulmányi átlagának 90 százalékos konfidenciaintervallumát! e) Tegyük fel, hogy a legtöbb közgazdasági egyetem felsőéves (graduális) képzése minimum 3,5-s átlagot ír elő felvételi követelményként. Milyen eséllyel sikerül hallatónknak alsóéves tanulmányai befejezése után bekerülnie graduális képzésre? 8. A sarki fűszeres megállapítja, hogy a kínált narancsok ára igen erőteljes változékonyságot mutat az év során. Szezonon kívül a narancs ára darabonként akár 60 centre is emelkedik, míg a csúcsszezonban különleges árleszállításokat tartanak, amelyeken akár 10, 0 vagy 30 centért kínálják a narancsot. Az eladott narancsmennyiség (y) és az ár (x) hat hétre vonatkozó adatai a következők: 5
6 Eladott narancsmennyiség, y (100 darabban) Narancsár darabonként, x (centben) Tegyük fel, hogy a narancskeresletet az y = α + βx + u lineáris egyenlet írja le. Becsüljük meg az egyenlet együtthatóit a legkisebb négyzetek módszerével! Adjuk meg a hetedik héten eladott narancsmennyiség 90 százalékos konfidenciaintervallumát, ha azon a héten 5 centbe kerül a narancs! 9. A Ramanathan könyv DATA3-10 adatbázisa keresztmetszeti adatokat tartalmaz 7 német társaság 1995-ös teljes eladásairól. Töltse be az adatbázist a Gretl programba, és oldja meg az alábbi feladatokat a számítógép segítségével. a) Becsülje a P ROF IT S t = α + β SALES t + u t modellt. b) Rajzolja meg a pontdiagramot. Jó illeszkedésre számít? Számolja ki R -et. Valóban jó az illeszkedés? c) Becsülje a reziduumok (hibák), valamint ˆα és ˆβ szórását. d) Végezze el a t-próbát az α = 0 és a β = 0 hipotézisekre, saját maga által választott szignifikanciaszinten. Mindegyik esetben írja fel a null- és alternatív hipotézist, a tesztstatisztika eloszlását, és a nullhipotézis elfogadásának vagy elvetésének kritériumát. e) Tegyük fel, hogy a profitot millió dollár helyett dollárban mértük. Mutassa be a mértékegység megváltozásának hatását a regressziós együtthatókra, a becsült szórásokra, a t- és F -statisztikákra, és az R értékére. f) Véleménye szerint milyen egyéb tényezőkön nyugszik egy társaság profitja? 10. A Ramanathan könyv DATA3-11 adatbázisa különböző egyetemek professzorának a fizetésére (ezer dollárban) és a Ph. D. megszerzése óta eltelt évek számára vonatkozó adatait tartalmazza. Töltse be az adatbázist a Gretl programba, és a számítógép segítségével becsülje a modellt. SALARY = α + β Y EARS + u a) Tesztelje a modell általános szignifikanciáját (saját maga által választott szignifikanciaszinten). b) Tesztelje minden egyes regressziós együttható szignifikanciáját is 1%-os szinten. c) Mit mond önnek az R értéke? Ábrázolja a fizetést az évek függvényében, és tegye fel magának a kérdést, hogy a modell megfelelő-e a fizetési szintek szóródásának megmagyarázására. 6
7 d) Az eredményeire alapozva milyen javaslatokat tenne a modellspecifikáció javítása érdekében? e) Vizsgálja meg annak következményeit, ha a fizetést ezer dollár helett dollárban mérnénk. Képletgyűjtemény - kétváltozós regressziós modell Modell: Y t = α + βx t + u t, t = 1,..., n Paraméterbecslés: ˆα = Ȳ ˆβ X és ˆβ = n t=1 X ty t n XȲ n t=1 X t n X = S xy S xx Becslések sztenderd hibái: s e = n t=1 e t n, sˆα = s n t=1 X t ns xx s ˆβ = s S xx A pontbecslés sztenderd hibája: s Ŷ i = s e ( 1 n + (X i X) ) S xx Konfidencia intervallum az együtthatókra: ( P t 1 ε/(n ) ˆα α ) t 1 ε/(n ) = 1 ε sˆα P ( t 1 ε/(n ) ˆβ β s ˆβ t 1 ε/(n ) ) = 1 ε Az együtthatók relevanciájára vonatkozó hipotézisvizsgálat teszt-statisztikája: t = ˆα α s ˆβ sˆα t n és t = ˆβ β t n, Konfidencia intervallum az eredményváltozó átlag-előrejelzésére: t = Ŷi Y i sŷi t n 7
Ökonometria BSc Gyakorló feladatok a kétváltozós regresszióhoz
Ökonometria BSc Gyakorló feladatok a kétváltozós regresszióhoz 1 Egy vállalatnál megvizsgálták 20 üzletkötő éves teljesítményét és prémiumát A megfigyelt eredményeket, és a belőlük számolt regressziós
RészletesebbenGyakorló feladatok a kétváltozós regresszióhoz 2. Nemlineáris regresszió
Gyakorló feladatok a kétváltozós regresszióhoz 2. Nemlineáris regresszió 1. A fizetés (Y, órabér dollárban) és iskolázottság (X, elvégzett iskolai év) közti kapcsolatot vizsgáljuk az Y t α + β X 2 t +
RészletesebbenLineáris regressziószámítás 1. - kétváltozós eset
Lineáris regressziószámítás 1. - kétváltozós eset Orlovits Zsanett 2019. február 6. Adatbázis - részlet eredmény- és magyarázó jellegű változók Cél: egy eredményváltozó alakulásának jellemzése a magyarázó
RészletesebbenÖkonometria gyakorló feladatok Többváltozós regresszió
Ökonometria gyakorló feladatok Többváltozós regresszió 2019. március 1. 1. Az UCSD egyetem felvételi irodája egy 427 hallgatóból álló véletlen mintát vett, és kiszámolta az egyetemi átlagpontszámukat (COLGPA),
RészletesebbenStatisztikai következtetések Nemlineáris regresszió Feladatok Vége
[GVMGS11MNC] Gazdaságstatisztika 10. előadás: 9. Regressziószámítás II. Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet A standard lineáris modell
RészletesebbenBiomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János
Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 12. Regresszió- és korrelációanaĺızis Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision
RészletesebbenA többváltozós lineáris regresszió 1.
2018. szeptember 17. Lakásár adatbázis - részlet eredmény- és magyarázó jellegű változók Cél: egy eredményváltozó alakulásának jellemzése a magyarázó változók segítségével Legegyszerűbb eset - kétváltozós
RészletesebbenFEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 8 VIII. REGREssZIÓ 1. A REGREssZIÓs EGYENEs Két valószínűségi változó kapcsolatának leírására az eddigiek alapján vagy egy numerikus
RészletesebbenBiometria az orvosi gyakorlatban. Korrelációszámítás, regresszió
SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás
RészletesebbenMódszertani Intézeti Tanszéki Osztály. A megoldás részletes mellékszámítások hiányában nem értékelhető!
BGF KKK Módszertani Intézeti Tanszéki Osztály Budapest, 2012.. Név:... Neptun kód:... Érdemjegy:..... STATISZTIKA II. VIZSGADOLGOZAT Feladatok 1. 2. 3. 4. 5. 6. Összesen Szerezhető pontszám 21 20 7 22
RészletesebbenBevezetés a hipotézisvizsgálatokba
Bevezetés a hipotézisvizsgálatokba Nullhipotézis: pl. az átlag egy adott µ becslése : M ( x -µ ) = 0 Alternatív hipotézis: : M ( x -µ ) 0 Szignifikancia: - teljes bizonyosság csak teljes enumerációra -
RészletesebbenBevezetés a Korreláció &
Bevezetés a Korreláció & Regressziószámításba Petrovics Petra Doktorandusz Statisztikai kapcsolatok Asszociáció 2 minőségi/területi ismérv között Vegyes kapcsolat minőségi/területi és egy mennyiségi ismérv
RészletesebbenRegresszió számítás az SPSSben
Regresszió számítás az SPSSben Kvantitatív statisztikai módszerek Petrovics Petra Lineáris regressziós modell X és Y közötti kapcsolatot ábrázoló egyenes. Az Y függ: x 1, x 2,, x p p db magyarázó változótól
RészletesebbenÖkonometriai modellek paraméterei: számítás és értelmezés
Ökonometriai modellek paraméterei: számítás és értelmezés Írta: Werger Adrienn, Renczes Nóra, Pereszta Júlia, Vörösházi Ágota, Őzse Adrienn Javította és szerkesztette: Ferenci Tamás (tamas.ferenci@medstat.hu)
RészletesebbenKorreláció és lineáris regresszió
Korreláció és lineáris regresszió Két folytonos változó közötti összefüggés vizsgálata Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi Fizika és Statisztika I. előadás 2016.11.02.
RészletesebbenDiagnosztika és előrejelzés
2018. november 28. A diagnosztika feladata A modelldiagnosztika alapfeladatai: A modellillesztés jóságának vizsgálata (idősoros adatok esetén, a regressziónál már tanultuk), a reziduumok fehérzaj voltának
Részletesebben2013 ŐSZ. 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét!
GAZDASÁGSTATISZTIKA KIDOLGOZOTT ELMÉLETI KÉRDÉSEK A 3. ZH-HOZ 2013 ŐSZ Elméleti kérdések összegzése 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét! 2. Mutassa be az
RészletesebbenVIZSGADOLGOZAT. I. PÉLDÁK (60 pont)
VIZSGADOLGOZAT (100 pont) A megoldások csak szöveges válaszokkal teljes értékűek! I. PÉLDÁK (60 pont) 1. példa (13 pont) Az egyik budapesti könyvtárban az olvasókból vett 400 elemű minta alapján a következőket
RészletesebbenBevezetés az ökonometriába
Bevezetés az ökonometriába Többváltozós regresszió: nemlineáris modellek Ferenci Tamás MSc 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Hetedik előadás, 2010. november 10.
RészletesebbenIdősoros elemzés minta
Idősoros elemzés minta Ferenci Tamás, tamas.ferenci@medstat.hu A felhasznált adatbázisról Elemzésemhez a francia frank árfolyamának 1986.01.03. és 1993.12.31. közötti értékeit használtam fel, mely idősorban
RészletesebbenÖkonometria. Dummy változók használata. Ferenci Tamás 1 tamas.ferenci@medstat.hu. Hetedik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék
Dummy változók használata Ferenci Tamás 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Hetedik fejezet Tartalom IV. esettanulmány 1 IV. esettanulmány Uniós országok munkanélkülisége
RészletesebbenStatisztika elméleti összefoglaló
1 Statisztika elméleti összefoglaló Tel.: 0/453-91-78 1. Tartalomjegyzék 1. Tartalomjegyzék.... Becsléselmélet... 3 3. Intervallumbecslések... 5 4. Hipotézisvizsgálat... 8 5. Regresszió-számítás... 11
RészletesebbenHipotézis vizsgálatok
Hipotézis vizsgálatok Hipotézisvizsgálat Hipotézis: az alapsokaság paramétereire vagy az alapsokaság eloszlására vonatkozó feltevés. Hipotézis ellenőrzés: az a statisztikai módszer, amelynek segítségével
RészletesebbenSTATISZTIKA. Egymintás u-próba. H 0 : Kefir zsírtartalma 3% Próbafüggvény, alfa=0,05. Egymintás u-próba vagy z-próba
Egymintás u-próba STATISZTIKA 2. Előadás Középérték-összehasonlító tesztek Tesztelhetjük, hogy a valószínűségi változónk értéke megegyezik-e egy konkrét értékkel. Megválaszthatjuk a konfidencia intervallum
RészletesebbenIdősoros elemzés. Ferenci Tamás, ft604@hszk.bme.hu 2009. január 7.
Idősoros elemzés Ferenci Tamás, ft604@hszk.bme.hu 2009. január 7. A felhasznált adatbázisról Elemzésemhez a tanszéki honlapon rendelkezésre bocsátott TimeSeries.xls idősoros adatgyűjtemény egyik idősorát,
RészletesebbenTöbbváltozós lineáris regressziós modell feltételeinek tesztelése I.
Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Kvantitatív statisztikai módszerek Petrovics Petra Többváltozós lineáris regressziós
RészletesebbenLineáris regresszió vizsgálata resampling eljárással
Lineáris regresszió vizsgálata resampling eljárással Dolgozatomban az European Social Survey (ESS) harmadik hullámának adatait fogom felhasználni, melyben a teljes nemzetközi lekérdezés feldolgozásra került,
RészletesebbenStatisztika II előadáslapok. 2003/4. tanév, II. félév
Statisztika II előadáslapok 3/4 tanév, II félév BECSLÉS ÉS HIPOTÉZISVIZSGÁLAT Egyik konzervgyár vágott zöldbabot exportál A szabvány szerint az üvegek nettó töltősúlyának az átlaga 3 g, a szórása 5 g Az
RészletesebbenSTATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése
4. A modell érvényességének ellenőrzése STATISZTIKA 4. Előadás Variancia-analízis Lineáris modellek 1. Függetlenség 2. Normális eloszlás 3. Azonos varianciák A maradék független a kezelés és blokk hatástól
RészletesebbenAdatok statisztikai értékelésének főbb lehetőségei
Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció
RészletesebbenBiostatisztika VIII. Mátyus László. 19 October
Biostatisztika VIII Mátyus László 19 October 2010 1 Ha σ nem ismert A gyakorlatban ritkán ismerjük σ-t. Ha kiszámítjuk s-t a minta alapján, akkor becsülhetjük σ-t. Ez további bizonytalanságot okoz a becslésben.
RészletesebbenGVMST22GNC Statisztika II.
GVMST22GNC Statisztika II. 4. előadás: 9. Kétváltozós korreláció- és regressziószámítás Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Korrelációszámítás
RészletesebbenTöbbváltozós lineáris regressziós modell feltételeinek
Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Petrovics Petra Doktorandusz Többváltozós lineáris regressziós modell x 1, x 2,, x p
RészletesebbenStatisztikai alapismeretek (folytatás) 4. elıadás (7-8. lecke) Becslések, Hipotézis vizsgálat
Statisztikai alapismeretek (folytatás) 4. elıadás (7-8. lecke) Becslések, Hipotézis vizsgálat 7. lecke Paraméter becslés Konfidencia intervallum Hipotézis vizsgálat feladata Paraméter becslés és konfidencia
Részletesebben1. Ismétlés Utóbbi előadások áttekintése IV. esettanulmány Uniós országok munkanélkülisége... 1
Tartalom Tartalomjegyzék 1. Ismétlés 1 1.1. Utóbbi előadások áttekintése.................................. 1 2. IV. esettanulmány 1 2.1. Uniós országok munkanélkülisége................................
RészletesebbenÖkonometria gyakorló feladatok - idősorok elemzése
Ökonometria gyakorló feladatok - idősorok elemzése 2019. május 7. 1. Egy gazdálkodó szervezetben az átlagos készletérték alakulása negyedéves periódusokban mérve a következő: évek negyedévek 1 2 3 4 2007
Részletesebben[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát
RészletesebbenHipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok
STATISZTIKA 1. Előadás Hipotézisvizsgálatok Tematika 1. Hipotézis vizsgálatok 2. t-próbák 3. Variancia-analízis 4. A variancia-analízis validálása, erőfüggvény 5. Korreláció számítás 6. Kétváltozós lineáris
RészletesebbenGVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet
GVMST22GNC Statisztika II. 3. előadás: 8. Hipotézisvizsgálat Kóczy Á. László Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Hipotézisvizsgálat v becslés Becslés Ismeretlen paraméter Közeĺıtő
Részletesebbenbiometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás
Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani
RészletesebbenMINTAFELADATOK. 1. Az alábbi diagram egy kiskereskedelmi lánc boltjainak forgalomkoncentrációját szemlélteti:
1. Az alábbi diagram egy kiskereskedelmi lánc boltjainak forgalomkoncentrációját szemlélteti: 100% 90% 80% 70% 60% 50% 2010 2011 40% 30% 20% 10% 0% 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% a) Nevezze
RészletesebbenRegressziós vizsgálatok
Regressziós vizsgálatok Regresszió (regression) Általános jelentése: visszaesés, hanyatlás, visszafelé mozgás, visszavezetés. Orvosi területen: visszafejlődés, involúció. A betegség tünetei, vagy maga
RészletesebbenFogyasztás, beruházás és rövid távú árupiaci egyensúly kétszektoros makromodellekben
Fogyasztás, beruházás és rövid távú árupiaci egyensúly kétszektoros makromodellekben Fogyasztáselméletek 64.) Bock Gyula [2001]: Makroökonómia ok. TRI-MESTER, Tatabánya. 33. o. 1. 65.) Keynesi abszolút
RészletesebbenNormális eloszlás tesztje
Valószínűség, pontbecslés, konfidenciaintervallum Normális eloszlás tesztje Kolmogorov-Szmirnov vagy Wilk-Shapiro próba. R-funkció: shapiro.test(vektor) balra ferde eloszlás jobbra ferde eloszlás balra
Részletesebben5. előadás - Regressziószámítás
5. előadás - Regressziószámítás 2016. október 3. 5. előadás 1 / 18 Kétváltozós eset A modell: Y i = α + βx i + u i, i = 1,..., T, ahol X i független u i -től minden i esetén, (u i ) pedig i.i.d. sorozat
RészletesebbenStatisztika I. 12. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 1. előadás Előadó: Dr. Ertsey Imre Regresszió analízis A korrelációs együttható megmutatja a kapcsolat irányát és szorosságát. A kapcsolat vizsgálata során a gyakorlatban ennél messzebb
RészletesebbenMatematikai statisztikai elemzések 6.
Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematikai statisztikai elemzések 6. MSTE6 modul Regressziószámítás: kétváltozós lineáris és nemlineáris regresszió, többváltozós
RészletesebbenStatisztika I. 11. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 11. előadás Előadó: Dr. Ertsey Imre Összefüggés vizsgálatok A társadalmi gazdasági élet jelenségei kölcsönhatásban állnak, összefüggnek egymással. Statisztika alapvető feladata: - tényszerűségek
Részletesebben4/24/12. Regresszióanalízis. Legkisebb négyzetek elve. Regresszióanalízis
1. feladat Regresszióanalízis. Legkisebb négyzetek elve 2. feladat Az iskola egy évfolyamába tartozó diákok átlagéletkora 15,8 év, standard deviációja 0,6 év. A 625 fős évfolyamból hány diák fiatalabb
RészletesebbenELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó június
GAZDASÁGSTATISZTIKA GAZDASÁGSTATISZTIKA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi
Részletesebbeny ij = µ + α i + e ij
Elmélet STATISZTIKA 3. Előadás Variancia-analízis Lineáris modellek A magyarázat a függő változó teljes heterogenitásának két részre bontását jelenti. A teljes heterogenitás egyik része az, amelynek okai
RészletesebbenBiometria gyakorló feladatok BsC hallgatók számára
Biometria gyakorló feladatok BsC hallgatók számára 1. Egy üzem alkalmazottainak megoszlása az elért teljesítmény %-a szerint a következı: Norma teljesítmény % Dolgozók száma 60-80 30 81-90 70 91-100 90
RészletesebbenEsettanulmány. A homoszkedaszticitás megsértésének hatása a regressziós paraméterekre. Tartalomjegyzék. 1. Bevezetés... 2
Esettanulmány A homoszkedaszticitás megsértésének hatása a regressziós paraméterekre Tartalomjegyzék 1. Bevezetés... 2 2. A lineáris modell alkalmazhatóságának feltételei... 2 3. A feltételek teljesülésének
Részletesebbenföldtudományi BSc (geológus szakirány) Matematikai statisztika elıadás, 2014/ félév 6. elıadás
Matematikai statisztika elıadás, földtudományi BSc (geológus szakirány) 2014/2015 2. félév 6. elıadás Konfidencia intervallum Def.: 1-α megbízhatóságú konfidencia intervallum: Olyan intervallum, mely legalább
RészletesebbenGyakorló feladatok. Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László
Gyakorló feladatok Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László I/. A vizsgaidőszak második napján a hallgatók %-ának az E épületben, %-ának a D épületben,
RészletesebbenKorrelációs kapcsolatok elemzése
Korrelációs kapcsolatok elemzése 1. előadás Kvantitatív statisztikai módszerek Két változó közötti kapcsolat Független: Az X ismérv szerinti hovatartozás ismerete nem ad semmilyen többletinformációt az
Részletesebben[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria Bódis Emőke 2016. 04. 25. J J 9 Korrelációanalízis Regresszióanalízis: hogyan változik egy vizsgált változó értéke egy másik változó változásának függvényében. Korrelációs
RészletesebbenEgyszempontos variancia analízis. Statisztika I., 5. alkalom
Statisztika I., 5. alkalom Számos t-próba versus variancia analízis Kreativitás vizsgálata -nık -férfiak ->kétmintás t-próba I. Fajú hiba=α Kreativitás vizsgálata -informatikusok -építészek -színészek
RészletesebbenHipotézis vizsgálatok
Hipotézis vizsgálatok Hipotézisvizsgálat Hipotézis: az alapsokaság paramétereire vagy az alapsokaság eloszlására vonatkozó feltevés. Hipotézis ellenőrzés: az a statisztikai módszer, amelynek segítségével
Részletesebbeny ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell
Példa STATISZTIKA Egy gazdálkodó k kukorica hibrid termesztése között választhat. Jelöljük a fajtákat A, B, C, D-vel. Döntsük el, hogy a hibridek termesztése esetén azonos terméseredményre számíthatunk-e.
RészletesebbenKísérlettervezés alapfogalmak
Kísérlettervezés alapfogalmak Rendszermodellezés Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Kísérlettervezés Cél: a modell paraméterezése a valóság alapján
RészletesebbenBevezetés az ökonometriába
Bevezetés az ökonometriába Többváltozós lineáris regresszió: modellszelekció Ferenci Tamás MSc 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Negyedik előadás, 2010. október
RészletesebbenTARTALOMJEGYZÉK. 1. téma Átlagbecslés (Barna Katalin) téma Hipotézisvizsgálatok (Nagy Mónika Zita)... 23
TARTALOMJEGYZÉK 1. téma Átlagbecslés (Barna Katalin).... 7 2. téma Hipotézisvizsgálatok (Nagy Mónika Zita)... 23 3. téma Összefüggések vizsgálata, korrelációanalízis (Dr. Molnár Tamás)... 73 4. téma Összefüggések
RészletesebbenKét diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat
Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi fizika és statisztika I. előadás 2016.11.09 Orvosi
RészletesebbenELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó. 2010. június
GAZDASÁGSTATISZTIKA GAZDASÁGSTATISZTIKA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi
RészletesebbenKétértékű függő változók: alkalmazások Mikroökonometria, 8. hét Bíró Anikó Probit, logit modellek együtthatók értelmezése
Kétértékű függő változók: alkalmazások Mikroökonometria, 8. hét Bíró Anikó Probit, logit modellek együtthatók értelmezése Pˆr( y = 1 x) ( g( ˆ β + x ˆ β ) ˆ 0 β j ) x j Marginális hatás egy megválasztott
RészletesebbenHipotézis, sejtés STATISZTIKA. Kétmintás hipotézisek. Tudományos hipotézis. Munkahipotézis (H a ) Nullhipotézis (H 0 ) 11. Előadás
STATISZTIKA Hipotézis, sejtés 11. Előadás Hipotézisvizsgálatok, nem paraméteres próbák Tudományos hipotézis Nullhipotézis felállítása (H 0 ): Kétmintás hipotézisek Munkahipotézis (H a ) Nullhipotézis (H
RészletesebbenSTATISZTIKA. Fogalom. A standard lineáris regressziós modell mátrixalgebrai jelölése. A standard lineáris modell. Eredménytáblázat
Fogalom STATISZTIKA 8 Előadás Többszörös lineáris regresszió Egy jelenség vizsgálata során általában az adott jelenséget több tényező befolyásolja, vagyis többnyire nem elegendő a kétváltozós modell elemzése
RészletesebbenA biostatisztika alapfogalmai, hipotézisvizsgálatok. Dr. Boda Krisztina PhD SZTE ÁOK Orvosi Informatikai Intézet
A biostatisztika alapfogalmai, hipotézisvizsgálatok Dr. Boda Krisztina PhD SZTE ÁOK Orvosi Informatikai Intézet Hipotézis Állítás a populációról (vagy annak paraméteréről) Példák H1: p=0.5 (a pénzérme
RészletesebbenMatematikai statisztika c. tárgy oktatásának célja és tematikája
Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:
RészletesebbenTartalomjegyzék I. RÉSZ: KÍSÉRLETEK MEGTERVEZÉSE
Tartalomjegyzék 5 Tartalomjegyzék Előszó I. RÉSZ: KÍSÉRLETEK MEGTERVEZÉSE 1. fejezet: Kontrollált kísérletek 21 1. A Salk-oltás kipróbálása 21 2. A porta-cava sönt 25 3. Történeti kontrollok 27 4. Összefoglalás
RészletesebbenStatisztika I. 9. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 9. előadás Előadó: Dr. Ertsey Imre Statisztikai hipotézis vizsgálatok elsősorban a biometriában alkalmazzák, újabban reprezentatív jellegű ökonómiai vizsgálatoknál, üzemi szinten élelmiszeripari
RészletesebbenAutoregresszív és mozgóátlag folyamatok. Géczi-Papp Renáta
Autoregresszív és mozgóátlag folyamatok Géczi-Papp Renáta Autoregresszív folyamat Az Y t diszkrét paraméterű sztochasztikus folyamatok k-ad rendű autoregresszív folyamatnak nevezzük, ha Y t = α 1 Y t 1
RészletesebbenA biostatisztika alapfogalmai, hipotézisvizsgálatok. Dr. Boda Krisztina Boda PhD SZTE ÁOK Orvosi Informatikai Intézet
A biostatisztika alapfogalmai, hipotézisvizsgálatok Dr. Boda Krisztina Boda PhD SZTE ÁOK Orvosi Informatikai Intézet Hipotézisvizsgálatok A hipotézisvizsgálat során a rendelkezésre álló adatok (statisztikai
RészletesebbenEgymintás próbák. Alapkérdés: populáció <paramétere/tulajdonsága> megegyezik-e egy referencia paraméter értékkel/tulajdonsággal?
Egymintás próbák σ s μ m Alapkérdés: A populáció egy adott megegyezik-e egy referencia paraméter értékkel/tulajdonsággal? egymintás t-próba Wilcoxon-féle előjeles
RészletesebbenBiomatematika 13. Varianciaanaĺızis (ANOVA)
Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 13. Varianciaanaĺızis (ANOVA) Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date:
RészletesebbenKiváltott agyi jelek informatikai feldolgozása Statisztika - Gyakorlat Kiss Gábor IB.157.
Kiváltott agyi jelek informatikai feldolgozása 2018 Statisztika - Gyakorlat Kiss Gábor IB.157. kiss.gabor@tmit.bme.hu Példa I (Vonat probléma) Aladár 25 éves és mindkét nagymamája él még: Borbála és Cecília.
RészletesebbenAutoregresszív és mozgóátlag folyamatok
Géczi-Papp Renáta Autoregresszív és mozgóátlag folyamatok Autoregresszív folyamat Az Y t diszkrét paraméterű sztochasztikus folyamatok k-ad rendű autoregresszív folyamatnak nevezzük, ha Y t = α 1 Y t 1
RészletesebbenFogalom STATISZTIKA. Alkalmazhatósági feltételek. A standard lineáris modell. Projekciós mátrix, P
Fogalom STATISZTIKA 8 Előadás Többszörös lineáris regresszió Egy jelenség vizsgálata során általában az adott jelenséget több tényező befolyásolja, vagyis többnyire nem elegendő a kétváltozós modell elemzése
RészletesebbenQ1 = 1575 eft Me = 2027,7778 eft Q3 = 2526,3158 eft
Gyak1: b) Mo = 1857,143 eft A kocsma tipikus (leggyakoribb) havi bevétele 1.857.143 Ft. c) Q1 = 1575 eft Me = 2027,7778 eft Q3 = 2526,3158 eft Gyak2: b) X átlag = 35 Mo = 33,33 σ = 11,2909 A = 0,16 Az
RészletesebbenIII. Kvantitatív változók kapcsolata (korreláció, regresszió)
III. Kvantitatív változók kapcsolata (korreláció, regresszió) Tartalom Változók kapcsolata Kétdimenziós minta (pontdiagram) Regressziós előrejelzés (predikció) Korreláció Tanuló Kétdimenziós minta Tanulással
Részletesebben1. Egy Kft dolgozóit a havi bruttó kereseteik alapján csoportosítottuk: Havi bruttó bér, ezer Ft/fő
Figyelem! A példasor nem tartalmazza valamennyi típuspéldát. A dolgozatban az órán leadott feladatok közül bármely típusú előfordulhat. A példasor már a második dolgozat anyagát gyakorló feladatokat is
Részletesebben1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása
HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat
RészletesebbenLogisztikus regresszió október 27.
Logisztikus regresszió 2017. október 27. Néhány példa Mi a valószínűsége egy adott betegségnek a páciens bizonyos megfigyelt jellemzői (pl. nem, életkor, laboreredmények, BMI stb.) alapján? Mely genetikai
RészletesebbenStatisztika Elıadások letölthetık a címrıl
Statisztika Elıadások letölthetık a http://www.cs.elte.hu/~arato/stat*.pdf címrıl Konfidencia intervallum Def.: 1-α megbízhatóságú konfidencia intervallum: Olyan intervallum, mely legalább 1-α valószínőséggel
RészletesebbenLeíró és matematikai statisztika el adásnapló Matematika alapszak, matematikai elemz szakirány 2016/2017. tavaszi félév
Leíró és matematikai statisztika el adásnapló Matematika alapszak, matematikai elemz szakirány 2016/2017. tavaszi félév A pirossal írt anyagrészeket nem fogom közvetlenül számon kérni a vizsgán, azok háttérismeretként,
RészletesebbenElemi statisztika. >> =weiszd= << december 20. Szerintem nincs sok szükségünk erre... [visszajelzés esetén azt is belerakom] x x = n
Elemi statisztika >> =weiszd=
Részletesebben1.1: Egy felmérés során a BGF-ről frissen kikerült diplomások jövedelmét vizsgálták.
1.1: Egy felmérés során a BGF-ről frissen kikerült diplomások jövedelmét vizsgálták. a) Hozzon létre osztályközös gyakoriságot az alábbi osztályközökkel: - 100.000 100.000-150.000 150.000-200.000 200.000-250.000
RészletesebbenH0 hipotézis: μ1 = μ2 = μ3 = μ (a különböző talpú cipők eladási ára megegyezik)
5.4: 3 különböző talpat hasonlítunk egymáshoz Varianciaanalízis. hipotézis: μ1 = μ2 = μ3 = μ (a különböző talpú cipők eladási ára megegyezik) hipotézis: Létezik olyan μi, amely nem egyenlő a többivel (Van
RészletesebbenKvantitatív statisztikai módszerek
Kvantitatív statisztikai módszerek 1. konzultáció tárgyjegyző Dr. Szilágyi Roland Mérési skálák Számok meghatározott szabályok szerinti hozzárendelése jelenségekhez, bizonyos tulajdonságokhoz. 4 féle szabály
RészletesebbenAnyagvizsgálati módszerek Mérési adatok feldolgozása. Anyagvizsgálati módszerek
Anyagvizsgálati módszerek Mérési adatok feldolgozása Anyagvizsgálati módszerek Pannon Egyetem Mérnöki Kar Anyagvizsgálati módszerek Statisztika 1/ 22 Mérési eredmények felhasználása Tulajdonságok hierarchikus
RészletesebbenSztochasztikus kapcsolatok
Sztochasztikus kapcsolatok Petrovics Petra PhD Hallgató Ismérvek közötti kapcsolat (1) Függvényszerű az egyik ismérv szerinti hovatartozás egyértelműen meghatározza a másik ismérv szerinti hovatartozást.
RészletesebbenStatisztika I. 10. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 10. előadás Előadó: Dr. Ertsey Imre Varianciaanalízis A különböző tényezők okozta szórás illetőleg szórásnégyzet összetevőire bontásán alapszik Segítségével egyszerre több mintát hasonlíthatunk
RészletesebbenStatisztikai alapfogalmak a klinikai kutatásban. Molnár Zsolt PTE, AITI
Statisztikai alapfogalmak a klinikai kutatásban Molnár Zsolt PTE, AITI Bevezetés Research vs. Science Kutatás Tudomány Szerkezeti háttér hiánya Önkéntesek (lelkes kisebbség) Beosztottak (parancsot teljesítő
RészletesebbenBiomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János
Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 15. Nemparaméteres próbák Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date: November
RészletesebbenGyakorlat 8 1xANOVA. Dr. Nyéki Lajos 2016
Gyakorlat 8 1xANOVA Dr. Nyéki Lajos 2016 A probléma leírása Azt vizsgáljuk, hogy milyen hatása van a család jövedelmének a tanulók szövegértés teszten elért tanulmányi eredményeire. A minta 59 iskola adatait
RészletesebbenStatisztikai programcsomagok gyakorlat Pót zárthelyi dolgozat megoldás
Statisztikai programcsomagok gyakorlat Pót zárthelyi dolgozat megoldás A feladatok megoldásához használandó adatállományok: potzh és potolando (weboldalon találhatók) Az állományok kiterjesztése sas7bdat,
RészletesebbenA többváltozós lineáris regresszió III. Főkomponens-analízis
A többváltozós lineáris regresszió III. 6-7. előadás Nominális változók a lineáris modellben 2017. október 10-17. 6-7. előadás A többváltozós lineáris regresszió III., Alapok Többváltozós lineáris regresszió
RészletesebbenTöbbváltozós lineáris regresszió 3.
Többváltozós lineáris regresszió 3. Orlovits Zsanett 2018. október 10. Alapok Kérdés: hogyan szerepeltethetünk egy minőségi (nominális) tulajdonságot (pl. férfi/nő, egészséges/beteg, szezonális hatások,
RészletesebbenAz átlagra vonatkozó megbízhatósági intervallum (konfidencia intervallum)
Az átlagra voatkozó megbízhatósági itervallum (kofidecia itervallum) Határozzuk meg körül azt az itervallumot amibe előre meghatározott valószíűséggel esik a várható érték (µ). A várható értéket potosa
Részletesebben