Szöveges feladatok a mátrixaritmetika alkalmazására
|
|
- Magda Hegedűsné
- 9 évvel ezelőtt
- Látták:
Átírás
1 Szöveges feladatok a mátrixaritmetika alkalmazására Bevezetés: Tekintsük az alábbi -es mátrixot: A. Szorozzuk meg ezt jobbról egy alkalmas méretű (azaz -es) oszlopvektorral, amely az R tér kanonikus bázisának első vektorával, az e vektorral azonosítható: Ae. Megfigyelhető, hogy az eredményül kapott oszlopvektor éppen az A mátrix első oszlopvektora. Hasonló módon, ha az A mátrixot az R tér kanonikus bázisának második vektorával, az e vektorral szorozzuk jobbról, akkor eredményül az A mátrix második oszlopvektorát kapjuk: Ae, és így tovább. Szorozzuk meg most az A mátrixot balról egy alkalmas méretű (azaz -as) sorvektorral, amely az R tér kanonikus bázisának első vektorával, az e vektorral azonosítható. Hangsúlyozzuk azt, hogy sorvektorral akarunk balról szorozni a transzponált jel kiírásával: e T A [ ]. Megfigyelhető, hogy az eredményül kapott sorvektor éppen az A mátrix első sorvektora. Hasonló módon, ha az A mátrixot az R tér kanonikus bázisának második vektorának megfelelő sorvektorral, azaz az e T vektorral szorozzuk balról, akkor eredményül az A mátrix második sorvektorát kapjuk: e T A [ ], és így tovább.
2 Az olyan oszlopvektorokat, amelyeknek minden eleme, összegző vektornak nevezzük. Jelölése:. Szorozzuk meg most az A mátrixot jobbról egy alkalmas méretű (azaz -es) összegző vektorral: A. Megfigyelhető, hogy egy olyan oszlopvektort kaptunk eredményül, amelynek első eleme egyenlő az A mátrix első sorában lévő elemek összegével. második eleme megegyezik az A mátrix második sorában lévő elemek összegével, míg az eredményül kapott oszlopvektor harmadik eleme az A mátrix harmadik sorában lévő elemek összegével egyenlő. Vagyis az összegző vektorral (jobbról) történő szorzás hatására összeadódtak az A mátrix soraiban az elemek. Szorozzuk meg ezután az A mátrixot balról egy alkalmas méretű (azaz -as) sorvektorral, melynek minden eleme. Ezt a vektort T -vel jelöljük, hangsúlyozva azt, hogy most sorvektorral szorzunk: T A [ ] [ 9 ]. Vegyük észre, hogy a kapott sorvektor első eleme éppen az A mátrix első oszlopában elhelyezkedő elemek összegével egyenlő, a második elem éppen az A mátrix második oszlopában lévő elemek összege, és így tovább. Végül szorozzuk meg az A mátrixot balról egy megfelelő méretű összegző vektor transzponáltjával, jobbról pedig egy alkalmas méretű összegző vektorral: T A [ ] [ 9 ] [ ]. Észrevehetjük, hogy a kapott -es mátrix egyetlen eleme egyenlő az A mátrix összes elemének összegével.
3 . Minta feladat: Tekintsük az A mátrixot. a. Mivel egyenlők az alábbi kifejezések? e T A, Ae, T A, A, e T A, T Ae (Feltételezzük, hogy a kifejezésekben szereplő sor- és oszlopvektorok olyan méretűek, hogy valamennyi szorzás elvégezhető, azaz valamennyi sorvektor -es, és valamennyi oszlopvektor -es méretű.) b. Írja fel a tanult mátrixaritmetikát alkalmazva azt a kifejezést, amely megadja az A mátrix második oszlopvektorát; az A mátrix negyedik sorvektorát; az A mátrix ötödik oszlopában lévő elemek összegét; az A mátrix első sorában lévő elemek összegét; minden egyes sorra vonatkozóan a sorokban lévő elemek összegét; minden egyes oszlopra vonatkozóan az oszlopokban lévő elemek összegét; az A mátrix összes elemének összegét! Számolja is ki a felírt kifejezéseket! Megoldás: a. Felhasználva a bevezető részben szerzett tapasztalatokat, a felírt kifejezések minimális számolással megadhatóak: Ha az e T sorvektorral szorozzuk balról az A mátrixot, akkor a második sort vágjuk ki az eredeti mátrixból: e T A [ ] [ ] Ha az e vektorral szorozzuk jobbról az A mátrixot, akkor a harmadik oszlopot vágjuk ki az eredeti mátrixból:
4 Ae Az T A kifejezés egy olyan sorvektort ad eredményül, amelyben az elemek egyenlők az A mátrix egy-egy oszlopában elhelyezkedő elemek összegével: T A Az A kifejezés eredménye egy olyan oszlopvektor, amelynek elemei egyenlők az A mátrix egy-egy sorában lévő elemek összegével: A 9 9 Az e T A kifejezésben e T A az A mátrix harmadik sorvektorával egyenlő. Ezt jobbról szorozva egy összegző vektorral, eredményül egy olyan -es mátrixot kapunk, melynek eleme az A mátrix harmadik sorában lévő elemek összegével egyenlő: e T A [ ] Az T Ae kifejezésben Ae az A mátrix első oszlopvektorával egyenlő. Ha ezt balról szorozzuk egy összegző vektor transzponáltjával, akkor eredményül egy olyan -es mátrixot kapunk, melynek eleme az A mátrix első oszlopában lévő elemek összegével egyenlő:
5 T Ae [ ] b. Írjuk fel a megfelelő kifejezéseket! Az A mátrix második oszlopvektorát úgy kapjuk meg, hogy az A mátrixot jobbról az e oszlopvektorral szorozzuk: Ae Az A mátrix negyedik sorvektorát úgy kapjuk meg, hogy az A mátrixot balról szorozzuk az e T sorvektorral: e T A [ ] Az A mátrix ötödik oszlopában lévő elemek összegét úgy kaphatjuk meg, hogy az A mátrix ötödik oszlopvektorát előállítjuk az Ae szorzattal, ezt pedig balról szorozzuk az összegző vektor transzponáltjával: T Ae [ ] Az A mátrix első sorában lévő elemek összegét úgy kaphatjuk meg, hogy az e T A szorzattal előállítjuk az A mátrix első sorvektorát, majd ezt jobbról szorozzuk az összegző vektorral:
6 e T A [ ] Minden egyes sorra vonatkozóan a sorokban lévő elemek összegét kapjuk, ha az A mátrixot jobbról az összegző vektorral szorozzuk: A 9 9 Minden egyes oszlopra vonatkozóan az oszlopokban lévő elemek összegét kapjuk, ha az A mátrixot balról szorozzuk az összegző vektor transzponáltjával: T A Az A mátrix összes elemének összegét akkor kapjuk, ha balról az összegző vektor transzponáltjával, jobbról az összegző vektorral szorzunk: T A [ ]. Minta feladat: Egy vállalat az év első négy hónapjában háromféle termékből az alábbi mennyiségeket gyártja:. termék. termék. termék Január Február Március Április
7 Az egyes termékek eladási árait tartalmazó árvektor (eft-ban): p [,, ] T. Legyen A a táblázat adataiból nyert mátrix. a. Számítsa ki és értelmezze az alábbi kifejezéseket! T Ae, A e, e T Ap. b. Írja fel és számítsa ki azokat a kifejezéseket, amelyek megadják, hogy mennyi április hónapban az egyes termékekből gyártott mennyiség; mennyi az egyes hónapokban a vállalat árbevétele: mennyi az egyes termékekből a négy hónap alatt gyártott összes mennyiség. Megoldás: a. Az Ae szorzat az A mátrix második oszlopvektorával egyenlő, azaz megadja, hogy az egyes hónapokban a vállalat mennyit gyártott a második termékből. Ha ezt még balról szorozzuk az összegző vektorral, akkor az A mátrix második oszlopában lévő elemek összegét kapjuk. Tehát az T Ae szorzat megadja, hogy a vállalat az év első négy hónapjában összesen mennyit gyártott a második termékből: [ ] T Ae [ ] [ ] Az Ae szorzat az A mátrix első oszlopvektorával egyenlő, azaz megadja, hogy az egyes hónapokban a vállalat mennyit gyártott az első termékből: Ae Az e T A szorzat az A mátrix harmadik sorvektorával egyenlő, amely megadja, hogy a vállalat márciusban mennyit gyártott az egyes termékekből. Ha ezt jobbról a p árvektorral szorozzuk, akkor megkapjuk, hogy a háromféle termékből mennyi volt a vállalat márciusi összes árbevétele (eft-ban):
8 e T Ap [ ] [ ] b. Az április hónapban az egyes termékekből gyártott mennyiségek az A mátrix negyedik sorában találhatóak, a mátrix negyedik sorvektora az e T A szorzattal kapható meg: e T A [ ] [ ] Az egyes hónapokban a vállalat árbevételét az Ap szorzat adja meg: A p Az egyes termékekből a négy hónap alatt gyártott összes mennyiségeket az T A szorzattal kapjuk: T A [ ] [ ]. Minta feladat: Egy koncertre héten keresztül négyféle kategóriában árultak jegyeket. Az alábbi táblázat az egyes heteken az egyes kategóriákban eladott jegyek számát tartalmazza:. kategória. kategória. kategória. kategória. hét. hét. hét Az egyes kategóriák jegyárait tartalmazza a következő árvektor (eft-ban): p [,.,, ] T. Legyen A a táblázat adataiból nyert mátrix.
9 a. Számítsa ki és értelmezze az alábbi kifejezéseket! T A, A e, e T Ap. b. Írja fel és számítsa ki azokat a kifejezéseket, amelyek megadják, hogy mennyi a második héten az egyes kategóriákban értékesített jegyek száma; mennyi az egyes heteken az eladott összes jegyek száma; mennyi a hét alatt a jegyek eladásából származó összes árbevétel? Megoldás: a. Az T A szorzat egy olyan sorvektort ad eredményül, amelyben oszloponként összegezzük az A mátrix elemeit, azaz megkapjuk, hogy az egyes kategóriákban hány jegyet adtak el a hét alatt összesen: T A [ ] [ 9 ] Az A e szorzat az A mátrix második oszlopvektorával egyenlő, azaz megadja, hogy a második kategóriájú jegyekből az egyes heteken hány darabot adtak el: A e Az e T A szorzat egyenlő az A mátrix első sorvektorával, azaz megadja, hogy az első héten hány jegyet adtak el az egyes kategóriákban. Ezt jobbról szorozva az árvektorral, megkapjuk az első heti árbevételt (eft-ban):,, e T Ap [ ] [ ] [ 9] b. A második héten az egyes kategóriákban értékesített jegyek számát az A mátrix második sorában találjuk, a mátrix második sorvektorát az e T A szorzat adja meg: e T A [ ] [ ] 9
10 Az egyes heteken az eladott összes jegyek számát az A szorzattal adhatjuk meg: A Az T A szorzat egy olyan sorvektort ad eredményül, amely megadja, hogy az egyes kategóriákban hány jegyet adtak el a hét alatt összesen. Ezt kell még jobbról a p árvektorral szorozni, hogy megkapjuk a hét alatt a jegyek eladásából származó összes árbevételt (eft-ban):,, T A p [ ] [ 9 ] [ ]
Mátrixok február Feladat: Legyen A = ( ( B =
Mátrixok 26. február 6.. Feladat: Legyen ( 3 2 B ( 3 4 Határozzuk meg A + B, A B, 2A, 3B, 2A 3B,A T és (B T T mátrixokat. A definíciók alapján ( + 3 + 3 + A + B 2 + 4 + + ( 4 2 6 2 ( ( 3 3 2 4 A B 2 4
Mátrixok, mátrixműveletek
Mátrixok, mátrixműveletek 1 előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Mátrixok, mátrixműveletek p 1/1 Mátrixok definíciója Definíció Helyezzünk el n m elemet egy olyan téglalap
I. VEKTOROK, MÁTRIXOK
217/18 1 félév I VEKTOROK, MÁTRIXOK I1 I2 Vektorok 1 A síkon derékszögű koordinátarendszerben minden v vektornak van vízszintes és van függőleges koordinátája, ezeket sorrendben v 1 és v 2 jelöli A v síkbeli
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I 9 IX MÁTRIxOk 1 MÁTRIx FOGALmA, TULAJDONSÁGAI A mátrix egy téglalap alakú táblázat, melyben az adatok, a mátrix elemei, sorokban és oszlopokban vannak elhelyezve Az (1) mátrixnak
Bázistranszformáció és alkalmazásai 2.
Bázistranszformáció és alkalmazásai 2. Lineáris algebra gyakorlat Összeállította: Bogya Norbert Tartalomjegyzék 1 Mátrix rangja 2 Mátrix inverze 3 Mátrixegyenlet Mátrix rangja Tartalom 1 Mátrix rangja
11. Előadás. 11. előadás Bevezetés a lineáris programozásba
11. Előadás Gondolkodnivalók Sajátérték, Kvadratikus alak 1. Gondolkodnivaló Adjuk meg, hogy az alábbi A mátrixnak mely α értékekre lesz sajátértéke a 5. Ezen α-ák esetén határozzuk meg a 5 sajátértékhez
Mátrixaritmetika. Tartalom:
Mátrixaritmetika Tartalom: A vektor és mátrix fogalma Speciális mátrixok Relációk és műveletek mátrixokkal A mátrixok szorzása A diadikus szorzat. Hatványozás Gyakorlati alkalmazások Készítette: Dr. Ábrahám
Determinánsok. A determináns fogalma olyan algebrai segédeszköz, amellyel. szolgáltat az előbbi kérdésekre, bár ez nem mindig hatékony.
Determinánsok A determináns fogalma olyan algebrai segédeszköz, amellyel jól jellemezhető a mátrixok invertálhatósága, a mátrix rangja. Segítségével lineáris egyenletrendszerek megoldhatósága dönthető
A lineáris tér. Készítette: Dr. Ábrahám István
A lineáris tér Készítette: Dr. Ábrahám István A lineáris tér fogalma A fejezetben a gyakorlati alkalmazásokban használt legfontosabb fogalmakat, összefüggéseket tárgyaljuk. Adott egy L halmaz, amiben azonos
Mátrixok. 2015. február 23. 1. Feladat: Legyen ( 3 0 1 4 1 1 ( 1 0 3 2 1 0 B = A =
Mátrixok 25. február 23.. Feladat: Legyen A ( 3 2 B ( 3 4 Határozzuk meg A + B, A B, 2A, 3B, 2A 3B,A T és (B T T mátrixokat. A deníciók alapján ( + 3 + 3 + A + B 2 + 4 + + ( 4 2 6 2 ( ( 3 3 2 4 A B 2 4
Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet takach november 30.
1 Diszkrét matematika I, 12 előadás Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach 2005 november 30 Vektorok Definíció Egy tetszőleges n pozitív egész számra n-komponensű
Egész számok. pozitív egész számok: 1; 2; 3; 4;... negatív egész számok: 1; 2; 3; 4;...
Egész számok természetes számok ( ) pozitív egész számok: 1; 2; 3; 4;... 0 negatív egész számok: 1; 2; 3; 4;... egész számok ( ) 1. Írd a következõ számokat a halmazábra megfelelõ helyére! 3; 7; +6 ; (
Vektorok, mátrixok, lineáris egyenletrendszerek
a Matematika mérnököknek I. című tárgyhoz Vektorok, mátrixok, lineáris egyenletrendszerek Vektorok A rendezett valós számpárokat kétdimenziós valós vektoroknak nevezzük. Jelölésükre latin kisbetűket használunk.
Lineáris algebra (10A103)
Lineáris algebra (10A103 Kátai-Urbán Kamilla Tudnivalók Honlap: http://www.math.u-szeged.hu/~katai Jegyzet: Megyesi László: Lineáris algebra. Vizsga: írásbeli (beugróval, feltétele a Lineáris algebra gyakorlat
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.
Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:
Lineáris algebra gyakorlat
Lineáris algebra gyakorlat 9. gyakorlat Gyakorlatvezet : Bogya Norbert 202. április 6. Bogya Norbert Lineáris algebra gyakorlat (9. gyakorlat Bázistranszformáció és alkalmazásai (folytatás Tartalom Bázistranszformáció
12. előadás. Egyenletrendszerek, mátrixok. Dr. Szörényi Miklós, Dr. Kallós Gábor
12. előadás Egyenletrendszerek, mátrixok Dr. Szörényi Miklós, Dr. Kallós Gábor 2015 2016 1 Tartalom Matematikai alapok Vektorok és mátrixok megadása Tömbkonstansok Lineáris műveletek Mátrixok szorzása
Műveletek mátrixokkal. Kalkulus. 2018/2019 ősz
2018/2019 ősz Elérhetőségek Előadó: (safaro@math.bme.hu) Fogadóóra: hétfő 9-10 (H épület 3. emelet 310-es ajtó) A pontos tárgykövetelmények a www.math.bme.hu/~safaro/kalkulus oldalon találhatóak. A mátrix
XI A MÁTRIX INVERZE 1 Az inverzmátrix definíciója Determinánsok szorzástétele Az egységmátrix definíciója: 1 0 0 0 0 1 0 0 E n = 0 0 1 0 0 0 0 1 n-edrenű (azaz n n típusú) mátrix E n -nel bármely mátrixot
1. Határozzuk meg, hogy mikor egyenlő egymással a következő két mátrix: ; B = 8 7 2, 5 1. Számítsuk ki az A + B, A B, 3A, B mátrixokat!
. Mátrixok. Határozzuk meg, hogy mikor egyenlő egymással a következő két mátrix: [ ] [ ] π a A = ; B = 8 7, 5 x. 7, 5 ln y. Legyen 4 A = 4 ; B = 5 5 Számítsuk ki az A + B, A B, A, B mátrixokat!. Oldjuk
1. Mátrixösszeadás és skalárral szorzás
1 Mátrixösszeadás és skalárral szorzás Mátrixok tömör jelölése T test Az M = a i j T n m azt az n sorból és m oszlopból álló mátrixot jelöli, amelyben az i-edik sor j-edik eleme a i j T Példák [ ] Ha M
Lineáris algebra. (közgazdászoknak) T C T = ( 1 ) ; , D T D =
Lineáris algebra (közgazdászoknak) 10A103 FELADATOK A GYAKORLATRA (1.) 2018/2019. tavaszi félév Mátrixok 1.1. Feladat. Legyen A = 1 2 1, B = 1 2 3 1 2 1 1, C = ( 1 2 0 ), D = 1 3 1 1 2 1 ( ) 10/2 0.6 1
Bodó Bea, Somonné Szabó Klára Matematika 2. közgazdászoknak
ábra: Ábra Bodó Bea, Somonné Szabó Klára Matematika. közgazdászoknak IV. modul: Lineáris algebra 9. lecke: n-dimenziós vektorok Tanulási cél: n -dimenziós vektorok fogalmának megismerése, majd műveletek
Mátrixok. 3. fejezet. 3.1. Bevezetés: műveletek táblázatokkal
fejezet Mátrixok Az előző fejezetben a mátrixokat csak egyszerű jelölésnek tekintettük, mely az egyenletrendszer együtthatóinak tárolására, és az egyenletrendszer megoldása közbeni számítások egyszerüsítésére
1. Determinánsok. Oldjuk meg az alábbi kétismeretlenes, két egyenletet tartalmaz lineáris egyenletrendszert:
1 Determinánsok 1 Bevezet definíció Oldjuk meg az alábbi kétismeretlenes, két egyenletet tartalmaz lineáris egyenletrendszert: a 11 x 1 +a 12 x 2 = b 1 a 21 x 1 +a 22 x 2 = b 2 Szorozzuk meg az első egyenletet
7. gyakorlat. Lineáris algebrai egyenletrendszerek megoldhatósága
7. gyakorlat Lineáris algebrai egyenletrendszerek megoldhatósága Egy lineáris algebrai egyenletrendszerrel kapcsolatban a következ kérdések merülnek fel: 1. Létezik-e megoldása? 2. Ha igen, hány megoldása
9. Előadás. (9. előadás) Lineáris egyr.(3.), Sajátérték április / 35
9. Előadás (9. előadás) Lineáris egyr.(3.), Sajátérték 2019. április 24. 1 / 35 Portfólió-analízis Tegyük fel, hogy egy bank 4 különböző eszközbe fektet be (réz, búza, arany és kakaó). Az ügyfeleinek ezen
Összeállította: dr. Leitold Adrien egyetemi docens
Az R n vektortér Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. R n vektortér/1 Vektorok Rendezett szám n-esek: a = (a 1, a 2,, a n ) sorvektor a1 a = a2 oszlopvektor... a n a 1, a 2,,
Í ÍÍÍ Í Í Í Ö Ö Ö Ö Ö Ö Ö Ö Ú É Í Ö Á Á É Ö É Ö É É Á Á Ö Ú Ö Ö Í Á É É Í Á É Í Ö Ö Á Á É Í Ö Ö Ö Ö Ö Ö Á É Ö É É Ö É Ö Í Á É É Ö Ö É Ö Í Í Í Í Ö Ö Ö Í Ö É Ö É É Ö Ö Í É Ö Í É É Ö Í É Á É É Ű Ö Í É É Ö
DETERMINÁNSSZÁMÍTÁS. Határozzuk meg a 1 értékét! Ez most is az egyetlen elemmel egyezik meg, tehát az értéke 1.
DETERMINÁNSSZÁMÍTÁS A (nxn) kvadratikus (négyzetes) mátrixhoz egyértelműen hozzárendelhetünk egy D R számot, ami a mátrix determinánsa. Már most megjegyezzük, hogy a mátrix determinánsa, illetve a determináns
Vektorterek. =a gyakorlatokon megoldásra ajánlott
Vektorterek =a gyakorlatokon megoldásra ajánlott 40. Alteret alkotnak-e a valós R 5 vektortérben a megadott részhalmazok? Ha igen, akkor hány dimenziósak? (a) L = { (x 1, x 2, x 3, x 4, x 5 ) x 1 = x 5,
10. Előadás. Megyesi László: Lineáris algebra, oldal. 10. előadás Sajátérték, Kvadaratikus alak
10. Előadás Megyesi László: Lineáris algebra, 98. 108. oldal. Gondolkodnivalók Mátrix inverze 1. Gondolkodnivaló Igazoljuk, hogy invertálható trianguláris mátrixok inverze is trianguláris. Bizonyítás:
Bevezetés a játékelméletbe Kétszemélyes zérusösszegű mátrixjáték, optimális stratégia
Bevezetés a játékelméletbe Kétszemélyes zérusösszegű mátrixjáték, optimális stratégia Készítette: Dr. Ábrahám István A játékelmélet a 2. század közepén alakult ki. (Neumann J., O. Morgenstern). Gyakran
Lineáris algebra. =0 iє{1,,n}
Matek A2 (Lineáris algebra) Felhasználtam a Szilágyi Brigittás órai jegyzeteket, néhol a Thomas féle Kalkulus III könyvet. A hibákért felelosséget nem vállalok. Hiányosságok vannak(1. órai lin algebrai
15. LINEÁRIS EGYENLETRENDSZEREK
15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a
Gauss-eliminációval, Cholesky felbontás, QR felbontás
Közelítő és szimbolikus számítások 4. gyakorlat Mátrix invertálás Gauss-eliminációval, Cholesky felbontás, QR felbontás Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei
Mátrixok 2017 Mátrixok
2017 számtáblázatok" : számok rendezett halmaza, melyben a számok helye két paraméterrel van meghatározva. Például lineáris egyenletrendszer együtthatómátrixa 2 x 1 + 4 x 2 = 8 1 x 1 + 3 x 2 = 1 ( 2 4
EGYSZERŰSÍTETT ALGORITMUS AZ ELEMI BÁZISCSERE ELVÉGZÉSÉRE
Lipécz György* EGYSZERŰSÍTETT ALGORITMUS AZ ELEMI BÁZISCSERE ELVÉGZÉSÉRE AVAGY A SZÁMÍTÓGÉP-HASZNÁLAT LEHETŐSÉGE A LINEÁRIS ALGEBRA ÉS AZ OPERÁCIÓKUTATÁS ALAPJAINAK OKTATÁSÁBAN " Simplicitassigillum veri"
3. Előadás. Megyesi László: Lineáris algebra, oldal. 3. előadás Lineáris egyenletrendszerek
3. Előadás Megyesi László: Lineáris algebra, 47. 50. oldal. Gondolkodnivalók Determinánsok 1. Gondolkodnivaló Determinánselméleti tételek segítségével határozzuk meg a következő n n-es determinánst: 1
OSZTHATÓSÁG. Osztók és többszörösök : a 3 többszörösei : a 4 többszörösei Ahol mindkét jel megtalálható a 12 többszöröseit találjuk.
Osztók és többszörösök 1783. A megadott számok elsõ tíz többszöröse: 3: 3 6 9 12 15 18 21 24 27 30 4: 4 8 12 16 20 24 28 32 36 40 5: 5 10 15 20 25 30 35 40 45 50 6: 6 12 18 24 30 36 42 48 54 60 1784. :
LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL
LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL x 1-2x 2 6 -x 1-3x 3 = -7 x 1 - x 2-3x 3-2 3x 1-2x 2-2x 3 4 4x 1-2x 2 + x 3 max Alapfogalmak: feltételrendszer (narancs színnel jelölve), célfüggvény
MATEMATIKA FELADATGYŰJTEMÉNY
Pék Johanna MATEMATIKA FELADATGYŰJTEMÉNY Nem matematika alapszakos hallgatók számára Tartalomjegyzék Előszó iii. Lineáris algebra.. Mátrixok...................................... Lineáris egyenletrendszerek..........................
Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz
Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb
BUDAPESTI KÖZGAZDASÁGTUDOMÁNYI EGYETEM. Puskás Csaba, Szabó Imre, Tallos Péter LINEÁRIS ALGEBRA JEGYZET
BUDAPESTI KÖZGAZDASÁGTUDOMÁNYI EGYETEM Puskás Csaba, Szabó Imre, Tallos Péter LINEÁRIS ALGEBRA JEGYZET BUDAPEST, 1997 A szerzők Lineáris Algebra, illetve Lineáris Algebra II c jegyzeteinek átdolgozott
Lineáris programozás. Modellalkotás Grafikus megoldás Feladattípusok Szimplex módszer
Lineáris programozás Modellalkotás Grafikus megoldás Feladattípusok Szimplex módszer Feladat: Egy gyár kétféle terméket gyárt (A, B): /db Eladási ár 1000 800 Technológiai önköltség 400 300 Normaóraigény
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata
A dualitás elve. Készítette: Dr. Ábrahám István
A dalitás elve Készítette: Dr. Ábrahám István A dalitás fogalma, alapösszefüggései Definíció: Adott a lineáris programozás maimm feladata: 0 A b f()=c* ma Ekkor felírható a kővetkező minimm feladat: y
MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika emelt szint 0613 ÉRETTSÉGI VIZSGA 007. május 8. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Formai előírások: Fontos tudnivalók
Matematikai statisztika 1.
Matematikai statisztika 1 segédanyag Daróczi Gergely Szociológia Intézet 2010 Matematikai statisztika 1 01 Mátrixok A mátrix vízszintes vonalban elhelyezked elemei sorokat, függ leges vonalban elhelyezked
1. Geometria a komplex számsíkon
1. Geometria a komplex számsíkon A háromszög-egyenlőtlenség A háromszög-egyenlőtlenség (K1.4.3) Minden z,w C-re z +w z + w. Egyenlőség pontosan akkor áll, ha z és w párhuzamosak, és egyenlő állásúak, azaz
1. zárthelyi,
1. zárthelyi, 2009.10.20. 1. Írjuk fel a tér P = (0,2,4) és Q = (6, 2,2) pontjait összekötő szakasz felezőmerőleges síkjának egyenletét. 2. Tekintsük az x + 2y + 3z = 14, a 2x + 6y + 10z = 24 és a 4x+2y
Hadamard-mátrixok Előadó: Hajnal Péter február 23.
Szimmetrikus kombinatorikus struktúrák MSc hallgatók számára Hadamard-mátrixok Előadó: Hajnal Péter 2012. február 23. 1. Hadamard-mátrixok Ezen az előadáson látásra a blokkrendszerektől független kombinatorikus
Szinguláris érték felbontás Singular Value Decomposition
Szinguláris érték felbontás Singular Value Decomposition Borbély Gábor 7. április... Tétel (teljes SVD. Legyen A C m n mátrix (valósra is jó, ekkor léteznek U C m m és V C n n unitér mátrixok (valósban
Lin.Alg.Zh.1 feladatok
Lin.Alg.Zh. feladatok 0.. d vektorok Adott három vektor ā (0 b ( c (0 az R Euklideszi vektortérben egy ortonormált bázisban.. Mennyi az ā b skalárszorzat? ā b 0 + + 8. Mennyi az n ā b vektoriális szorzat?
Irodalom. (a) A T, B T, (b) A + B, C + D, D C, (c) 3A, (d) AD, DA, B T A, 1 2 B = 1 C = A = 1 0 D = (a) 1 1 3, B T = = ( ) ; A T = 1 0
Irodalom ezek egyrészt el- A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: hangzanak az előadáson, másrészt megtalálják a jegyzetben: Szabó László: Bevezetés a lineáris algebrába, Polygon
Feladatok. Az adatokat tartalmazó munkafüzetet mentsük le saját számítógépünkre, majd onnan nyissuk meg az Excel programmal!
1. Feladat A táblázatunk négy légitársaság jegyeladását tartalmazza, negyedéves bontásban. Válaszoljunk a táblázat alatt lévő kérdésekre! Az eredmény IGAZ, vagy HAMIS legyen. Készítette: SZÁMALK Zrt, Szakképzési
9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás:
9. Trigonometria I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! x = cos 150 ; y = sin 5 ; z = tg ( 60 ) (A) z < x < y (B) x < y < z (C) y < x < z (D) z < y
2. előadás. Lineáris algebra numerikus módszerei. Mátrixok Mátrixműveletek Speciális mátrixok, vektorok Norma
Mátrixok Definíció Az m n típusú (méretű) valós A mátrixon valós a ij számok alábbi táblázatát értjük: a 11 a 12... a 1j... a 1n.......... A = a i1 a i2... a ij... a in........... a m1 a m2... a mj...
Vektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27
Vektorterek Wettl Ferenc 2015. február 17. Wettl Ferenc Vektorterek 2015. február 17. 1 / 27 Tartalom 1 Egyenletrendszerek 2 Algebrai struktúrák 3 Vektortér 4 Bázis, dimenzió 5 Valós mátrixok és egyenletrendszerek
Lineáris algebra (10A103)
Lineáris algebra (10A103) Kátai-Urbán Kamilla (1. előadás) Mátrixok 2019. február 6. 1 / 35 Bevezetés Előadás Tudnivalók (I.) Honlap: http://www.math.u-szeged.hu/~katai Jegyzet: Az előadáson készített
rank(a) == rank([a b])
Lineáris algebrai egyenletrendszerek megoldása a Matlabban Lineáris algebrai egyenletrendszerek a Matlabban igen egyszer en oldhatók meg. Legyen A az egyenletrendszer m-szer n-es együtthatómátrixa, és
Egyenletek, egyenlőtlenségek VII.
Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós
Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév első (iskolai) forduló haladók II. kategória
Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév első (iskolai) forduló haladók II. kategória Megoldások és javítási útmutató 1. A 23-as szám című misztikus filmben
5. Előadás. Megyesi László: Lineáris algebra, 29. 36. oldal. 5. előadás Lineáris függetlenség
5. Előadás Megyesi László: Lineáris algebra, 29. 36. oldal. Gondolkodnivalók Vektortér 1. Gondolkodnivaló Alteret alkotnak-e az R n n (valós n n-es mátrixok) vektortérben az alábbi részhalmazok? U 1 =
7. gyakorlat. Lineáris algebrai egyenletrendszerek megoldhatósága
7. gyakorlat Lineáris algebrai egyenletrendszerek megoldhatósága Egy lineáris algebrai egyenletrendszerrel kapcsolatban a következ kérdések merülnek fel: 1. Létezik-e megoldása? 2. Ha igen, hány megoldása
8. Előadás. Megyesi László: Lineáris algebra, , oldal. 8. előadás Mátrix rangja, Homogén lineáris egyenletrendszer
8. Előadás Megyesi László: Lineáris algebra, 51. 56., 70. 74. oldal. Gondolkodnivalók Elemi bázistranszformáció 1. Gondolkodnivaló Most ne vegyük figyelembe, hogy az elemi bázistranszformáció során ez
Lineáris leképezések. Wettl Ferenc március 9. Wettl Ferenc Lineáris leképezések március 9. 1 / 31
Lineáris leképezések Wettl Ferenc 2015. március 9. Wettl Ferenc Lineáris leképezések 2015. március 9. 1 / 31 Tartalom 1 Mátrixleképezés, lineáris leképezés 2 Alkalmazás: dierenciálhatóság 3 2- és 3-dimenziós
Mat. A2 3. gyakorlat 2016/17, második félév
Mat. A2 3. gyakorlat 2016/17, második félév 1. Hány megoldása lehet az alábbi lineáris egyenletrendszereknek a valós számok körében, ha a -ok tetszőleges (nem feltétlenül egyenlő) számokat jelölnek? 0
Segédlet az Informatika alapjai I. című tárgy számrendszerek fejezetéhez
Segédlet az Informatika alapjai I. című tárgy számrendszerek fejezetéhez Sándor Tamás, sandor.tamas@kvk.bmf.hu Takács Gergely, takacs.gergo@kvk.bmf.hu Lektorálta: dr. Schuster György PhD, hal@k2.jozsef.kando.hu
Lineáris algebra és a rang fogalma (el adásvázlat, szeptember 29.) Maróti Miklós
Lineáris algebra és a rang fogalma (el adásvázlat, 2010. szeptember 29.) Maróti Miklós Ennek az el adásnak a megértéséhez a következ fogalmakat kell tudni: (1) A mátrixalgebrával kapcsolatban: számtest
1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás)
Matematika A2c gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 2017/18 ősz 1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) 1. Valós vektorterek-e a következő
M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak!
Magyar Ifjúság 6 V SOROZATOK a) Három szám összege 76 E három számot tekinthetjük egy mértani sorozat három egymás után következő elemének vagy pedig egy számtani sorozat első, negyedik és hatodik elemének
ARCHIMEDES MATEMATIKA VERSENY
Koszinusztétel Tétel: Bármely háromszögben az egyik oldal négyzetét megkapjuk, ha a másik két oldal négyzetének összegéből kivonjuk e két oldal és az általuk közbezárt szög koszinuszának kétszeres szorzatát.
Saj at ert ek-probl em ak febru ar 26.
Sajátérték-problémák 2018. február 26. Az alapfeladat Adott a következő egyenlet: Av = λv, (1) ahol A egy ismert mátrix v ismeretlen, nem zérus vektor λ ismeretlen szám Azok a v, λ kombinációk, amikre
2014/2015-ös tanév II. féléves tematika
Dr Vincze Szilvi 24/25-ös tnév II féléves temtik Mátrix foglm, speciális mátrixok Műveletek mátrixokkl, mátrix inverze 2 A determináns foglm és tuljdonsági 3 Lineáris egyenletrendszerek és megoldási módszereik
Érettségi eredmények 2005-től (Békéscsabai Andrássy Gyula Gimnázium és Kollégium)
2005/db közép 2005/db emelt 2005/db összes 2005/jegy közép 2005/jegy emelt 2005/jegy összes 2005/% közép 2005/% emelt 2005/% összes 51 119 170 3,53 5,00 4,42 59,90 99,17 84,27 22 17 39 4,45 4,94 4,7 75,68
9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, Leontyev-modell
9. Előadás Megyesi László: Lineáris algebra, 75. 84. oldal. Gondolkodnivalók Mátrix rangja 1. Gondolkodnivaló Tegyük fel, hogy egy elemi bázistranszformáció kezdetekor a sor- és oszlopindexek sorban helyezkednek
3. Egyenletek, egyenletrendszerek, egyenlőtlenségek
. Egyenletek, egyenletrendszerek, egyenlőtlenségek I. Nulladik ZH-ban láttuk: 1. Mennyi a 2x 2 8x 5 = 0 egyenlet gyökeinek a szorzata? (A) 10 (B) 2 (C) 2,5 (D) 4 (E) ezek egyike sem Megoldás I.: BME 2011.
6. Előadás. Megyesi László: Lineáris algebra, oldal. 6. előadás Bázis, dimenzió
6. Előadás Megyesi László: Lineáris algebra, 37. 41. oldal. Gondolkodnivalók Lineáris függetlenség 1. Gondolkodnivaló Legyen V valós számtest feletti vektortér. Igazolja, hogy ha a v 1, v 2,..., v n V
A parciális törtekre bontás?
Miért működik A parciális törtekre bontás? Borbély Gábor 212 június 7 Tartalomjegyzék 1 Lineáris algebra formalizmus 2 2 A feladat kitűzése 3 3 A LER felépítése 5 4 A bizonyítás 6 1 Lineáris algebra formalizmus
1.1. Vektorok és operátorok mátrix formában
1. Reprezentáció elmélet 1.1. Vektorok és operátorok mátrix formában A vektorok és az operátorok mátrixok formájában is felírhatók. A végtelen dimenziós ket vektoroknak végtelen sok sort tartalmazó oszlopmátrix
Halmazok. A és B különbsége: A \ B. A és B metszete: A. A és B uniója: A
Halmazok Érdekes feladat lehet, amikor bizonyos mennyiségű adatok között keressük az adott tulajdonsággal rendelkezők számát. A következőekben azt szeretném megmutatni, hogy a halmazábrák segítségével,
Lineáris algebra. Közgazdász szakos hallgatóknak a Matematika A2a Vektorfüggvények tantárgyhoz tavaszi félév
Lineáris algebra Közgazdász szakos hallgatóknak a Matematika Aa Vektorfüggvények tantárgyhoz 9. tavaszi félév Tartalomjegyzék. Komplex számok és polinomok.................... 4.. A komplex számok bevezetése,
Összeállította: dr. Leitold Adrien egyetemi docens
átrixok Összeállított: dr. Leitold Adrie egyetemi doces 28.9.8. átrix átrix: tégllp lkú számtáblázt 2 2 22 2 Amx = O m m2 Jelölés: A, A mx, ( ij ) mx átrix típus (redje): m x, A R m x m: sorok szám : oszlopok
9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, mátrixegyenlet
9. Előadás Megyesi László: Lineáris algebra, 75. 84. oldal. Gondolkodnivalók Mátrix rangja 1. Gondolkodnivaló Határozzuk meg a p valós paraméter értékétől függően a következő mátrix rangját: p 3 1 2 2
Megoldások 9. osztály
XXV. Nemzetközi Magyar Matematikaverseny Budapest, 2016. március 1115. Megoldások 9. osztály 1. feladat Nevezzünk egy számot prímösszeg nek, ha a tízes számrendszerben felírt szám számjegyeinek összege
Oktatási Hivatal. A döntő feladatainak megoldása. 1. Feladat Egy kifejezést a következő képlettel definiálunk: ahol [ 2008;2008]
OKTV 7/8 A öntő felaatainak megolása. Felaat Egy kifejezést a következő képlettel efiniálunk: 3 x x 9x + 7 K = x 9 ahol [ 8;8] x és x Z. Mennyi a valószínűsége annak hogy K egész szám ha x eleget tesz
és n oszlopból áll, akkor m n-es mátrixról beszélünk. (Az oszlopok száma a mátrix vízszintes mérete, a sorok 2 3-as, a ij..
Biológia alapszak Matematika I A GY 6/7 félév III MÁTRIXOK SAJÁTÉRTÉK-FELADAT III Mátrixok Definíció Számok téglalap alakú táblázatban való elrendezését mátrix nak nevezzük Ha a táblázat m sorból és n
4,5 1,5 cm. Ezek alapján 8 és 1,5 cm lesz.
1. Tekintse az oldalsó ábrát! a. Mekkora lesz a 4. sor téglalap mérete? b. Számítsa ki az ábrán látható három téglalap területösszegét! c. Mekkora lesz a 018. sorban a téglalap oldalai? d. Hány téglalapot
LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40
LINEÁRIS ALGEBRA matematika alapszak SZTE Bolyai Intézet, 2016-17. őszi félév Euklideszi terek Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 Euklideszi tér Emlékeztető: A standard belső szorzás és standard
Növényvédő szerek A 500 0 0 0 0 65000 B 0 0 50 500 500 60000 C 50 25 0 50 50 12000 D 0 25 5 50 0 6000
A feladat megoldása során az Excel 2010 használata a javasolt. A feladat elvégzése során a következőket fogjuk gyakorolni: Termelési és optimalizálási feladatok megoldása. Mátrixműveletek alkalmazása.
Oktatási Hivatal. A döntő feladatai. 1. Feladat Egy kifejezést a következő képlettel definiálunk: ahol [ 2008;2008]
OKTV 7/8 A öntő felaatai. Felaat Egy kifejezést a következő képlettel efiniálunk: 3 x x 9x + 7 K = x 9 ahol [ 8;8] x és x Z. Mennyi a valószínűsége annak hogy K egész szám ha x eleget tesz a fenti feltételeknek?.
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Eponenciális és Logaritmikus kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szoálhatnak fontos információval
Lineáris algebra (10A103)
Lineáris algebra (10A103) Dr. Hartmann Miklós Tudnivalók Honlap: http://www.math.u-szeged.hu/~hartm Jegyzet: Megyesi László: Lineáris algebra. Vizsga: írásbeli, feltétele a Lineáris algebra gyakorlat teljesítése.
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I 11 XI LINEÁRIS EGYENLETRENDSZEREk 1 LINEÁRIS EGYENLETRENDSZER A lineáris egyenletrendszer általános alakja: (1) Ugyanez mátrix alakban: (2), ahol x az ismeretleneket tartalmazó
5. Előadás. (5. előadás) Mátrixegyenlet, Mátrix inverze március 6. 1 / 39
5. Előadás (5. előadás) Mátrixegyenlet, Mátrix inverze 2019. március 6. 1 / 39 AX = B (5. előadás) Mátrixegyenlet, Mátrix inverze 2019. március 6. 2 / 39 AX = B Probléma. Legyen A (m n)-es és B (m l)-es
? szimmetrikus antiszimmetrikus reflexív tranzitív egyik sem?
Czédli Gábor: Diszkr.mat. I. (új) Feladatsor azonosítója: Olvaható név= EHAkód= Tisztelt Vizsgázó! Minden egyes feladatnál a választ, illetve a végeredményt a feladathoz tartozó, előre nyomtatott téglalap(ok)ban
Transzformációk síkon, térben
Transzformációk síkon, térben Leképezés, transzformáció Leképezés: Ha egy A ponttér pontjaihoz egy másik B ponttér pontjait kölcsönösen egyértelműen rendeljük hozzá, akkor ezt a hozzárendelést leképezésnek
karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja
Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja 1.Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus
4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI
4. Fuzzy relációk Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 Klasszikus relációk Halmazok Descartes-szorzata Relációk 2 Fuzzy relációk Fuzzy relációk véges alaphalmazok