Mátrixok február Feladat: Legyen A = ( ( B =
|
|
- Borbála Bodnár
- 5 évvel ezelőtt
- Látták:
Átírás
1 Mátrixok 26. február 6.. Feladat: Legyen ( 3 2 B ( 3 4 Határozzuk meg A + B, A B, 2A, 3B, 2A 3B,A T és (B T T mátrixokat. A definíciók alapján ( A + B ( ( ( A B ( ( ( ( 9 3 3B ( ( A 3B 2A + ( 3B A T 3 ( (B T T 3 B 4 2. Feladat: Legyen ( B ( 2 ( 5 C 8 Határozzuk meg A + B + C, 5A + B 7C, A T 4B 6C T, mátrixokat. ( ( A + B + C ( ( A + B 7C
2 Mivel A T ( C T ( 5 8 ezért A T 4B 6C T 3. Vizsgafeladat: Legyen ( ( 4 5 és B Határozzuk meg 3((2A B (A 3B mátrixot. ( ( ((2A B (A 3B 3(2A B A + 3B 3A + 6B ( ( ( Feladat: Határozzuk meg AB, BA, (ABA, A(BA és A 2 mátrixokat, ha ( ( B 7 Mivel A és B 2 2-es mátrixok, a sorok és oszlopok száma azonos, a szorzások elvégezhetőek tehát AB ( tehát B ( 3 4 Vegyük észre, hogy AB BA, azaz a mátrixok szorzása nem kommutatív tehát (AB ( tehát A(BA (
3 Vegyük észre, hogy AB A(BA (ABA, azaz teljesül a mátrixok szorzásra vonatkozó asszociatív tulajdonság tehát A 2 ( Feladat: Legyen B Határozzuk meg azt az X mátrixot, amelyre 2A + X 5B teljesül. Az egyenletet átrendezve kapjuk, hogy 2 4 X 5B Feladat: Legyen ( B C ( Határozzuk meg AB + C, AB + B, CB + A és BC + A T mátrixokat. A mátrixok különböző típusúak, ezért első lépésben mindig meg kell nézni, hogy vajon a kijelölt művelet elvégezhető-e? AB + C vizsgálata: A B (2 3 (3 2 AB (2 2 Mivel A mátrix oszlopainak száma megegyezik B mátrix sorainak számával, azaz a belső indexek azonosak, a szorzás elvégezhető, a külső indexek pedig meghatározzák a szorzatmátrix típusát. Valamint AB (2 2 + C (2 2 AB + C (2 2 azaz AB és C mátrixok azonos típusúak, ezért AB + C művelet elvégezhető. Készítsük el AB szorzáshoz a táblázatot tehát AB (
4 AB + B vizsgálata: Mivel ( AB + C 8 84 ( + AB (2 2 + B (3 2 A két mátrix típusa különböző, az összeadás nem végezhető el. (BA 2 vizsgálata: B (3 2 A (2 3 BA (3 3 ( A belső indexek azonosak, BA szorzat létezik. A művelet eredménye egy négyzetes mátrix, így (BA 2 művelet is elvégezhető tehát B CB + A vizsgálata: Mivel tehát (BA 2 C ( B (3 2 a belső indexek nem egyeznek meg, a művelet nem végezhető el. BC + A T vizsgálata: Mivel és a művelet elvégezhető. Számolás: B (3 2 BC (3 2 + AT (3 2 C (2 2 BC (3 2 4 BC + AT (3 2
5 tehát BC Az eredmény: BC + A T Feladat: Határozzuk meg AB, BA, és CA szorzatokat,ha 4 B ( 3 ( 2 C Először nézzük meg a szorzások elvégezhetőek-e. Mivel A B (3 ( 3 AB (3 3 a belső indexek azonosak a szorzás elvégezhető tehát AB Mivel B A ( 3 (3 BA ( a belső indexek azonosak, a szorzás elvégezhető. 4-3 tehát B ( Mivel C A (2 3 (3 CA (2 a belső indexek azonosak, a szorzás elvégezhető tehát C ( 5 5
6 8. Feladat: Határozzuk meg AA T és A T A mátrixokat, ha ( 3 5 A belső indexek megegyeznek, a műveletek elvégezhetőek. ( A T 3 5 ( ( ( AA T ( ( ( A T Vegyük észre, hogy AA T A T A, de mindkettő szimmetrikus. 9. Feladat: Határozza meg az A és T A mátrixokat, ha A A művelet eredménye: az A mátrix soraiban lévő elemek összege. 3 5 T (; ; 8 2 (5; 4; 8; A művelet eredménye: az A mátrix oszlopaiban lévő elemek összege Feladat: Végezzük el az alábbi műveleteket A e 3 és e T ( A, ha A e 3 ( ( 3 A művelet eredménye: kiemeltük a mátrix 3. oszlopát. ( e T 2 3 (; (2; ; 3 5 A művelet eredménye: kiemeltük a mátrix első sorát. 6
7 . Feladat: Végezzük el a következő szorzást, majd értelmezzük a művelet eredményét: 2 e T (; ; ( ( (; 3 4 A művelet eredménye: kiemeltük a mátrix 2. sorát, majd a sor elemeit összeadtuk. 2. Feladat: Mutassuk meg, hogy (AB T B T A T, ha ( ( 2 5 B 3 4 ( ( ( AB ( (AB T ( ( ( B T A T Valóban teljesül, hogy (AB T B T A T 3. Feladat: Végezze el a következő szorzást: A 2 e 2, ha ( Végeredmény: A 2 e 2 ( Feladat: Határozza meg az A T A mátrixot, ha ( Végeredmény: A T A (
8 5. Feladat: Határozza meg az e T 4 A szorzat eredményét, ha Végeredmény: e T 4 A 4 6. Feladat: Határozza meg az T A e 2 szorzat eredményét, ha Végeredmény: T A e Feladat: Határozza meg az A (e 3 e 4 szorzat eredményét, ha Végeredmény: A (e 3 e 4 8. Feladat: Határozza meg az b T A d mátrixot, ha b 6 Végeredmény: b T A d 38. Vizsgafeladat: Legyen Határozzuk meg (A + A 2 2 mátrixot d Először határozzuk meg A 2 mátrixot
9 A + A Végül határozzuk meg (A + A 2 2 mátrixot. Az eredmény: (A + A Vizsgafeladat: Legyen Határozzuk meg AB B 2 mátrixot. Mivel és B Tehát AB B Egyszerűbb a számolás, ha észrevesszük, hogy AB B 2 (A BB. 3. Vizsgafeladat: Határozzuk meg AB és AC mátrixokat, ha B C
10 Tehát AB AC De ebből nem következik B C egyenlőség Vizsgafeladat: Határozzuk meg (ABC és A(BC mátrixokat, ha ( 2 B 5 3 C Először nézzük meg, hogy a művelet elvégezhető-e. A B C (3 2 (2 4 (4 3 ABC (3 3 Az egymás mellett lévő belső indexek megegyeznek, ezért a szorzások elvégezhetőek. Ebben az esetben használjuk fel, hogy a mátrixok szorzása asszociatív, azaz (ABC A(BC, így elég csak (ABC mátrixot kiszámolni. Határozzuk meg AB szorzatot
11 Határozzuk meg (ABC mátrixot Tehát (ABC A(BC Feladat: Határozzuk meg AA T és A T A mátrixokat, ha Egy négyzetes mátrix transzponáltja is vele azonos típusú négyzetes mátrix, így a szorzások elvégezhetőek Tehát AA T A T Vegyük észre, hogy szimmetrikus mátrixokat kaptunk, de AA T A T A 6. Vizsgafeladat Egy utazási iroda 4 társasutazásra a hét első három napján különböző számú jegyet adott el. Ezeket az adatokat az alábbi A mátrix mutatja:
12 London Párizs Róma Bécs Hétfő Kedd Szerda Az egyes utazások ára a táblázatban lévő sorrendnek megfelelően: p T (5; ; 2, 5 pénzegység. Végezzük el az alábbi műveleteket és értelmezzük az eredményeket: Ap, e T 2 A, Ae 3, T Ap. Írja fel mátrixművelettel és számítsa ki, hogy mennyi volt a bécsi jegyek eladásából származó naponkénti bevétel! p Számolás táblázattal: Ap meghatározása Tehát Ap Ap jelentése: a naponkénti bevételt. Azaz hénfőn 72 pénzegység, kedden 64 pénzegység, szerdán 47 pénzegység e T 2 A meghatározása Számolás táblázattal:
13 Tehát e T 2 A (; ; e T 2 A jelentése: kedden az iroda összesen 52 repülőjegyet adott el. Számolás táblázattal: Ae 3 meghatározása Tehát Ae Ae 3 jelentése: naponta eladott repülőjegyet száma Rómába T Ap meghatározása T Ap (; ; T Ap jelentése: a heti teljes bevétel. A bécsi jegyek eladásából származó naponkénti bevétel: (p T e 4 Ae 4 (5; ; 2,
14 7. Vizsgafeladat Egy termelő a piacon négyféle gyümölcsöt árul. Az A mátrix mutatja, hogy a hét egyes napjain mennyit adott el a különféle gyümölcsökből. Hétfő Kedd Szerda Csütörtök Péntek Szombat Szilva Körte Őszibarack Ringló A táblázat az eladott mennyiséget kg-ban mutatja. Az egyes gyümölcsfajták kilogrammonkénti árát (a táblázatbeli sorrendnek megfelelően az árvektor tartalmazza, amely a következő: p T (; 2; 3; 9. Végezzük el az alábbi műveleteket és értelmezzük az eredményeket! a p T A b e T A c Ae 3 d A(e 5 e e A f p T A g T A p T (; 2; 3; p T A jelentése: a naponkénti teljes bevétel. e T (; ; ; ( 5; 47; 7; 24; 356; 389; (; 5; 6; 6; 7; 8 e T A jelentése: szilvából az eladott naponkénti mennyiség kg-ban megadva. Ae Ae 3 jelentése: szerdán az eladott gyümölcsök mennyisége kg-ban megadva A(e 5 e
15 A(e 5 e jelentése: pénteken mennyivel több gyümölcsöt adtak el, mint hétfőn A A gyümölcsönként a heti eladott mennyiség kg-ban kifejezve p T A 3 8 p T A jelentése: a heti teljes bevétel Ft-ban. T (; ; ; (; 3; 6; 9; 32; 36 T naponkénti összes eladott gyömölcs mennyisége kg-ban megadva. 8. Vizsgafeladat Egy étteremben négyféle levesből eladott adagok számát a hét első három napján az alábbi A mátrix mutatja: Rántott leves Zöldségleves Paradicsomleves Csontleves Hétfő Kedd 3 2 Szerda Az egyes levesek ára: p T (5; 7; ; 2 pénzegység. (a Mennyi a leves forgalom naponként pénzegységben? (b Mennyi a leves forgalom összesen a 3 nap alatt? (c Számítsa ki és magyarázza meg a jelentését: T A. (d Számítsa ki és magyarázza meg a jelentését: Ae 2 Ae Vizsgafeladat Három étteremben négyféle ételből egy napon eladott adagok számát mutatja az alábbi A mátrix: I. vendéglő II. vendéglő III. vendéglő. étel étel étel étel Az egyes ételek ára: 6 Ft, 5 Ft, 8 Ft, 4 Ft. (a Mennyi az egyes vendéglők forgalma Ft-ban? (b Mennyi az egyes ételekből eladott adagok száma a három vendéglőben együttesen? (c Mennyi az összes étel forgalom Ft-ban? 5
16 . Vizsgafeladat Egy utazási iroda 4 társasutazásra a hét első három napján különböző számú jegyet adott el. Ezeket az adatokat az alábbi A mátrix mutatja: Párizs Berlin Varsó Amszterdam Hétfő Kedd Szerda Az egyes utazások ára: p T (9; 6; 7; 8 pénzegység. Írja fel mátrixművelettel és számítsa ki, hogy: (a mennyi volt az utazási iroda bevétele naponta; (b három nap alatt az egyes városokba hány jegyet adtak el! Számítsa ki és magyarázza meg a jelentését: (a e T 2 A (b (; ; Ap. 6
Mátrixok. 2015. február 23. 1. Feladat: Legyen ( 3 0 1 4 1 1 ( 1 0 3 2 1 0 B = A =
Mátrixok 25. február 23.. Feladat: Legyen A ( 3 2 B ( 3 4 Határozzuk meg A + B, A B, 2A, 3B, 2A 3B,A T és (B T T mátrixokat. A deníciók alapján ( + 3 + 3 + A + B 2 + 4 + + ( 4 2 6 2 ( ( 3 3 2 4 A B 2 4
RészletesebbenMűveletek mátrixokkal. Kalkulus. 2018/2019 ősz
2018/2019 ősz Elérhetőségek Előadó: (safaro@math.bme.hu) Fogadóóra: hétfő 9-10 (H épület 3. emelet 310-es ajtó) A pontos tárgykövetelmények a www.math.bme.hu/~safaro/kalkulus oldalon találhatóak. A mátrix
RészletesebbenSzöveges feladatok a mátrixaritmetika alkalmazására
Szöveges feladatok a mátrixaritmetika alkalmazására Bevezetés: Tekintsük az alábbi -es mátrixot: A. Szorozzuk meg ezt jobbról egy alkalmas méretű (azaz -es) oszlopvektorral, amely az R tér kanonikus bázisának
RészletesebbenLineáris algebra (10A103)
Lineáris algebra (10A103 Kátai-Urbán Kamilla Tudnivalók Honlap: http://www.math.u-szeged.hu/~katai Jegyzet: Megyesi László: Lineáris algebra. Vizsga: írásbeli (beugróval, feltétele a Lineáris algebra gyakorlat
Részletesebben1. Mátrixösszeadás és skalárral szorzás
1 Mátrixösszeadás és skalárral szorzás Mátrixok tömör jelölése T test Az M = a i j T n m azt az n sorból és m oszlopból álló mátrixot jelöli, amelyben az i-edik sor j-edik eleme a i j T Példák [ ] Ha M
RészletesebbenDiszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet takach november 30.
1 Diszkrét matematika I, 12 előadás Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach 2005 november 30 Vektorok Definíció Egy tetszőleges n pozitív egész számra n-komponensű
RészletesebbenLineáris algebra (10A103)
Lineáris algebra (10A103) Kátai-Urbán Kamilla (1. előadás) Mátrixok 2019. február 6. 1 / 35 Bevezetés Előadás Tudnivalók (I.) Honlap: http://www.math.u-szeged.hu/~katai Jegyzet: Az előadáson készített
RészletesebbenMátrixok, mátrixműveletek
Mátrixok, mátrixműveletek 1 előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Mátrixok, mátrixműveletek p 1/1 Mátrixok definíciója Definíció Helyezzünk el n m elemet egy olyan téglalap
RészletesebbenDiszkrét matematika I.
Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 8. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Elemi számelmélet Diszkrét matematika I. középszint
RészletesebbenValasek Gábor valasek@inf.elte.hu
Számítógépes Grafika Valasek Gábor valasek@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2013/2014. őszi félév ( Eötvös LorándSzámítógépes TudományegyetemInformatikai Grafika Kar) 2013/2014.
RészletesebbenI. VEKTOROK, MÁTRIXOK
217/18 1 félév I VEKTOROK, MÁTRIXOK I1 I2 Vektorok 1 A síkon derékszögű koordinátarendszerben minden v vektornak van vízszintes és van függőleges koordinátája, ezeket sorrendben v 1 és v 2 jelöli A v síkbeli
RészletesebbenIrodalom. (a) A T, B T, (b) A + B, C + D, D C, (c) 3A, (d) AD, DA, B T A, 1 2 B = 1 C = A = 1 0 D = (a) 1 1 3, B T = = ( ) ; A T = 1 0
Irodalom ezek egyrészt el- A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: hangzanak az előadáson, másrészt megtalálják a jegyzetben: Szabó László: Bevezetés a lineáris algebrába, Polygon
Részletesebben52 811 01 0000 00 00 Élelmezésvezető Élelmezésvezető 33 811 03 1000 00 00 Szakács Szakács 52 811 02 0000 00 00 Vendéglős Vendéglős
A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,
RészletesebbenIntergrált Intenzív Matematika Érettségi
. Adott a mátri, determináns determináns, ahol,, d Számítsd ki:. b) Igazold, hogy a b c. Adott a az 6 0 egyenlet megoldásai. a). c) Számítsd ki a d determináns értékét. d c a b determináns, ahol abc,,.
Részletesebben2005_01/1 Leírtunk egymás mellé hét racionális számot úgy, hogy a két szélső kivételével mindegyik eggyel nagyobb a két szomszédja szorzatánál.
Számolásos feladatok, műveletek 2004_1/1 Töltsd ki az alábbi bűvös négyzet hiányzó mezőit úgy, hogy a négyzetben szereplő minden szám különböző legyen, és minden sorban, oszlopban és a két átlóban is ugyanannyi
RészletesebbenMatematikai statisztika 1.
Matematikai statisztika 1 segédanyag Daróczi Gergely Szociológia Intézet 2010 Matematikai statisztika 1 01 Mátrixok A mátrix vízszintes vonalban elhelyezked elemei sorokat, függ leges vonalban elhelyezked
Részletesebben1. zárthelyi,
1. zárthelyi, 2009.10.20. 1. Írjuk fel a tér P = (0,2,4) és Q = (6, 2,2) pontjait összekötő szakasz felezőmerőleges síkjának egyenletét. 2. Tekintsük az x + 2y + 3z = 14, a 2x + 6y + 10z = 24 és a 4x+2y
RészletesebbenEgész számok. pozitív egész számok: 1; 2; 3; 4;... negatív egész számok: 1; 2; 3; 4;...
Egész számok természetes számok ( ) pozitív egész számok: 1; 2; 3; 4;... 0 negatív egész számok: 1; 2; 3; 4;... egész számok ( ) 1. Írd a következõ számokat a halmazábra megfelelõ helyére! 3; 7; +6 ; (
RészletesebbenMATE-INFO UBB verseny, március 25. MATEMATIKA írásbeli vizsga
BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR MATE-INFO UBB verseny, 218. március 25. MATEMATIKA írásbeli vizsga FONTOS TUDNIVALÓK: 1 A feleletválasztós feladatok,,a rész esetén
RészletesebbenBrósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Vektorok II.
Vektorok II. DEFINÍCIÓ: (Vektorok hajlásszöge) Két vektor hajlásszögének azt a φ (0 φ 180 ) szöget nevezzük, amelyet a vektorok egy közös pontból felmért reprezentánsai által meghatározott félegyenesek
RészletesebbenLineáris algebra. (közgazdászoknak) T C T = ( 1 ) ; , D T D =
Lineáris algebra (közgazdászoknak) 10A103 FELADATOK A GYAKORLATRA (1.) 2018/2019. tavaszi félév Mátrixok 1.1. Feladat. Legyen A = 1 2 1, B = 1 2 3 1 2 1 1, C = ( 1 2 0 ), D = 1 3 1 1 2 1 ( ) 10/2 0.6 1
Részletesebben2. előadás. Lineáris algebra numerikus módszerei. Mátrixok Mátrixműveletek Speciális mátrixok, vektorok Norma
Mátrixok Definíció Az m n típusú (méretű) valós A mátrixon valós a ij számok alábbi táblázatát értjük: a 11 a 12... a 1j... a 1n.......... A = a i1 a i2... a ij... a in........... a m1 a m2... a mj...
RészletesebbenGauss-eliminációval, Cholesky felbontás, QR felbontás
Közelítő és szimbolikus számítások 4. gyakorlat Mátrix invertálás Gauss-eliminációval, Cholesky felbontás, QR felbontás Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei
Részletesebben1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás)
Matematika A2c gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 2017/18 ősz 1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) 1. Valós vektorterek-e a következő
Részletesebbenkarakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja
Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja 1.Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus
RészletesebbenLineáris algebra (10A103)
Lineáris algebra (10A103) Dr. Hartmann Miklós Tudnivalók Honlap: http://www.math.u-szeged.hu/~hartm Jegyzet: Megyesi László: Lineáris algebra. Vizsga: írásbeli, feltétele a Lineáris algebra gyakorlat teljesítése.
Részletesebben5. Végezd el a kijelölt műveleteket, és ahol lehet, vonj össze!
1 1. Rendezd a következő polinomokat a bennük lévő változó növekedő hatvánkitevői szerint! a) 2 + + 2 b) 2 + + 2 + 6 2. Melek egnemű algebrai kifejezések? a) a 2 b; 2ab; a 2 b; 2a b; 1,a 2 b b) 2 ; 2 ;
RészletesebbenVektorok, mátrixok, lineáris egyenletrendszerek
a Matematika mérnököknek I. című tárgyhoz Vektorok, mátrixok, lineáris egyenletrendszerek Vektorok A rendezett valós számpárokat kétdimenziós valós vektoroknak nevezzük. Jelölésükre latin kisbetűket használunk.
RészletesebbenOSZTHATÓSÁG. Osztók és többszörösök : a 3 többszörösei : a 4 többszörösei Ahol mindkét jel megtalálható a 12 többszöröseit találjuk.
Osztók és többszörösök 1783. A megadott számok elsõ tíz többszöröse: 3: 3 6 9 12 15 18 21 24 27 30 4: 4 8 12 16 20 24 28 32 36 40 5: 5 10 15 20 25 30 35 40 45 50 6: 6 12 18 24 30 36 42 48 54 60 1784. :
RészletesebbenDiszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 4-6. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
RészletesebbenML/GL (164)
ML/GL (164) + 375 17 309-9999 + 375 29 603-9999 + 375 33 603-9999 + 375 25 603-9999 A2513203131 2321 1519 35% A164320591380 3976 2771 30% A1643206113 3554 2477 30% A1643202431 889 582 35% A2519801164 352
Részletesebben1. Legyen egy háromszög három oldalának a hossza a, b, c. Bizonyítsuk be, hogy Mikor állhat fenn egyenlőség? Kántor Sándorné, Debrecen
10. osztály 1. Legyen egy háromszög három oldalának a hossza a, b, c. Bizonyítsuk be, hogy ( a + b + c) 3 4 ab + bc + ca Mikor állhat fenn egyenlőség? Kántor Sándorné, Debrecen A feladatban szereplő kettős
Részletesebben4. feladatsor Mátrixok
4 feladatsor Mátrixok 41 Feladat Döntse el, hogy igazak-e az alábbi állítások, és döntését röviden indokolja: (a) n i=1 i = 1 i n i (b) 1 i>n 1 = 1 minden n pozitív egészre; (c) n i i=1 j=1 (i j) = n j
RészletesebbenTypotex Kiadó. Bevezetés
Bevezetés A bennünket körülvevő világ leírásához ősidők óta számokat is alkalmazunk. Tekintsük át a számfogalom kiépülésének logikai-történeti folyamatát, amely minden valószínűség szerint a legkorábban
RészletesebbenNagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
RészletesebbenMegoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)
Megoldások 1. Határozd meg az a és b vektor skaláris szorzatát, ha a = 5, b = 4 és a közbezárt szög φ = 55! Alkalmazzuk a megfelelő képletet: a b = a b cos φ = 5 4 cos 55 11,47. 2. Határozd meg a következő
Részletesebben1. Egész együtthatós polinomok
1. Egész együtthatós polinomok Oszthatóság egész számmal Emlékeztető (K3.1.3): Ha f,g Z[x], akkor f g akkor és csak akkor, ha van olyan h Z[x], hogy g = fh. Állítás (K3.1.6) Az f(x) Z[x] akkor és csak
RészletesebbenKOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata
RészletesebbenSegédlet az Informatika alapjai I. című tárgy számrendszerek fejezetéhez
Segédlet az Informatika alapjai I. című tárgy számrendszerek fejezetéhez Sándor Tamás, sandor.tamas@kvk.bmf.hu Takács Gergely, takacs.gergo@kvk.bmf.hu Lektorálta: dr. Schuster György PhD, hal@k2.jozsef.kando.hu
RészletesebbenDISZKRÉT MATEMATIKA: STRUKTÚRÁK Előadáson mutatott példa: Bércesné Novák Ágnes
1. Algebrai alapok: DISZKRÉT MATEMATIKA: STRUKTÚRÁK Művelet: Egy H nemüres halmazon értelmezett (kétváltozós) műveleten egy H H H függvényt értünk, azaz egy olyan leképezést, amely bármely a,b H elempárhoz
Részletesebben52 811 01 0000 00 00 Élelmezésvezető Élelmezésvezető 33 811 03 1000 00 00 Szakács Szakács 52 811 02 0000 00 00 Vendéglős Vendéglős
A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,
RészletesebbenMatematika A1a Analízis
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Vektorok StKis, EIC 2019-02-12 Wettl Ferenc ALGEBRA
RészletesebbenA valós számok halmaza
VA 1 A valós számok halmaza VA 2 A valós számok halmazának axiómarendszere és alapvető tulajdonságai Definíció Az R halmazt a valós számok halmazának nevezzük, ha teljesíti a következő axiómarendszerben
RészletesebbenKoordinátageometria. M veletek vektorokkal grakusan. Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1
Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1 Koordinátageometria M veletek vektorokkal grakusan 1. Az ABCD négyzet oldalvektorai közül a = AB és b = BC. Adja meg az AC és BD vektorokat a
Részletesebben8/2014. (X.10.) KLIK elnöki utasítás
8/2014. (X.10.) KLIK elnöki utasítás III. Fejezet A térítési díj és a tandíj 1. A térítési díj és a tandíj alapja 3. (1) Az intézményben a tanévre fizetendő térítési díj és a tandíj meghatározásának alapja
RészletesebbenTárgyév adata 2013. december 31. Tárgyév adata 2014. december 31. A tétel megnevezése
A tétel megnevezése Tárgyév adata 2013. december 31. Tárgyév adata 2014. december 31. 1. Pénzeszközök 19 798 163 488 2. Állampapírok 411 306 73 476 a) forgatási célú 411 325 73 408 b) befektetési célú
Részletesebben4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI
4. Fuzzy relációk Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 Klasszikus relációk Halmazok Descartes-szorzata Relációk 2 Fuzzy relációk Fuzzy relációk véges alaphalmazok
RészletesebbenO ( 0, 0, 0 ) A ( 4, 0, 0 ) B ( 4, 3, 0 ) C ( 0, 3, 0 ) D ( 4, 0, 5 ) E ( 4, 3, 5 ) F ( 0, 3, 5 ) G ( 0, 0, 5 )
1. feladat Írjuk föl a következő vektorokat! AC, BF, BG, DF, BD, AG, GB Írjuk föl ezen vektorok egységvektorát is! a=3 m b= 4 m c= m Írjuk föl az egyes pontok koordinátáit: O ( 0, 0, 0 ) A ( 4, 0, 0 )
RészletesebbenAnalízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)
Vajda István Neumann János Informatika Kar Óbudai Egyetem 1 / 36 Bevezetés A komplex számok értelmezése Definíció: Tekintsük a valós számpárok R2 halmazát és értelmezzük ezen a halmazon a következo két
RészletesebbenVektorgeometria (1) First Prev Next Last Go Back Full Screen Close Quit
Vektorgeometria (1) First Prev Next Last Go Back Full Screen Close Quit 1. A térbeli irányított szakaszokat vektoroknak hívjuk. Két vektort egyenlőnek tekintünk, ha párhuzamos eltolással fedésbe hozhatók.
Részletesebben;3 ; 0; 1 7; ;7 5; 3. pozitív: ; pozitív is, negatív is: ;
. A racion lis sz mok A tanult sz mok halmaza A) Ábrázold számegyenesen az alábbi számokat! 8 + + 0 + 7 0 7 7 0 0. 0 Válogasd szét a számokat aszerint, hogy pozitív: pozitív is, negatív is: negatív: sem
Részletesebben1. A kétszer kettes determináns
1. A kétszer kettes determináns 2 2-es mátrix inverze Tétel [ ] [ ] a c 1 d c Ha ad bc 0, akkor M= inverze. b d ad bc b a Ha ad bc = 0, akkor M-nek nincs inverze. A főátló két elemét megcseréljük, a mellékátló
RészletesebbenLineáris egyenletrendszerek
Lineáris egyenletrendszerek Lineáris egyenletrendszernek nevezzük az a 11 x 1 + a 12 x 2 +... +a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... +a 2n x n = b 2.. a k1 x 1 + a k2 x 2 +... +a kn x n = b k n ismeretlenes,
RészletesebbenIII. Vályi Gyula Emlékverseny december
III. Vályi Gyula Emlékverseny 1996. december 14 15. VI osztály A feladatok szövege után öt lehetséges válasz (A, B, C, D és E) található, amelyek közül csak pontosan egy helyes. A helyes válasz betűjelét
Részletesebben1. A polinom fogalma. Számolás formális kifejezésekkel. Feladat Oldjuk meg az x2 + x + 1 x + 1. = x egyenletet.
1. A polinom fogalma Számolás formális kifejezésekkel. Feladat Oldjuk meg az x2 + x + 1 x + 1 = x egyenletet. Megoldás x + 1-gyel átszorozva x 2 + x + 1 = x 2 + x. Innen 1 = 0. Ez ellentmondás, így az
Részletesebben12. előadás. Egyenletrendszerek, mátrixok. Dr. Szörényi Miklós, Dr. Kallós Gábor
12. előadás Egyenletrendszerek, mátrixok Dr. Szörényi Miklós, Dr. Kallós Gábor 2015 2016 1 Tartalom Matematikai alapok Vektorok és mátrixok megadása Tömbkonstansok Lineáris műveletek Mátrixok szorzása
RészletesebbenPiaci szerkezetek VK. Gyakorló feladatok a 4. anyagrészhez
Piaci szerkezetek VK Gyakorló feladatok a 4. anyagrészhez Cournot-oligopólium Feladatgyűjtemény 259./1. teszt Egy oligopol piacon az egyensúlyban A. minden vállalat határköltsége ugyanakkora; B. a vállalatok
RészletesebbenDETERMINÁNSSZÁMÍTÁS. Határozzuk meg a 1 értékét! Ez most is az egyetlen elemmel egyezik meg, tehát az értéke 1.
DETERMINÁNSSZÁMÍTÁS A (nxn) kvadratikus (négyzetes) mátrixhoz egyértelműen hozzárendelhetünk egy D R számot, ami a mátrix determinánsa. Már most megjegyezzük, hogy a mátrix determinánsa, illetve a determináns
RészletesebbenD G 0 ;8 ; 0 0 " & *!"!#$%&'" )! "#$%&' (! )* +,-. /0 )* **! / 0 1 ) " 8 9 : 7 ; 9 < = > A! B C D E +,-./0! 1#! 2 3!./0
D G 0"" @;8 < @;0 0"7@ & *!"!#$%&'" )! "#$%&'(! )*+,-./0)* **! / 0 1 ) 2 3 4 5 6 1 7 " 8 9 : 7 ; 9 < = > 9? @ A! B C D E +,-./0!1#! 2 3!./04456171#461,!FGHIJKLM 5 NO N"JPQRFGLSTUV@AW"9?@AW G X6YJK # #
Részletesebben1. Algebrai alapok: Melyek műveletek az alábbiak közül?
1. Algebrai alapok: Művelet: Egy H nemüres halmazon értelmezett (kétváltozós) műveleten egy H H H függvényt értünk, azaz egy olyan leképezést, amely bármely a,b H elempárhoz egyértelműen hozzárendel egy
RészletesebbenKalkulus. Komplex számok
Komplex számok Komplex számsík A komplex számok a valós számok természetes kiterjesztése, annak érdekében, hogy a gyökvonás művelete elvégezhető legyen a negatív számok körében is. Vegyük tehát hozzá az
RészletesebbenTúlmunkaidő óra Összesen: Egyéb óra Összesen: Éjszakai pótlékos óra Összesen: 100 % pótlékos óra Összesen: Összesen: Összesen: Összesen: Összesen:
Jelenléti ív 2013 01 Január munkanap-ünnepnap száma: 23-1 kedd szerda csütörtök péntek szombat vasárnap hétfő kedd szerda csütörtök péntek szombat vasárnap hétfő kedd 184 ## Csuzstatás: 16 17 18 19 20
RészletesebbenElektronikai műszerész Elektronikai műszerész
A 10/007 (II. 7.) SzMM rendelettel módosított 1/006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,
Részletesebben3. Előadás. Megyesi László: Lineáris algebra, oldal. 3. előadás Lineáris egyenletrendszerek
3. Előadás Megyesi László: Lineáris algebra, 47. 50. oldal. Gondolkodnivalók Determinánsok 1. Gondolkodnivaló Determinánselméleti tételek segítségével határozzuk meg a következő n n-es determinánst: 1
RészletesebbenMegoldások 9. osztály
XXV. Nemzetközi Magyar Matematikaverseny Budapest, 2016. március 1115. Megoldások 9. osztály 1. feladat Nevezzünk egy számot prímösszeg nek, ha a tízes számrendszerben felírt szám számjegyeinek összege
RészletesebbenDiszkrét matematika 1. estis képzés
Diszkrét matematika 1. estis képzés 2019. tavasz 1. Diszkrét matematika 1. estis képzés 5. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
RészletesebbenMATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika emelt szint 0613 ÉRETTSÉGI VIZSGA 007. május 8. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Formai előírások: Fontos tudnivalók
RészletesebbenBevezető. Kedves Negyedik Osztályos Tanuló!
Bevezető Kedves Negyedik Osztályos Tanuló! Örülünk, hogy ismét találkozunk, és együtt folytathatjuk megkezdett utunkat a matematika varázslatos birodalmában. Jó hír, hogy a munkafüzeted idén is segít a
RészletesebbenMűveletek egész számokkal
Mit tudunk az egész számokról? 1. Döntsd el, hogy igazak-e a következő állítások az A halmaz elemeire! a) Az A halmaz elemei között 3 pozitív szám van. b) A legkisebb szám abszolút értéke a legnagyobb.
RészletesebbenMátrixok. 3. fejezet. 3.1. Bevezetés: műveletek táblázatokkal
fejezet Mátrixok Az előző fejezetben a mátrixokat csak egyszerű jelölésnek tekintettük, mely az egyenletrendszer együtthatóinak tárolására, és az egyenletrendszer megoldása közbeni számítások egyszerüsítésére
RészletesebbenVektoralgebra feladatlap 2018 január 20.
1. Adott az ABCD tetraéder, határozzuk meg: a) AB + BD + DC b) AD + CB + DC c) AB + BC + DA + CD Vektoralgebra feladatlap 018 január 0.. Adott az ABCD tetraéder. Igazoljuk, hogy AD + BC = BD + AC, majd
Részletesebben5.441 eft bg) térségi fejlesztési tanácstól az államháztartás központi alrendszerén belülről kapott EU-s forrásból származó pénzeszközből,
Kozármisleny Város Önkormányzata Képviselő-testületének 5/2013. (V.15.) önkormányzati rendelete az önkormányzat és intézményei 2012. évi költségvetéséről 6/2012 (II.13.) Önkormányzati rendelet módosításáról
Részletesebben1 pont Bármely formában elfogadható pl.:, avagy. 24 4
2012. február 2. 8. évfolyam TMat2 feladatlap Javítókulcs / 1 Javítókulcs MATEMATIKA FELADATOK 8. évfolyamosok számára, tehetséggondozó változat TMat2 A javítókulcsban feltüntetett válaszokra a megadott
RészletesebbenNagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. estis képzés 017. ősz 1. Diszkrét matematika 1. estis képzés 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
Részletesebbena védelmi feladatokban részt vevő elektronikus hírközlési szolgáltatók kijelöléséről és felkészülési feladataik meghatározásáról
1./2009. (.) MeHVM rendelet a védelmi feladatokban részt vevő elektronikus hírközlési szolgáltatók kijelöléséről és felkészülési feladataik meghatározásáról Az elektronikus hírközlésről szóló 2003. évi
Részletesebben1. Determinánsok. Oldjuk meg az alábbi kétismeretlenes, két egyenletet tartalmaz lineáris egyenletrendszert:
1 Determinánsok 1 Bevezet definíció Oldjuk meg az alábbi kétismeretlenes, két egyenletet tartalmaz lineáris egyenletrendszert: a 11 x 1 +a 12 x 2 = b 1 a 21 x 1 +a 22 x 2 = b 2 Szorozzuk meg az első egyenletet
RészletesebbenMATEK-INFO UBB verseny április 6.
BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR MATEK-INFO UBB verseny 219. április 6. Írásbeli próba matematikából FONTOS MEGJEGYZÉS: 1) Az A. részben megjelenő feleletválasztós
RészletesebbenLineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek
Lineáris algebra 2 Filip Ferdinánd filipferdinand@bgkuni-obudahu sivabankihu/jegyzetek 2015 december 7 Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 1 / 37 Az el adás vázlata Determináns Determináns
RészletesebbenISKOLÁD NEVE:... Az első három feladat feleletválasztós. Egyenként 5-5 pontot érnek. Egy feladatnak több jó megoldása is lehet. A) 6 B) 8 C) 10 D) 12
2. OSZTÁLY 1. Mennyi az alábbi kifejezés értéke: 0 2 + 4 6 + 8 10 + 12 14 + 16 18 + 20 A) 6 B) 8 C) 10 D) 12 2. Egy szabályos dobókockával kétszer dobok. Mennyi nem lehet a dobott számok összege? A) 1
Részletesebben1. Bevezetés A félév anyaga. Lineáris algebra Vektorterek, alterek Függés, függetlenség, bázis, dimenzió Skaláris szorzat R n -ben, vektorok hossza és szöge Lineáris leképezések, mátrixuk, bázistranszformáció
RészletesebbenMATEMATIKA VERSENY
Eötvös Károly Közös Fenntartású Óvoda, Általános Iskola 2012. és Alapfokú Művészetoktatási Intézmény 8314 Vonyarcvashegy, Fő u. 84/1. 2. osztály MATEMATIKA VERSENY -------------------- név Olvasd el figyelmesen,
Részletesebben1992. évi verseny, 2. nap. legkisebb d szám, amelyre igaz, hogy bárhogyan veszünk fel öt pontot
1991. évi verseny, 1. nap 1. Bizonyítsd be, hogy 1 101 + 1 102 + 1 103 +... + 1 200 < 1 2. 2. Egy bálon 42-en vettek részt. Az első lány elmondta, hogy 7 fiúval táncolt, a második lány 8-cal, a harmadik
RészletesebbenÉlelmezésvezető Élelmezésvezető Szakács Szakács Vendéglős Vendéglős
A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,
Részletesebben33 811 01 0000 00 00 Cukrász Cukrász
A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,
RészletesebbenGy ur uk aprilis 11.
Gyűrűk 2014. április 11. 1. Hányadostest 2. Karakterisztika, prímtest 3. Egyszerű gyűrűk [F] III/8 Tétel Minden integritástartomány beágyazható testbe. Legyen R integritástartomány, és értelmezzünk az
RészletesebbenKOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I. 1 I. HALmAZOk 1. JELÖLÉSEk A halmaz fogalmát tulajdonságait gyakran használjuk a matematikában. A halmazt nem definiáljuk, ezt alapfogalomnak tekintjük. Ez nem szokatlan, hiszen
RészletesebbenFeladatlap. a hatosztályos speciális matematika tantervű osztályok írásbeli vizsgájára (2006)
Feladatlap a hatosztályos speciális matematika tantervű osztályok írásbeli vizsgájára (2006) 1) Karcsi januárban betegség miatt háromszor hiányzott az iskolából:12-én,14-én és 24-én. Milyen napra esett
RészletesebbenMátrixok 2017 Mátrixok
2017 számtáblázatok" : számok rendezett halmaza, melyben a számok helye két paraméterrel van meghatározva. Például lineáris egyenletrendszer együtthatómátrixa 2 x 1 + 4 x 2 = 8 1 x 1 + 3 x 2 = 1 ( 2 4
Részletesebben7. gyakorlat. Lineáris algebrai egyenletrendszerek megoldhatósága
7. gyakorlat Lineáris algebrai egyenletrendszerek megoldhatósága Egy lineáris algebrai egyenletrendszerrel kapcsolatban a következ kérdések merülnek fel: 1. Létezik-e megoldása? 2. Ha igen, hány megoldása
RészletesebbenÍ ÍÍÍ Í Í Í Ö Ö Ö Ö Ö Ö Ö Ö Ú É Í Ö Á Á É Ö É Ö É É Á Á Ö Ú Ö Ö Í Á É É Í Á É Í Ö Ö Á Á É Í Ö Ö Ö Ö Ö Ö Á É Ö É É Ö É Ö Í Á É É Ö Ö É Ö Í Í Í Í Ö Ö Ö Í Ö É Ö É É Ö Ö Í É Ö Í É É Ö Í É Á É É Ű Ö Í É É Ö
RészletesebbenEllenőrző kérdések. 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t
Ellenőrző kérdések 2. Kis dolgozat kérdései 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t 37. Ha t szintű indexet használunk,
RészletesebbenXXII. Vályi Gyula Emlékverseny április 8. V. osztály
V. osztály 1. Egy anya éveinek száma ugyanannyi, mint a lánya életkora hónapokban kifejezve. Mennyi idősek külön-külön, ha az anya 23 évvel és 10 hónappal idősebb a lányánál? 2. Melyek azok a 2016-nál
RészletesebbenKongruenciák. Waldhauser Tamás
Algebra és számelmélet 3 előadás Kongruenciák Waldhauser Tamás 2014 őszi félév Tartalom 1. Diofantoszi egyenletek 2. Kongruenciareláció, maradékosztályok 3. Lineáris kongruenciák és multiplikatív inverzek
RészletesebbenFELVÉTELI VIZSGA, július 17.
BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR FELVÉTELI VIZSGA, 2017. július 17. Írásbeli vizsga MATEMATIKÁBÓL I. TÉTEL (30 pont) 1) (10 pont) Igazoljuk, hogy tetszőleges m R esetén
RészletesebbenFELADATOK AZ ÁLTALÁNOS OKTATÁS ÉS NEVELÉS ZÁRÓVIZSGÁJÁRA. a 2014/2015-ös tanévben TESZT MATEMATIKÁBÓL UTASÍTÁS A TESZT MEGÍRÁSÁHOZ
FELADATOK AZ ÁLTALÁNOS OKTATÁS ÉS NEVELÉS ZÁRÓVIZSGÁJÁRA a 2014/2015-ös tanévben TESZT MATEMATIKÁBÓL UTASÍTÁS A TESZT MEGÍRÁSÁHOZ Egy 20 feladatból álló tesztet kell megoldanod. A munka elvégzésére 120
RészletesebbenA 27/2012 (VIII. 27.) NGM rendelet szakmai és vizsgakövetelménye alapján.
A 27/2012 (VIII. 27.) NGM rendelet szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 35 811 02 Vendéglátó-üzletvezető Tájékoztató A vizsgázó az első lapra írja fel a
RészletesebbenA) 0 B) 2 C) 8 D) 20 E) 32
1. X és Y egyjegyű nemnegatív számok. Az X378Y ötjegyű szám osztható 72-vel. Mennyi X és Y szorzata? A) 0 B) 2 C) 8 D) 20 E) 32 2. Hány valós gyöke van a következő egyenletnek? (x 2 1) (x + 1) (x 2 1)
Részletesebben2. Algebrai átalakítások
I. Nulladik ZH-ban láttuk: 2. Algebrai átalakítások 1. Mi az alábbi kifejezés legegyszerűbb alakja a változó lehetséges értékei esetén? (A) x + 1 x 1 (x 1)(x 2 + 3x + 2) (1 x 2 )(x + 2) (B) 1 (C) 2 (D)
Részletesebben7. gyakorlat. Lineáris algebrai egyenletrendszerek megoldhatósága
7. gyakorlat Lineáris algebrai egyenletrendszerek megoldhatósága Egy lineáris algebrai egyenletrendszerrel kapcsolatban a következ kérdések merülnek fel: 1. Létezik-e megoldása? 2. Ha igen, hány megoldása
RészletesebbenFELVÉTELI VIZSGA, szeptember 12.
BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR FELVÉTELI VIZSGA, 08. szeptember. Írásbeli vizsga MATEMATIKÁBÓL FONTOS TUDNIVALÓK: A feleletválasztós feladatok,,a rész esetén egy
Részletesebben