Megoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)
|
|
- Endre Papp
- 6 évvel ezelőtt
- Látták:
Átírás
1 Megoldások 1. Határozd meg az a és b vektor skaláris szorzatát, ha a = 5, b = 4 és a közbezárt szög φ = 55! Alkalmazzuk a megfelelő képletet: a b = a b cos φ = 5 4 cos 55 11, Határozd meg a következő vektorok skaláris szorzatát! a) a (10; 3) és b ( 1; 5) b) c (1; 2; 5) és d ( 1; 3; 7) Alkalmazzuk a megfelelő képletet: a) a b = a 1 b 1 + a 2 b 2 = 10 ( 1) + ( 3) 5 = = 25. b) c d = c 1 d 1 + c 2 d 2 + c 3 d 3 = 1 ( 1) ( 7) = Határozd meg a következő vektorok hajlásszögét! a) a (2; 3) és b ( 5; 1) b) c (2; 3; 5) és d ( 1; 2; 5) Alkalmazzuk a skaláris szorzat képleteiet: a) a b = ( 5) 2 + ( 1) 2 cos φ = cos φ a b = 2 ( 5) + 3 ( 1) = 10 3 = 13 Ebből felírhatjuk a következőt: cos φ = 13. Ezek alapján a megoldás: φ =
2 b) A skaláris szorzat képleteit összevonva, egyetlen képlettel is kiszámíthatjuk a hajlásszöget: cos φ = c 1 d 1 + c 2 d 2 + c 3 d 3 c d = 2 ( 1) + ( 3) ( 2) ( 3) ( 1) 2 + ( 2) φ 30,81 4. Egy háromszög csúcsai az A (3; 1), B (2; 4) és C ( 1; 5) koordinátájú pontok. Számítsd ki a háromszög szögeit és területét! A háromszög szögeihez határozzuk meg az adott csúcsból kiinduló két vektor hajlásszögét. Számítsuk ki először az AB és az AC vektorok által bezárt α szöget. AB ( 1; 5) AB = ( 1) = 26 AC ( 4; 6) AC = ( 4) = 52 A skaláris szorzat segítségével felírhatjuk a következőt: cos α = Ebből azt kapjuk, hogy α 22,38. ( 1) ( 4) Számítsuk ki most a BA és a BC vektorok által bezárt β szöget. BA (1; 5) BA = ( 5) 2 = 26 BC ( 3; 1) BC = ( 3) = 10 A skaláris szorzat segítségével felírhatjuk a következőt: cos β = Ebből azt kapjuk, hogy β 119,74. 1 ( 3) + ( 5) Számítsuk ki végül a CA és a CB vektorok által bezárt γ szöget. CA (4; 6) CA = ( 6) 2 = 52 CB (3; 1) CB = ( 1) 2 = 10 A skaláris szorzat segítségével felírhatjuk a következőt: cos γ = Ebből azt kapjuk, hogy γ 37, ( 6) ( 1) Ezek alapján a háromszög területe: T = sin 37,
3 5. Két vektor hossza 3 cm, illetve 4 cm. Legalább és legfeljebb mekkora lehet a skaláris szorzatuk értéke? Írjuk fel a két vektor skaláris szorzatát: a b = 3 4 cos φ = 12 cos φ. Tudjuk, hogy 1 cos φ 1. Ezek alapján a megoldás: 12 a b Két egymással 60 - os szöget bezáró vektor skaláris szorzata 4. Ha az egyik vektor hossza a másik kétszerese, akkor milyen hosszúak a vektorok? Legyen a = 2 b. A skaláris szorzat segítségével felírhatjuk a következőt: 2 b b cos 60 = 4. Ebből azt kapjuk, hogy b = 2, s ezt visszahelyettesítve pedig a = Adott az a (2; 2) és b (1; 6) vektor. Mennyi a c koordinátája, ha tudjuk, hogy a c = 14 és b c = 7? Legyen a c (c 1 ; c 2 ). Ekkor a skaláris szorzatok segítségével felírhatjuk a következő egyenletrendszert: 2 c c 2 = 14 } 1 c 1 + ( 6) c 2 = 7 Az egyenletrendszer megoldása c 1 = 5 és c 2 = 2, vagyis a keresett vektor a c (5; 2). 8. Az a ( 2; 1; 3) és b (5; 2; z) vektorok merőlegesek egymsára. Mekkora a z érétke? Mivel a merőleges vektorok skaláris szorzata 0, így felírhatjuk a következőt: ( 2) 3 z = 0 Ezek alapján a megoldás z = 4. 3
4 9. Határozd meg a b koordinátáit, ha tudjuk, hogy merőleges az a ra, továbbá a (10; 5) és b = 10! Legyen a b (b 1 ; b 2 ). Ekkor a szöveg alapján felírhatjuk a következő egyenletrendszert: 10b 1 5b 2 = 0 } b b 2 2 = 10 Az első egyenletből fejezzük ki az egyik ismeretlent: b 2 = 2b 1. Ezt behelyettesítve a második egyenletbe rendezés után a megoldás b 1 = 2, vagy b 1 = 2. Ezt visszahelyettesítve azt kapjuk, hogy b 2 = 2 2 vagy b 2 = 2 2. Ezek alapján két megoldás adódik: b ( 2; 2 2), vagy b ( 2; 2 2). 10. Az a és b vektorok hajlásszöge 60. Tudjuk, hogy (a b ) merőleges b re. Milyen kapcsolat van az a és b vektor hossza között? A feladat szövege alapján (a b ) b = 0, vagyis a b b b = 0. Ebből a következő adódik: a b cos 60 b b cos 0 = 0. Rendezés után azt kapjuk, hogy b ( 1 2 a b ) = 0. Egy szorzat értéke akkor 0, ha valamelyik tényezője 0. Ezek alapján b = 0, vagy 1 2 a b = 0, amiből a = 2 b. 4
5 11. Az a és b egységvektorok 60 - os szöget zárnak be. Miylen λ esetén lesz (a + λ b ) merőleges b re? A feladat szövege alapján (a + λ b ) b = 0, vagyis a b + λ b b = 0. Ebből a következő adódik: 1 1 cos 60 + λ 1 1 cos 0 = 0. Ezek alapján a megoldás λ = Mekkora az egyenlő, de nem 0 hosszúságú a és b szöge, ha (a + 2b ) merőleges (5a 4b ) re! A feladat szövege alapján (a + 2b ) (5a 4b ) = 0. Ebből a következő adódik: 5 a a b cos φ 8 b 2 = 0. Mivel a = b, így rendezés után azt kapjuk, hogy b 2 (5 + 6 cos φ 8) = 0. Egy szorzat értéke akkor 0, ha valamelyik tényezője 0. Ezek alapján b 2 = 0, vagyis b = 0, vagy cos φ 8 = 0, amiből φ = Legyen a (3; 4) és b ( 2; 1). Határozd meg az a nak b re, és a b nek a ra eső merőleges vetületének hosszát! Tudjuk, hogy cos φ = cos(180 φ). Ebből az a vektor b re eső merőleges vetületének hosszát megkaphatjuk a következőképpen: a cos φ = a b b = 3 ( 2) = 2 ( 2) A b vektor a ra eső merőleges vetületének hossza pedig: b cos φ = a b a = 3 ( 2) = 2 5 5
6 14. Egy kocka élei 1 egység hosszúságúak. Ennek az egyik csúcsából kiinduló élvektorait jelölje a, b, c. Mivel egyenlők a következő skaláris szorzatok: a b ; (a + b ) a ; (a + b + c ) b ; (a + b ) c ; (a + b ) (b + c ); (a + b + c ) (a c )? A vektorok által bezárt szögek megállapítása után felírhatjuk a skaláris szorzatok értékeit: a b = 1 1 cos 90 = 0 (a + b ) a = 2 1 cos 45 = 1 (a + b + c) b = 3 1 cos 54,74 = 1 az AGD - ben: tg φ = 2 1 (a + b ) c = a + b c cos 90 = 0 (a + b ) (b + c) = a b + b 2 + a c + b c = = 1 (a + b + c) (a c) = a 2 + b a + c a a c b c c 2 = = 0 6
7 15. Egy egyenlőszárú, derékszögű háromszögben a befogók hossza 1 egység. Az oldalvektorok: a = CA ; b = CB ; c = BA. Határozd meg a következő skaláris szorzatok értékét: a b ; a c ; b c ; (a b ) c! A vektorok által bezárt szögek megállapítása után felírhatjuk a skaláris szorzatok értékeit: a b = 1 1 cos 90 = 0 a c = 1 2 cos 45 = 1 b c = 1 2 cos 135 = 1 (a b ) c = c c = 2 2 cos 0 = Az egység oldalú, szabályos ABC - ben a = AC ; b = BC ; c = AB. Számítsd ki a következő skaláris szorzatok értékét: a b ; b c ; (b c ) a ; (b + c ) (b c )! A vektorok által bezárt szögek megállapítása után felírhatjuk a skaláris szorzatok értékeit: a b = 1 1 cos 60 = 1 2 b c = 1 1 cos 120 = 1 2 (b c) a = b a c a = 1 1 cos cos 120 = 1 2 ( 1 2 ) = 1 (b + c) (b c) = (b + c) a = b a + c a = 1 1 cos cos 120 = ( 1 2 ) = 0 7
8 17. Egy szabályos hatszög középpontjából három szomszédos csúcsba mutató vektor a ; b ; c. A hatszög oldalának hossza 1 egység. Határozd meg a következő skaláris szorzatok értékét: a b ; a c ; (a b ) c ; (a + b ) c! A vektorok által bezárt szögek megállapítása után felírhatjuk a skaláris szorzatok értékeit: a b = 1 1 cos 60 = 1 2 a c = 1 1 cos 120 = 1 2 (a b ) c = c c = 1 1 cos 0 = 1 (a + b ) c = a c + b c = 1 1 cos cos 60 = = Egy szabályos ABCDEF hatszög oldalainak hossza 1 egység. Számítsd ki a következő skaláris szorzatok értékét: AB DE ; AB FC ; AC AE ; AC CE! A vektorok által bezárt szögek megállapítása után felírhatjuk a skaláris szorzatok értékeit: AB DE = 1 1 cos 180 = 1 AC AE = 3 3 cos 60 = 3 2 AB FC = 1 2 cos 0 = 2 AC CE = 3 3 cos 60 = 3 2 8
9 19. Legyen az ABCD négyzet köré írt körének egy pontja a P pont. Bizonyítsd be, hogy ha a négyzet oldalaiank hossza 1 egység, akkor a) (PA + PC ) (PB + PD ) = 2 b) (PA PC ) (PB PD ) = 0 a) Először írjuk fel a zárójeles kifejezéseket egyszerűbb alakban: PA + PC = PK + KA + PK + KC = PK + KA + PK KA = 2 PK PB + PD = PK + KB + PK + KD = PK + KB + PK KB = 2 PK Ezek alapján adódik a bizonyítandó állítás: (PA + PC ) (PB + PD ) = 2 PK 2 PK = 4 PK 2 = 4 PK 2 = 4r 2 = 4 ( 2 2 ) = 2 2 b) Először írjuk fel a zárójelben szereplő kifejezéseket egyszerűbb alakban: PA PC = CA PB PD = DB Mivel a négyzet átlói merőlegesen felezik egymást, így adódik a bizonyítandó állítás: (PA PC ) (PB PD ) = CA DB = CA DB cos 90 = 0 9
10 20. Bizonyítsd be, hogy a rombusz átlói merőlegesek egymásra! Legyen a két átlóvektor AC és BD. Ebből felírhatjuk a következőt: AC BD = (AD + AB ) (AD AB ) = AD 2 AB 2 = AD 2 AB 2 = a a = 0 Mivel az átlóvektorok skaláris szorzata 0, így a vektorok merőlegesek egymásra. 21. Bizonyítsd be, hogy a paralelogramma átlóinak négyzetösszege megegyezik az oldalak négyzetösszegével! Legyen a két átlóvektor AC és BD. Ebből felírhatjuk a következőt: AC 2 + BD 2 = AC 2 + BD 2 = (AD + AB ) 2 + (AD AB ) 2 = = AD AD AB + AB 2 + AD 2 2 AD AB + AB 2 = 2 AD AB 2 = = 2 AD AB 2 10
11 22. Bizonyítsd be, hogy ha ABCD téglalap és O a tér tetszőleges pontja, akkor OA 2 + OC 2 = OB 2 + OD 2! Az összefűzési szabály segítségével a két oldalt alakítsuk át a következőképpen: OA 2 + (OA + AD + DC ) 2 = (OA + AB ) 2 + (OA + AD ) 2 Ebből zárójelbontás és rendezés után a következő adódik: DC OA DC + 2 AD DC = AB OA AB Mivel a téglalap oldalai merőlegesek, így AD DC = 0, továbbá tudjuk, hogy AB = DC. Ezek alapján azonosságot kapunk: DC OA DC = DC OA AB. 23. Bizonyítsd be, hogy DA BC + DB CA + DC AB = 0, ha A, B, C, D tetszőleges pont! Megfelelő átalakítások után adódik a bizonyítandó állítás: DA BC + DB CA + DC AB = DA (BA + AC ) + DB CA + DC AB = = DA ( AB CA ) + DB CA + DC AB = DA AB DA CA + DB CA + DC AB = = AB (DC DA ) + CA (DB DA ) = AC AB + AB CA = AC AB AB AC = 0 11
12 24. Bizonyítsd be, hogy (a b ) c (a c ) b merőleges a ra! Merőleges: Írjuk fel a két vektor skaláris szorzatát: [(a b ) c (a c) b ] a = (a b ) (c a) (a c) (b a) = 0. Mivel a vektorok skaláris szorzata 0, így a vektorok merőlegesek egymásra. 25. Bizonyítsd be, hogy ha a, b, c, d R +, akkor a 2 + b 2 c 2 + d 2 a c + b d! Legyen v (a; b) és w (c; d). Írjuk fel a két vektor skaláris szorzatát: a c + b d = a 2 + b 2 c 2 + d 2 cos φ. Mivel cos φ 1, így adódik a bizonyítandó állítás: a c + b d a 2 + b 2 c 2 + d Bizonyítsd be, hogy bármely a, b, c valós számra a + b + c 3 (a 2 + b 2 + c 2 )! Legyen v (a; b; c) és w (1; 1; 1). Írjuk fel a két vektor skaláris szorzatát: a 1 + b 1 + c 1 = a 2 + b 2 + c cos φ. Ebből rendezés után a következő adódik: a + b + c = 3 (a 2 + b 2 + c 2 ) cos φ. Mivel cos φ 1, így adódik az állítás: a + b + c 3 (a 2 + b 2 + c 2 ). 27. Bizonyítsd be, hogy 4a + 3b a b ! Mikor teljesül az egyenlőség? Legyen v (a; 3) és w (4; b). Írjuk fel a két vektor skaláris szorzatát: 4a + 3b = a b 2 cos φ. Mivel cos φ 1, így adódik a bizonyítandó állítás: 4a + 3b a b 2. A két oldal akkor egyenlő, ha φ = 0, vagyis a b = 3 4 =
13 28. Mivel egyenlő a következő vektoriális szorzatok: i j; j k ; k i; j i; k j; i k? A vektoriális szorzat definíciójából a következők adódnak: i j = k j k = i k i = j j i = k k j = i i k = j 29. Számítsd ki az ABCD paralelogramma területét, ha A (1; 2; 3), B(2; 1; 3) és C(5; 2; 3)! A paralelogramma területét felírhatjuk következőképpen: AB BC = AB BC sin φ. Először számítsuk ki az oldalvektorok hosszát: AB = ( 3) = 10 BC = ( 1) 2 + ( 6) 2 = 46 AC = ( 4) 2 + ( 6) 2 = 68 Ezt követően koszinusz - tétel segítségével számítsuk ki a közbezárt szöget: ( 68) 2 = ( 10) 2 + ( 46) cos φ φ 106,24 Ezek alapján a megoldás: T = AB BC = sin 106,24 20, Határozd meg az a b koordinátáit, ha a (2; 3) és b ( 1; 3)! Először számítsuk ki a két vektor hosszát: a = = 13 b = ( 1) 2 + ( 3) 2 = 10 Ezt követően számítsuk ki a két vektor hajlásszögét: cos φ = 2 ( 1) + 3 ( 3) φ 164,74 Ebből számítsuk ki a következőt: a b = a b sin φ = sin 164,74 = 3. Ezek alapján a megoldás: a b (0; 0; 3). 13
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Vektorok II.
Vektorok II. DEFINÍCIÓ: (Vektorok hajlásszöge) Két vektor hajlásszögének azt a φ (0 φ 180 ) szöget nevezzük, amelyet a vektorok egy közös pontból felmért reprezentánsai által meghatározott félegyenesek
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. Tekintsük az alábbi szabályos hatszögben a következő vektorokat: a = AB és b = AF. Add meg az FO, DC, AO, AC, BE, FB, CE, DF vektorok koordinátáit az (a ; b ) koordinátarendszerben! Alkalmazzuk
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. Határozd meg a szakasz hosszát, ha a végpontok koordinátái: A ( 1; ) és B (5; )! A szakasz hosszához számítsuk ki a két pont távolságát: d AB = AB = (5 ( 1)) + ( ) = 6 + 1 = 7 6,08.. Határozd
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. Írd fel a K (0; 2) középpontú 7 sugarú kör egyenletét! A keresett kör egyenletét felírhatjuk a képletbe való behelyettesítéssel: x 2 + (y + 2) 2 = 49. 2. Írd fel annak a körnek az egyenletét,
Vektorok és koordinátageometria
Vektorok és koordinátageometria Vektorral kapcsolatos alapfogalmak http://zanza.tv/matematika/geometria/vektorok-bevezetese Definíció: Ha egy szakasz két végpontját megkülönböztetjük egymástól oly módon,
Koordinátageometria. M veletek vektorokkal grakusan. Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1
Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1 Koordinátageometria M veletek vektorokkal grakusan 1. Az ABCD négyzet oldalvektorai közül a = AB és b = BC. Adja meg az AC és BD vektorokat a
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Koordináta-geometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
5. előadás. Skaláris szorzás
5. előadás Skaláris szorzás Bevezetés Két vektor hajlásszöge: a vektorokkal párhuzamos és egyirányú, egy pontból induló félegyenesek konvex szöge. φ Bevezetés Definíció: Két vektor skaláris szorzata abszolút
Vektorok összeadása, kivonása, szorzás számmal, koordináták
Vektorok összeadása, kivonása, szorzás számmal, koordináták 1. Mik lesznek a P (3, 4, 8) pont C (3, 7, 2) pontra vonatkozó tükörképének a koordinátái? 2. Egy szabályos hatszög középpontja K (4, 1, 4),
Koordinátageometria Megoldások
005-0XX Középszint Koordinátageometria Megoldások 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. és B 3 1; Írja fel az AB szakasz 1 3 + 4 + 1 3 F ; = F ;1 ) Egy kör sugarának
Exponenciális és logaritmusos kifejezések, egyenletek
Eponenciális és logaritmusos kifejezések, egyenletek. Hatványozási azonosságok. Számítsd ki a következő hatványok pontos értékét! a) 8 b) 4 c) d) 7 e) f) 9 0, g) 0, 9 h) 6 0, 7,, i) 8 j) 6 k) 4 l) 49,.
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Vektorok I.
Vektorok I. DEFINÍCIÓ: (Vektor) Az egyenlő hosszúságú és egyirányú irányított (kezdő és végponttal rendelkező) szakaszoknak a halmazát vektornak nevezzük. Jele: v ; v; AB (ahol A a vektor kezdőpontja,
Koordináta-geometria feladatok (középszint)
Koordináta-geometria feladatok (középszint) 1. (KSZÉV Minta (1) 2004.05/I/4) Adott az A(2; 5) és B(1; 3) pont. Adja meg az AB szakasz felezőpontjának koordinátáit! 2. (KSZÉV Minta (2) 2004.05/I/7) Egy
Matematika 11. osztály
ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Humán tagozat Matematika 11. osztály II. rész: Trigonometria Készítette: Balázs Ádám Budapest, 018 . Tartalomjegyzék Tartalomjegyzék II. rész: Trigonometria...........................
Trigonometria Megoldások. 1) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( )
Trigonometria Megoldások Trigonometria - megoldások ) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( ) akkor a háromszög egyenlő szárú vagy derékszögű!
λ 1 u 1 + λ 2 v 1 + λ 3 w 1 = 0 λ 1 u 2 + λ 2 v 2 + λ 3 w 2 = 0 λ 1 u 3 + λ 2 v 3 + λ 3 w 3 = 0
Vektorok a térben Egy (v 1,v 2,v 3 ) valós számokból álló hármast vektornak nevezzünk a térben (R 3 -ban). Használni fogjuk a v = (v 1,v 2,v 3 ) jelölést. A v 1,v 2,v 3 -at a v vektor komponenseinek nevezzük.
EGYBEVÁGÓSÁGI TRANSZFORMÁCIÓK TENGELYES TÜKRÖZÉS
GEOMETRIA 1. Az A, B, C egy egyenes pontjai (ebben a sorrendben), AB szakasz 5 cm, BC szakasz 17 cm. F 1 az AB szakasz, F 2 a BC szakasz felezőpontja. Mekkora az F 1 F 2 szakasz? 2. Az AB és CD szakaszok
ANALITIKUS MÉRTAN I. VEKTORALGEBRA. 1. Adott egy ABCD tetraéder. Határozzuk meg az alábbi összegeket: a) AD + BC = BD + AC.
ANALITIKUS MÉRTAN INFORMATIKA CSOPORT I. VEKTORALGEBRA 1. Feladatlap Műveletek vektorokkal 1. Adott egy ABCD tetraéder. Határozzuk meg az alábbi összegeket: a) AB + BD + DC; b) AD + CB + DC; c) AB + BC
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. Koordináta-geometria és B 3 1; Írja fel az AB szakasz 1 3 4
Az Országos Középiskolai Tanulmányi Verseny tanévi második fordulójának feladatmegoldásai. x 2 sin x cos (2x) < 1 x.
Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi második fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Oldja meg a következő egyenlőtlenséget, ha x > 0: x 2 sin
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. Egy háromszög egyik oldala 10 cm hosszú, s a rajta fekvő két szög 50 és 70. Számítsd ki a hiányzó szöget és oldalakat! Legyen a = 10 cm; β = 50 és γ = 70. A két szög ismeretében a harmadik
Síkgeometria 12. évfolyam. Szögek, szögpárok és fajtáik
Szögek, szögpárok és fajtáik Szögfajták: Jelölés: Mindkét esetben: α + β = 180 Pótszögek: Olyan szögek, amelyeknek összege 90. Oldalak szerint csoportosítva A háromszögek Általános háromszög: Minden oldala
4. Vektorok. I. Feladatok. vektor, ha a b, c vektorok által bezárt szög 60? 1. Milyen hosszú a v = a+
4 Vektorok I Feladatok Milyen hosszú a v a b c vektor, ha a b, c vektorok által bezárt szög 60? c b, a, b, c és az a és Mit állíthatunk az BCD konvex négyszögről, ha B D B BC CB CD DC D 0? Igaz-e, hogy
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
I. feladatsor. 9x x x 2 6x x 9x. 12x 9x2 3. 9x 2 + x. x(x + 3) 50 (d) f(x) = 8x + 4 x(x 2 25)
I. feladatsor () Határozza meg az alábbi függvények határozatlan integrálját: (a) f(x) = (b) f(x) = x + 4 9x + (c) f(x) = (d) f(x) = 6x + 5 5x + f(x) = (f) f(x) = x + x + 5 x 6x + (g) f(x) = (h) f(x) =
A kör. A kör egyenlete
A kör egyenlete A kör A kör egyenlete 8 a) x + y 6 b) x + y c) 6x + 6y d) x + y 9 8 a) x + y 6 + 9 b) x + y c) x + y a + b 8 a) (x - ) + (y - ) 9, rendezve x + y - 8x - y + b) x + y - 6x - 6y + c) x +
O ( 0, 0, 0 ) A ( 4, 0, 0 ) B ( 4, 3, 0 ) C ( 0, 3, 0 ) D ( 4, 0, 5 ) E ( 4, 3, 5 ) F ( 0, 3, 5 ) G ( 0, 0, 5 )
1. feladat Írjuk föl a következő vektorokat! AC, BF, BG, DF, BD, AG, GB Írjuk föl ezen vektorok egységvektorát is! a=3 m b= 4 m c= m Írjuk föl az egyes pontok koordinátáit: O ( 0, 0, 0 ) A ( 4, 0, 0 )
Vektorgeometria (1) First Prev Next Last Go Back Full Screen Close Quit
Vektorgeometria (1) First Prev Next Last Go Back Full Screen Close Quit 1. A térbeli irányított szakaszokat vektoroknak hívjuk. Két vektort egyenlőnek tekintünk, ha párhuzamos eltolással fedésbe hozhatók.
Helyvektorok, műveletek, vektorok a koordináta-rendszerben
Helyvektorok, műveletek, vektorok a koordináta-rendszerben. Rajzold meg az alábbi helyvektorokat a derékszögű koordináta-rendszerben, majd számítsd ki a hosszúságukat! a) (4 ) b) ( 5 ) c) ( 6 ) d) (4 )
Feladatok. 1. a) Mekkora egy 5 cm oldalú négyzet átlója?
Feladatok 1. a) Mekkora egy 5 cm oldalú négyzet átlója? A háromszög derékszögű, ezért írjuk fel a Pitagorasz-tételt! e 5 5 50 e 50 7,07 cm b) Mekkora egy a oldalú négyzet átlója? e a a a e a. Egy négyzet
Pitagorasz-tétel. A háromszög derékszögű, ezért írjuk fel a Pitagorasz-tételt! 2 2 2
1. a) Mekkora egy 5 cm oldalú négyzet átlója? Pitagorasz-tétel A háromszög derékszögű, ezért írjuk fel a Pitagorasz-tételt! e 5 5 50 e 50 7,07 cm b) Mekkora egy a oldalú négyzet átlója? e a a a e a. Egy
Koordináta-geometria feladatok (emelt szint)
Koordináta-geometria feladatok (emelt szint) 1. (ESZÉV Minta (2) 2004.05/7) Egy ABC háromszögben CAB = 30, az ACB = 45. A háromszög két csúcsának koordinátái: A(2; 2) és C(4; 2). Határozza meg a harmadik
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA MATEmATIkA I 8 VIII VEkTOROk 1 VEkTOR Vektoron irányított szakaszt értünk Jelölése: stb Vektorok hossza A vektor abszolút értéke az irányított szakasz hossza Ha a vektor hossza egységnyi akkor
9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás:
9. Trigonometria I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! x = cos 150 ; y = sin 5 ; z = tg ( 60 ) (A) z < x < y (B) x < y < z (C) y < x < z (D) z < y
TRIGONOMETRIA ISMÉTLÉS DERÉKSZÖGŰ HÁROMSZÖG ÉS A HEGYESSZÖGEK SZÖGFÜGGVÉNYEI
TRIGONOMETRIA ISMÉTLÉS DERÉKSZÖGŰ HÁROMSZÖG ÉS A HEGYESSZÖGEK SZÖGFÜGGVÉNYEI http://zanza.tv/matematika/geometria/thalesz-tetele http://zanza.tv/matematika/geometria/pitagorasz-tetel http://zanza.tv/matematika/geometria/nevezetes-tetelek-derekszogu-haromszogben
, D(-1; 1). A B csúcs koordinátáit az y = + -. A trapéz BD
Kör és egyenes kölcsönös helyzete Kör érintôje 7 9 A húr hossza: egység 9 A ( ) ponton átmenô legrövidebb húr merôleges a K szakaszra, ahol K az adott kör középpontja, feltéve, hogy a kör belsejében van
Vektoralgebra. 4. fejezet. Vektorok összeadása, kivonása és számmal szorzása. Feladatok
4. fejezet Vektoralgebra Vektorok összeadása, kivonása és számmal szorzása T 4.1 (Háromszögegyenl tlenség) Minden a, b vektorpárra a + b a + b. T 4.2 (Paralelogrammaszabály) Ha az a és b vektor különböz
3 függvény. Számítsd ki az f 4 f 3 f 3 f 4. egyenlet valós megoldásait! 3 1, 3 és 5 3 1
Érettségi, M, I-es feladatsor, természettudomány.. Számítsd ki a C! összeget! log 4. Határozd meg a. Számítsd ki az egyenlet valós megoldásait! összeg értékét, ha és az 4. Adott az f : 0,, f. Adottak az
Hasonlósági transzformációk II. (Befogó -, magasság tétel; hasonló alakzatok)
Hasonlósági transzformációk II. (Befogó -, magasság tétel; hasonló alakzatok) DEFINÍCIÓ: (Hasonló alakzatok) Két alakzat hasonló, ha van olyan hasonlósági transzformáció, amely az egyik alakzatot a másikba
Koordináta-geometria II.
Koordináta-geometria II. DEFINÍCIÓ: (Alakzat egyenlete) A síkon adott egy derékszögű koordináta rendszer. A síkban levő alakzat egyenlete olyan f (x, y) = 0 egyenlet, amelyet azoknak és csak azoknak a
Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg
Analitikus mértan 3. FELADATLAP Síkbeli egyenesek 1. Írjuk fel annak az egyenesnek a paraméteres egyenleteit, amely (i) áthalad az M 0 (1, 2) ponton és párhuzamos a a(3, 1) vektorral; (ii) áthalad az origón
2004_02/10 Egy derékszögű trapéz alapjainak hossza a, illetve 2a. A rövidebb szára szintén a, a hosszabb b hosszúságú.
Geometria háromszögek, négyszögek 2004_01/10 Az ABC háromszög C csúcsánál derékszög van. A derékszöget a CT és CD szakaszok három egyenlő részre osztják. A CT szakasz a háromszög egyik magassága is egyben.
14. Vektorok. I. Elméleti összefoglaló. Vektor. Az irányított szakaszokat vektoroknak nevezzük:
14. Vektorok I. Elméleti összefoglaló Vektor Az irányított szakaszokat vektoroknak nevezzük: Jelölés: a kezdő és a végpont megadásával: AB ; egy kisbetűvel: v, írásban aláhúzás is szokásos: a; nyomtatásban
Síkbeli egyenesek Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg
Analitikus mértan 5. FELADATLAP Síkbeli egyenesek 5.1. Írjuk fel annak az egyenesnek a paraméteres egyenleteit, amely (i) áthalad az M 0 (1, 2) ponton és párhuzamos a a(3, 1) vektorral; (ii) áthalad az
9. Írjuk fel annak a síknak az egyenletét, amely átmegy az M 0(1, 2, 3) ponton és. egyenessel;
Síkok és egyenesek FELADATLAP Írjuk fel annak az egyenesnek az egyenletét, amely átmegy az M 0(,, ) ponton és a) az M(,, 0) ponton; b) párhuzamos a d(,, 5) vektorral; c) merőleges a x y + z 0 = 0 síkra;
Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:
Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x
10. Koordinátageometria
I. Nulladik ZH-ban láttuk: 0. Koordinátageometria. Melyek azok a P x; y pontok, amelyek koordinátái kielégítik az Ábrázolja a megoldáshalmazt a koordináta-síkon! x y x 0 egyenlőtlenséget? ELTE 00. szeptember
Az 1. forduló feladatainak megoldása
Az 1. forduló feladatainak megoldása 1. Bizonyítsa be, hogy a kocka éléből, lapátlójából és testátlójából háromszög szerkeszthető, és ennek a háromszögnek van két egymásra merőleges súlyvonala! Megoldás:
Nagy András. Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 2010.
Nagy András Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 010. Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 1) Döntsd el, hogy a P pont illeszkedik-e az e egyenesre
A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny második forduló MATEMATIKA I. KATEGÓRIA ( SZAKKÖZÉPISKOLA ) Javítási-értékelési útmutató
OktatásiHivatal A 014/01. tanévi Országos Középiskolai Tanulmányi Verseny második forduló MATEMATIKA I. KATEGÓRIA ( SZAKKÖZÉPISKOLA ) Javítási-értékelési útmutató 1. feladat: Adja meg az összes olyan (x,
15. Koordinátageometria
I. Elméleti összefoglaló Koordinátákkal adott vektorok 15. Koordinátageometria Ha a(a ; a ) és b(b ; b ) a sík két vektora, λ valós szám, akkor az a vektor hossza: a = a + a a két vektor összege : a +
Analitikus geometria c. gyakorlat
matematikatanári szak (2016/2017-es tanév, 1. félév) 1. feladatsor (M veletek vektorokkal) 1) Az a vektor hossza kétszerese a b vektor hosszának. Mekkora a két vektor szöge, ha az a b vektor mer leges
I. A négyzetgyökvonás
Definíció: Négyzetgyök a ( a : a a 0 I. A négyzetgyökvonás a ) jelenti azt a nem negatív számot, amelynek a négyzete a. a 0 b : b b R A négyzetgyök-függvény értéke is csak nem negatív lehet. Ha a b-t abszolút
FELVÉTELI VIZSGA, szeptember 12.
BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR FELVÉTELI VIZSGA, 08. szeptember. Írásbeli vizsga MATEMATIKÁBÓL FONTOS TUDNIVALÓK: A feleletválasztós feladatok,,a rész esetén egy
egyenletrendszert. Az egyenlő együtthatók módszerét alkalmazhatjuk. sin 2 x = 1 és cosy = 0.
Magyar Ifjúság. X. TRIGONOMETRIKUS FÜGGVÉNYEK A trigonometrikus egyenletrendszerek megoldása során kísérletezhetünk új változók bevezetésével, azonosságok alkalmazásával, helyettesítő módszerrel vagy más,
Vektoralgebra. 1.) Mekkora a pillanatnyi sebesség 3 s elteltével, ha a kezdősebesség (15;9;7) m/s, a gravitációs gyorsulás pedig (0;0;-10) m/s 2?
Vektoralgebra Elmélet: http://digitus.itk.ppke.hu/~b_novak/dmat/vektorfolcop.pdf Mikor érdemes más, nem ortonormált bázist alkalmazni? Fizikában a ferde hajításoknál megéri úgynevezett ferdeszögű koordináta-rendszert
Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint
TÁMOP-3.1.4-08/-009-0011 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint Vasvár, 010.
= 7, a 3. = 7; x - 4y =-8; x + 2y = 10; x + y = 7. C-bôl induló szögfelezô: (-2; 3). PA + PB = PA 1. (8; -7), n(7; 8), 7x + 8y = 10, x = 0 & P 0;
98 Az egyenes egyenletei. a) A( 0) B(0 6) AB_ - 6i& n( ) x + y = b) x - y =- c) 6x - y = 0 d) 6x + y = e) x + y = f) x + y = a g) x - y = a.. A(a 0) B(0 b) AB_ -a bi n (b a) bx + ay = ab osszuk el a $
Lehet hogy igaz, de nem biztos. Biztosan igaz. Lehetetlen. A paralelogrammának van szimmetria-középpontja. b) A trapéznak két szimmetriatengelye van.
Geometria, sokszögek, szögek, -, 2004_01/5 Lili rajzolt néhány síkidomot: egy háromszöget, egy deltoidot, egy paralelogrammát és egy trapézt. A következő állítások ezekre vonatkoznak. Tegyél * jelet a
HASONLÓSÁGGAL KAPCSOLATOS FELADATOK. 5 cm 3 cm. 2,4 cm
HASONLÓSÁGGAL KAPCSOLATOS FELADATOK Egyszerű, hasonlósággal kapcsolatos feladatok 1. Határozd meg az x, y és z szakaszok hosszát! y cm cm z x 2, cm 2. Határozd meg az x, y, z és u szakaszok hosszát! x
VEKTOROK. 1. B Legyen a( 3; 2; 4), b( 2; 1; 2), c(3; 4; 5), d(8; 5; 7). (a) 2a 4c + 6d [(30; 10; 30)]
Bodó Beáta 1 VEKTOROK 1. B Legyen a( ; 2; 4), b( 2; 1; 2), c(; 4; 5), d(8; 5; 7). (a) 2a 4c + 6d [(0; 10; 0)] (b) c + b 7a [(18; 15; 29)] (c) 2d c + b [ (5; ; ) = 6, 56] (d) 4a + 8b 7c [ ( 49; 44; 5) =
Analitikus geometria c. gyakorlat (2018/19-es tanév, 1. félév) 1. feladatsor (Síkbeli koordinátageometria vektorok alkalmazása nélkül)
1. feladatsor (Síkbeli koordinátageometria vektorok alkalmazása nélkül) A tér egy σ síkjában vegyünk két egymásra mer leges egyenest, melyeket jelöljön x és y, a metszéspontjukat pedig jelölje O. A két
4 = 0 egyenlet csak. 4 = 0 egyenletből behelyettesítés és egyszerűsítés után. adódik, ennek az egyenletnek két valós megoldása van, mégpedig
Oktatási Hivatal Az forduló feladatainak megoldása (Szakközépiskola) Melyek azok az m Z számok, amelyekre az ( m ) x mx = 0 egyenletnek legfeljebb egy, az m x + 3mx 4 = 0 egyenletnek legalább egy valós
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Trigonometria I.
Trigonometria I. Hegyes szögek szögfüggvényei: Az α hegyesszöggel rendelkező derékszögű háromszögek egymáshoz hasonlóak, mert szögeik megegyeznek. Így oldalhosszaik aránya mindig állandó. Az α szögtől
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. Oldd meg a következő exponenciális egyenletrendszereket! (Alaphalmaz: R) 5 3 x 2 2 y = 7 2 3 x + 2 y = 10 7 x+1 6 y+3 = 1 6 y+2 7 x = 5 (6 y + 1) c) 25 (5 x ) y = 1 3 y 27 x = 3 Megoldás:
1. Legyen egy háromszög három oldalának a hossza a, b, c. Bizonyítsuk be, hogy Mikor állhat fenn egyenlőség? Kántor Sándorné, Debrecen
10. osztály 1. Legyen egy háromszög három oldalának a hossza a, b, c. Bizonyítsuk be, hogy ( a + b + c) 3 4 ab + bc + ca Mikor állhat fenn egyenlőség? Kántor Sándorné, Debrecen A feladatban szereplő kettős
1. FELADAT: SZÁMÍTSD KI A KÖVETKEZŐ SZÁMKIFEJEZÉSEK ÉRTÉKEIT:
1. FELADAT: SZÁMÍTSD KI A KÖVETKEZŐ SZÁMKIFEJEZÉSEK ÉRTÉKEIT: a) ( 7) + ( 12) = 19 b) ( 24) + (+15) = 9 c) ( 5) + ( 27) = 32 d) (+19) + (+11) = +30 e) ( 7) ( 25) = +175 f) ( 5) (+14) = 70 g) ( 36) (+6)
Koordinátageometria. , azaz ( ) a B halmazt pontosan azok a pontok alkotják, amelynek koordinátáira:
005-0XX Emelt szint Koordinátageometria 1) a) Egy derékszögű háromszög egyik oldalegyenese valamelyik koordinátatengely, egy másik oldalegyenesének egyenlete x + y = 10, egyik csúcsa az origó. Hány ilyen
Skaláris szorzat: a b cos, ahol α a két vektor által bezárt szög.
1 Összeadás: Legyen a (7; 3) és b (- 2; 4), akkor az összegük a + b (7 + (-2); 3 + 4) = (5; 7) Kivonás: Legyen a (7; 3) és b (- 2; 4), akkor a különbségük a b (7 - (-2); 3-4)=(9; - 1) Valós számmal való
Gyökvonás. Másodfokú egyenlet. 3. Az egyenlet megoldása nélkül határozd meg, hogy a következő egyenleteknek mennyi gyöke van!
1. Melyik a nagyobb? a) 6 5 vagy 5 7 b) vagy 11 10 vagy Gyökvonás 5 11 vagy 6 8 55 e) 7 vagy 60 16 1. Hozd egyszerűbb alakra a következő kifejezéseket! a) 7 18 b) 1 5 75 8 160 810 650 8a 5 a 7a e) 15a
Minimum követelmények matematika tantárgyból 11. évfolyamon
Minimum követelmények matematika tantárgyból. évfolyamon A hatványozás általánosítása pozitív alap esetén racionális kitevőre. Műveletek hatványokkal. A, a 0 függvény. Az eponenciális függvény. Vizsgálata
I. Vektorok. Adott A (2; 5) és B ( - 3; 4) pontok. (ld. ábra) A két pont által meghatározott vektor:
I. Vektorok 1. Vektorok összege Általánosan: Az ábra alapján Adott: a(4; 1) és b(; 3) a + b (4 + ; 1 + 3) = (6; ) a(a 1 ; a ) és b(b 1 ; b ) a + b(a 1 + b 1 ; a + b ). Vektorok különbsége Általánosan:
Oktatási Hivatal. 1 pont. A feltételek alapján felírhatók az. összevonás után az. 1 pont
Oktatási Hivatal Öt pozitív egész szám egy számtani sorozat első öt eleme A sorozatnak a különbsége prímszám Tudjuk hogy az első négy szám köbének összege megegyezik az ezen öt tag közül vett páros sorszámú
Fizika 1i, 2018 őszi félév, 1. gyakorlat
Fizika i, 08 őszi félév,. gyakorlat Szükséges előismeretek: vektorok, műveletek vektorokkal (összeadás, kivonás, skalárral való szorzás, skaláris szorzat és vektoriális szorzat, abszolút érték), vektorok
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Paraméter
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Paraméter A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Hatvány, gyök, normálalak
Hatvány, gyök, normálalak 1. Számítsd ki a következő hatványok pontos értékét! 3 5 3 3 1 4 3 3 4 1 7 3 3 75 100 3 0,8 ( ) 6 3 1 3 5 3 1 3 0 999. 3. Számológép használata nélkül számítsd ki a következő
4. Vektoralgebra (megoldások)
(megoldások).. a) m n = (a + b) (a b) = 6b b) 4m + 4n = 8a ; c) m n = a + 5 b ; d) m + n = 9+ a + 9 b.. a) a 4b= 0 m n ; b) 5a + b= 8 m n ; c) a + b= 7 m + n ; d) a b = 4+ m + n. 0 0 5 4. A szabályos hatszög
A kör. A kör egyenlete
A kör egyenlete A kör A kör egyenlete 8 a) x + y 6 b) x + y c) 6x + 6y d) x + y 9 8 a) x + y 6 + 9 b) x + y c) x + y a + b 8 a) (x - ) + (y - ) 9, rendezve x + y - 8x - 0y + 0 b) x + y - 6x - 6y + 0 c)
Szélsőérték feladatok megoldása
Szélsőérték feladatok megoldása A z = f (x,y) függvény lokális szélsőértékének meghatározása: A. Szükséges feltétel: f x (x,y) = 0 f y (x,y) = 0 egyenletrendszer megoldása, amire a továbbiakban az x =
1. Feladatlap - VEKTORALGEBRA. Műveletek vektorokkal. AD + BC = BD + AC. Igaz ez az összefüggés
1 Feladatlap - VEKTORALGEBRA Műveletek vektorokkal 1 Adott egy ABCD tetraéder Határozzuk meg az alábbi összegeket: a) AB + BD + DC; b) AD + CB + DC; c) AB + BC + DA + CD 2 Adott az ABCD tetraéder Igazoljuk,
12. Trigonometria I.
Trigonometria I I Elméleti összefoglaló Szögmérés A szög mérésének két gyakran használt módja van: fokban, illetve radiánban (ívmértékben) mérünk A teljesszög 0, ennek a 0-ad része az A szög nagyságát
Országos Középiskolai Tanulmányi Verseny 2011/2012 Matematika I. kategória (SZAKKÖZÉPISKOLA) 2. forduló - megoldások. 1 pont Ekkor
Okta tási Hivatal Országos Középiskolai Tanulmányi Verseny 0/0 Matematika I. kategória (SZAKKÖZÉPISKOLA). forduló - megoldások. Az valós számra teljesül a 3 sin sin cos sin egyenlőség. Milyen értékeket
4) Az ABCD négyzet oldalvektorai körül a=ab és b=bc. Adja meg az AC és BD vektorokat a és b vektorral kifejezve!
(9/1) Vektorok, Koordináta Geometria 1) Szerkessze meg az a + b és az a b vektort, ha a és b egy szabályos háromszögnek a mellékelt ábra szerinti oldalvektorai! 2) Az ABC háromszög két oldalának vektora
Matematika A1a Analízis
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Vektorok StKis, EIC 2019-02-12 Wettl Ferenc ALGEBRA
5 1 6 (2x3 + 4) 7. 4 ( ctg(4x + 2)) + c = 3 4 ctg(4x + 2) + c ] 12 (2x6 + 9) 20 ln(5x4 + 17) + c ch(8x) 20 ln 5x c = 11
Bodó Beáta ISMÉTLÉS. ch(6 d.. 4.. 6. 7. 8. 9..... 4.. e (8 d ch (9 + 7 d ( + 4 6 d 7 8 + d sin (4 + d cos sin d 7 ( 6 + 9 4 d INTEGRÁLSZÁMÍTÁS 7 6 sh(6 + c 8 e(8 + c 9 th(9 + 7 + c 6 ( + 4 7 + c = 7 4
Összeállította: dr. Leitold Adrien egyetemi docens
Az R 3 tér geometriája Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok Vektor: irányított szakasz Jel.: a, a, a, AB, Jellemzői: irány, hosszúság, (abszolút érték) jel.: a Speciális
Érettségi feladatok: Síkgeometria 1/6
Érettségi feladatok: Síkgeometria 1/6 2005. május 10. 4. Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! A: A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria
1) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
13. Trigonometria II.
Trigonometria II I Elméleti összefoglaló Tetszőleges α szög szinusza a koordinátasíkon az i vektortól az óramutató járásával ellentétes irányban α szöggel elforgatott e egységvektor második koordinátája
XX. Nemzetközi Magyar Matematika Verseny
XX. Nemzetközi Magyar Matematika Verseny Bonyhád, 011. március 11 15. 10. osztály 1. feladat: Legyen egy háromszög három oldalának a hossza a, b és c. Bizonyítsuk be, hogy 3 (a+b+c) ab+bc+ca 4 Mikor állhat
XVIII. Nemzetközi Magyar Matematika Verseny
9. osztály 1. feladat: Oldjuk meg a természetes számok halmazán az 1 1 1 egyenletet? x y 009 Kántor Sándor (Debrecen). feladat: B Az ABCD deltoidban az A és C csúcsnál derékszög van, és a BD átló 1 cm.
Szélsőérték problémák elemi megoldása II. rész Geometriai szélsőértékek Tuzson Zoltán, Székelyudvarhely
Szélsőérték problémák elemi megoldása II. rész Geometriai szélsőértékek Tuzson Zoltán, Székelyudvarhely Ebben a részben geometriai problémák szélsőértékeinek a megállapításával foglalkozunk, a síkgeometriai
15. Koordinátageometria
I. Elméleti összefoglaló Koordinátákkal adott vektorok 15. Koordinátageometria Ha a(a ; a ) és b(b ; b ) a sík két vektora, λ valós szám, akkor az a vektor hossza: a = a + a a két vektor összege : a +
Koordináta - geometria I.
Koordináta - geometria I A koordináta geometria témaköre geometriai problémákat old meg algebrai módszerekkel úgy, hogy a geometriai fogalmaknak algebrai fogalmakat feleltet meg: a pontokat, vektorokat
Összeállította: dr. Leitold Adrien egyetemi docens
Skaláris szorzat az R n vektortérben Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok skaláris szorzata Két R n -beli vektor skaláris szorzata: Legyen a = (a 1,a 2,,a n ) és b
5. házi feladat. AB, CD kitér élpárra történ tükrözések: Az ered transzformáció: mivel az origó xpont, így nincs szükség homogénkoordinátás
5. házi feladat 1.feladat A csúcsok: A = (0, 1, 1) T, B = (0, 1, 1) T, C = (1, 0, 0) T, D = ( 1, 0, 0) T AB, CD kitér élpárra történ tükrözések: 1 0 0 T AB = 0 1 0, elotlási rész:(i T AB )A = (0, 0, )
A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny második forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató
Oktatási Hivatal A 0/04 tanévi Országos Középiskolai Tanulmányi erseny második forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató A 57 olyan háromjegyű szám, amelynek számjegyei
Megoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) 1. Határozd meg a következő kifejezésekben a c értékét!
Megoldások. Határozd meg a következő kifejezésekben a c értékét! log 4 = c log 7 = c log 5 5 = c lg 0 = c log 7 49 = c A feladatok megoldásához használjuk a definíciót: log a b = c b = a c. log 4 = c 4
MATEMATIKA C 12. évfolyam 4. modul Még egyszer!
MATEMATIKA C 1. évfolyam 4. modul Még egyszer! Készítette: Kovács Károlyné Matematika C 1. évfolyam 4. modul: Még eygszer! Tanári útmutató A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok