Adatsorok jellegadó értékei
|
|
- Virág Hegedüsné
- 6 évvel ezelőtt
- Látták:
Átírás
1 Adatsorok jellegadó értéke Varga Ágnes egyetem tanársegéd Terület és térnformatka kvanttatív elemzés módszerek BCE Geo Intézet
2 Terület elemzés forgatókönyve vacsora hasonlat Terület elemzés forgatókönyve Kutatás (elemzés) kérdés meghatározása Vzsgálat terület keretének meghatározása Egy vacsora forgatókönyve Mt főzzünk? Menny vendéget várunk? Menny emberre főzünk? Szükséges adatok beszerzése adott terület sznten Elemzés módszertan kválasztása a kutatás kérdés megválaszolásához Elemzés Eredmények vzualzácója (térképek, grafkonok) és magyarázata. Hozzávalók beszerzése az elkészítendő ételhez a létszámhoz gazítva. Mlyen eszközt, eljárást válasszunk az étel elkészítéséhez? Étel elkészítése. Tálalás, felszolgálás!
3 Adatsorok jellegadó értéke Középértékek Számtan átlag / súlyozott számtan átlag Mértan átlag Helyzet középértékek (módusz, medán) Szélső értékek Maxmum Mnmum Adatsor terjedelme és szórása (átvezet a terület egyenlőtlenség mutatók felé) Terjedelem-típusú mutatók Szórás-típusú mutatók
4 Középértékek: átlagok Számtan átlag Az eredet számok helyébe helyettesítve azok összege változatlan n db adat (x ) Excel f x = ÁTLAG() Súlyozott számtan átlag n db fajlagos adat (y ) Súly (f ): a fajlagos mutató nevezőjében szereplő adat Mértan átlag Az eredet számok helyébe helyettesítve azok szorzata változatlan n db adat (x ) x * n n x 1 x n n x x 1 x 2... x y... x y n f f
5 Átlag szerepe a terület kutatásokban Egyszerű összehasonlítás Egy másk terület sznt átlaga hogyan vszonyul a vzsgált terület egységem értékéhez (lsd. alsó ábra) Vagy az adott terület sznt értékének kfejezése a magasabb terület egység százalékában (lsd. jobb oldal ábra) Súlyozatlan és súlyozott átlag!
6 Helyzet középértékek Medán Az az érték, amnél ksebb és nagyobb adatok száma egyenlő (felező pont) Extrém adatokat tartalmazó adatsorok esetében érdemes használn Medán/átlag: egyenlőtlenség mutató (mnél ksebb, annál nagyobb az egyenlőtlenség) Excel f x = MEDIÁN() Kvantlsek: kvartls (negyedelő), kvntls (ötödölő), decls (tzedelő), percentls (századoló)
7 Helyzet középértékek Módusz ( dvatos érték ) A legtöbbször előforduló érték Lehet többmóduszú (többcsúcsú) adatsor s Excel f x = MÓDUSZ() Módusz a gyakorlatban Melyk OP-ben valósult meg a legtöbb projekt? (kódolás/csak számok esetén) Mely borvdékbe tartozk a legtöbb haza településünk? (kódolás/csak számok esetén) Pozícóváltás két dőpont között melyk volt a leggyakorbb?
8 A szélső értékek és a terjedelem típusú egyenlőtlenség mutatók Maxmum Az adatsor legnagyobb értéke (x max ) Excel f x = MAX() Mnmum Az adatsor legksebb értéke (x mn ) Excel f x = MIN() Alapja a terjedelem típusú egyenlőtlenség mutatóknak Range (szóródás terjedelme): Legnagyobb és legksebb értéket felvevő terület egység között különbség Pl: EU egyes tagországaban NUTS3-as sznten mekkora a polarzáltság? Range-arány (adatsor terjedelme) Legnagyobb érték hányszorosa a legksebbnek Relatív range Legnagyobb és legksebb érték különbsége hányszorosa az átlagnak Mnél nagyobb ez az érték, annál nagyobb az adatsor polartása (lsd. kugró érték) P K x max x mn x x max mn Q x max x x mn
9 Súlyozatlan relatív terjedelem kszámításának lépése (abszolút mutatóknál) 1. K kell számítan az adatsor maxmumát (függvényvarázsló: max) 2. K kell számítan az adatsor mnmumát (függvényvarázsló: mn) 3. K kell vonn a maxmáls értékből a mnmálst (ez a terjedelem) 4. K kell számítan az adatsor (sma) átlagát (függvényvarázsló: átlag) 5. El kell osztan a terjedelmet az átlaggal
10 Súlyozatlan relatív terjedelem kszámítása Excelben A B C 1 x a x b 2 1. régó régó régó régó maxmum 24 =MAX(B2:B5) mnmum 0 =MIN(B2:B5) 10 =MAX(C2:C5) 10 =MIN(C2:C5) 8 terjedelem 24 =B6-B7 0 =C6-C7 9 átlag 10 =ÁTLAG(B2:B5) 10 =ÁTLAG(C2:C5) 10 relatív terjedelem 2,4 =B8/B9 0 =C8/C9
11 Súlyozott relatív terjedelem kszámításának lépése (fajlagos mutatóknál) 1. K kell számítan az adatsor maxmumát (függvényvarázsló: max) 2. K kell számítan az adatsor mnmumát (függvényvarázsló: mn) 3. K kell vonn a maxmáls értékből a mnmálst (ez a terjedelem) 4. K kell számítan az adatsor súlyozott átlagát 5. El kell osztan a terjedelmet a súlyozott átlaggal
12 Súlyozott relatív terjedelem kszámítása Excelben A B C D E F G 1 y a f a x a y b f b X b 1. régó =B2*C2 =E2*F régó 4 3, , régó 0 4, , régó összeg max. 24 =MAX(B2:B5) 10 =MAX(E2:E5) 8 mn. 0 =MIN(B2:B5) 10 =MIN(E2:E5) 9 terj. 24 =B6-B7 0 =E6-E7 10 s. átlag 5 =D6/C6 10 =G6/F6 11 rel terj 4,8 =B9/B10 rel terj 0 =E9/E10
13 A SZÓRÁS TÍPUSÚ EGYENLŐTLENSÉGI MUTATÓK
14 Szórás-típusú egyenlőtlenség mutatók Nem fajlagos (abszolút) mutatók (x ): (súlyozatlan) szórás Fajlagos mutatók (y ): súlyozott szórás A valód egyenlőtlenségeket a relatív szórással mérhetjük Nem fajlagos: (súlyozatlan) relatív szórás (szórás az átlag %-ában) Fajlagos mutatók: súlyozott relatív szórás (súlyozott szórás a súlyozott átlag %-ában)
15 Max Max átlag átlag Mn Mn A B Max, mn, átlag nem változk Relatív terjedelem nem változk; Szórás: nő
16 (Súlyozatlan) szórás: nem fajlagos mutatók esetében Adatsorok egyes értékenek (x ) az átlagtól való négyzetes eltérésének az átlaga Képlete 2 X = abszolút mutató régóban x x n = elemszám n Kszámítása Excel: f x = SZÓRÁSP() ( és nem SZÓRÁS) Angol nyelvű Excel f x = STDEVP() Értékkészlete: 0 σ Mnél nagyobb az értéke, annál nagyobb az egyenlőtlenség Mértékegysége: mnt az eredet értékek (X ) mértékegysége
17 (Súlyozatlan) relatív szórás: nem fajlagos mutatók esetében A valód egyenlőtlenségeket a relatív szórással mérhetjük Relatív szórás: abszolút mutatók esetében Képlete: σ = X adatsor szórása x = X adatsor átlaga Kszámítása v 100 x a szórás értékeket elosztjuk az átlaggal és megszorozzuk 100-zal (a szórás értéket az átlag százalékában fejezzük k) Értékkészlete: 0 v Mnél nagyobb az értéke, annál nagyobb az egyenlőtlenség Mértékegysége: %
18 Súlyozott szórás: fajlagos mutatók esetében Fajlagos mutatók (y ) esetében Adatsorok egyes értékenek (y ) az átlagtól való négyzetes eltérésének az átlaga Képlete y = fajlagos mutató régóban f = súly (fajlagos mutató nevezője) Értékkészlete: 0 σ Mnél nagyobb az értéke, annál nagyobb az egyenlőtlenség Mértékegysége: mnt az eredet értékek (y ) mértékegysége y f y 2 f
19 Súlyozott szórás kszámításának lépése 1. Kszámítom a fajlagos mutató súlyozott átlagát 2. Mnden térség esetében kszámítom a vzsgált fajlagos mutató értékenek eltérését a súlyozott átlagtól (Excel $) 3. Mnden térség esetében a kapott különbségeket négyzetre emelem (Excel jobb oldal Alt+3 együtt, majd 2 = ^2) 4. Mnden térség esetében a kapott értékeket megszorzom a térséghez tartozó súllyal 2 4. lépések egy oszlopban s megoldhatók 5. Az így kapott szorzatokat összegzem 6. Ezt az összeget elosztom a súlyok összegével 7. Ennek a hányadosnak a négyzetgyökét veszem (^0,5)
20 Súlyozott relatív szórás: fajlagos mutatók esetében A valód egyenlőtlenségeket a relatív szórással mérhetjük Fajlagos mutatók esetében: súlyozott relatív szórással Képlete: σ = y adatsor súlyozott szórása y = y adatsor súlyozott átlaga Kszámítása v 100 y A súlyozott szórás értékeket elosztjuk a súlyozott átlaggal és megszorozzuk 100- zal (a súlyozott szórás értéket a súlyozott átlag százalékában fejezzük k) Értékkészlete: 0 v Mnél nagyobb az értéke, annál nagyobb az egyenlőtlenség Mértékegysége: %
21 Súlyozott relatív szórás kszámítása Excelben A B C D E F G 1 y f x átl elt négyzet súlyozás 2 1. régó =B2*C2 19 =B2- B$7 361 =E2^2 361 =F2*C régó 4 3, , régó 0 4, , régó összeg =SZUM(D2:D5) 526 =SZUM(G2:G5) 7 s. átlag 5 =D6/C6 52,6 =G6/C6 8 s. szórás 7,25 =G7^0,5 9 s. relatív szórás 145,05 =B8/B7*100
22
23 Köszönöm a megtsztelő fgyelmet! varga.ag14@gmal.com
A sokaság/minta eloszlásának jellemzése
3. előadás A sokaság/mnta eloszlásának jellemzése tpkus értékek meghatározása; az adatok különbözőségének vzsgálata, a sokaság/mnta eloszlásgörbéjének elemzése. Eloszlásjellemzők Középértékek helyzet (Me,
RészletesebbenA területi polarizáltság mérőszámai
A területi polarizáltság mérőszámai Duál mutató A területi polarizáltság mérőszámai: Relatív range, range arány Duál mutató Duál mutató Az adatsor 2 részcsoportja átlagainak hányadosa Egyszerű, világos
Részletesebben4 2 lapultsági együttható =
Leíró statsztka Egy kísérlet végeztével általában tetemes mennységű adat szokott összegyűln. Állandó probléma, hogy mt s kezdjünk - lletve mt tudunk kezden az adatokkal. A statsztka ebben segít mnket.
RészletesebbenA területi koncentráció interpretálása: kitüntetett helyzetek
A területi koncentráció interpretálása: kitüntetett helyzetek Kitüntetett helyzetek Egy társadalmi-gazdasági jelenség területi elhelyezkedésének mérése, interpretálása Egy jelenség középponti koordinátáinak
RészletesebbenSTATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai
Változékonyság (szóródás) STATISZTIKA I. 5. Előadás Szóródási mutatók A középértékek a sokaság elemeinek értéknagyságbeli különbségeit eltakarhatják. A változékonyság az azonos tulajdonságú, de eltérő
RészletesebbenKomplex regionális elemzés és fejlesztés tanév DE Népegészségügyi Iskola Egészségpolitika tervezés és finanszírozás MSc
Komplex regonáls elemzés és fejlesztés 2016-2017. tanév DE Népegészségügy Iskola Egészségpoltka tervezés és fnanszírozás MSc 2. előadás Terület elemzés módszerek az egészségföldrajzban Terület ellátás
RészletesebbenStatisztikai alapfogalmak
Statisztika I. KÉPLETEK 2011-2012-es tanév I. félév Statisztikai alapfogalmak Adatok pontossága Mért adat Abszolút hibakorlát Relatív hibakorlát Statisztikai elemzések viszonyszámokkal : a legutolsó kiírt
RészletesebbenADATREDUKCIÓ I. Középértékek
ADATREDUKCIÓ I. Középértékek Adatredukcó 1. M a középérték: azonos fajta számszerű adatok közös jellemzője. 2. Követelmények: a) Számított középérték: közbenső helyet foglaljanak el, azaz mn középérték
RészletesebbenA sokaság elemei közül a leggyakrabban előforduló érték. diszkrét folytonos
Középérték Középérték A középérték a statisztikai adatok tömör számszerű jellemzése. helyzeti középérték: módusz medián számított középérték: számtani átlag kronológikus átlag harmonikus átlag mértani
RészletesebbenBevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus. KOKI,
Bevezetés a bometrába Dr. Dnya Elek egyetem tanár PhD kurzus. KOKI, 205.0.08. ADATREDUKCIÓ I. Középértékek Adatredukcó. M a középérték: azonos fajta számszerű adatok közös jellemzője. 2. Követelmények:
RészletesebbenStatisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus
Statisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus Gyakorisági sorok Mennyiségi ismérv jellemző rangsor készítünk. (pl. napi jegyeladások száma) A gyakorisági sor képzése igazából tömörítést jelent Nagyszámú
RészletesebbenStatisztika. Eloszlásjellemzők
Statsztka Eloszlásjellemzők Statsztka adatok elemzése A sokaság jellemzése középértékekkel A sokaság jellemzéséek szempotja A sokaság jellemzéséek szempotja: A sokaság tpkus értékéek meghatározása. Az
RészletesebbenStatisztika I. 4. előadás. Előadó: Dr. Ertsey Imre
Statsztka I. 4. előadás Előadó: Dr. Ertsey Imre KÖZÉPÉRTÉKEK A statsztka sor általáos jellemzésére szolgálak, a statsztka sokaságot egy számmal jellemzk. Számított középértékek: matematka számítás eredméyekét
RészletesebbenADATREDUKCIÓ I. Középértékek
ADATREDUKCIÓ I. Középértékek Adatredukcó 1. M a középérték: azonos fajta számszerű adatok közös jellemzője. 2. Követelmények: a) Számított középérték: közbenső helyet foglaljanak el, azaz mn középérték
RészletesebbenMatematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók
Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz
RészletesebbenBevezető Adatok rendezése Adatok jellemzése Időbeli elemzés
Gazdaságstatisztika 2. előadás Egy ismérv szerinti rendezés Kóczy Á. László KGK VMI Áttekintés Gyakorisági sorok Grafikus ábrázolásuk Helyzetmutatók Szóródási mutatók Az aszimmetria mérőszámai Koncentráció
RészletesebbenStatisztika I. 3. előadás. Előadó: Dr. Ertsey Imre
Statsztka I. 3. előadás Előadó: Dr. Ertsey Imre Vszonyszámok Statsztka munka: adatgyűjtés, rendszerezés, összegzés, értékelés. Vszonyszámok: Két statsztka adat arányát kfejező számok, Az un. leszármaztatott
Részletesebbens n s x A m és az átlag Standard hiba A m becslése Információ tartalom Átlag Konfidencia intervallum Pont becslés Intervallum becslés
A m és az átlag Standard hba Mnta átlag 1 170 Az átlagok szntén ngadoznak a m körül. s x s n Az átlagok átlagos eltérése a m- től! 168 A m konfdenca ntervalluma. 3 166 4 173 x s x ~ 68% ~68% annak a valószínűsége,
RészletesebbenRegresszió. Fő cél: jóslás Történhet:
Fő cél: jóslás Történhet: Regresszó 1 változó több változó segítségével Lépések: Létezk-e valamlyen kapcsolat a 2 változó között? Kapcsolat természetének leírása (mat. egy.) A regresszós egyenlet alapján
RészletesebbenPélda: Egy üzletlánc boltjainak forgalmára vonatkozó adatok 1999. október hó: (adott a vastagon szedett!) S i g i z i g i z i
. konzult. LEV. 013. ápr. 5. MENNYISÉGI ISMÉRV szernt ELEMZÉS Tk. 3-8., 88-90. oldal, kmarad: 70., 74. oldal A mennység smérv (X) lehet: dszkrét és folytonos. A rangsor a mennység smérv értékenek monoton
RészletesebbenHipotézis vizsgálatok. Egy példa. Hipotézisek. A megfigyelt változó eloszlása Kérdés: Hatásos a lázcsillapító gyógyszer?
01.09.18. Hpotézs vzsgálatok Egy példa Kérdések (példa) Hogyan adhatunk választ? Kérdés: Hatásos a lázcsllapító gyógyszer? Hatásos-e a gyógyszer?? rodalomból kísérletekből Hpotézsek A megfgyelt változó
RészletesebbenIndexszámítás során megválaszolandó kérdések. Hogyan változott a termelés értéke, az értékesítés árbevétele, az értékesítési forgalom?
Index-számítás Indexszámítás során megálaszolandó kérdések Hogyan áltozott a termelés értéke, az értékesítés árbeétele, az értékesítés forgalom? Hogyan áltozott a termelés, értékesítés mennysége? Hogyan
RészletesebbenA(a; b) = 2. A(a; b) = a+b. Példák A(37; 49) = x 2x = x = : 2 x = x = x
10. osztály:nevezetes középértékek Összeállította:Keszeg ttila 1 1 számtani közép efiníció 1. (Két nemnegatív szám számtani közepe) Két nemnegatív szám számtani közepének a két szám összegének a felét
RészletesebbenMatematikai statisztika
Matematikai statisztika PROGRAMTERVEZŐ INFORMATIKUS alapszak, A szakiráy Arató Miklós Valószíűségelméleti és Statisztika Taszék Természettudomáyi Kar 2019. február 18. Arató Miklós (ELTE) Matematikai statisztika
RészletesebbenVariancia-analízis (ANOVA) Mekkora a tévedés esélye? A tévedés esélye Miért nem csinálunk kétmintás t-próbákat?
Varanca-analízs (NOV Mért nem csnálunk kétmntás t-próbákat? B Van különbség a csoportok között? Nncs, az eltérés csak véletlen! Ez a nullhpotézs. és B nncs különbség Legyen, B és C 3 csoport! B és C nncs
RészletesebbenAlgoritmusok és adatszerkezetek I. 10. előadás
Algortmusok és adatszerkezetek I. 10. előadás Dnamkus programozás Feladat: Adott P 1,P 2, P n pénzjegyekkel kfzethető-e F fornt? Megoldás: Tegyük fel, hogy F P P... P... m! 1 2 m 1 Ekkor F P P P P......,
RészletesebbenVizsgáljuk elôször, hogy egy embernek mekkora esélye van, hogy a saját
376 Statisztika, valószínûség-számítás 1500. Az elsô kérdésre egyszerû válaszolni, elég egy ellenpélda, és biztosan nem lehet akkor így kiszámolni. Pl. legyen a három szám a 3; 5;. A két kisebb szám átlaga
RészletesebbenBevezető Adatok rendezése Adatok jellemzése Időbeli elemzés. Gazdaságstatisztika KGK VMI
Gazdaságstatisztika 2. előadás Egy ismérv szerinti rendezés Kóczy Á. László KGK VMI Áttekintés Gyakorisági sorok Grafikus ábrázolásuk Helyzetmutatók Szóródási mutatók Az aszimmetria mérőszámai Koncentráció
RészletesebbenKÖZBESZERZÉSI ADATBÁZIS
14. melléklet a 44/2015. (XI. 2.) MvM rendelethez KÖZBESZERZÉSI DTBÁZIS Összegez az ajánlatok elbírálásáról I. szakasz: kérő I.1) Név címek 1 (jelölje meg az eljárásért felelős összes ajánlatkérőt) Hvatalos
RészletesebbenElemi statisztika fizikusoknak
1. oldal Elemi statisztika fizikusoknak Pollner Péter Biológiai Fizika Tanszék pollner@elte.hu Az adatok leírása, megismerése és összehasonlítása 2-1 Áttekintés 2-2 Gyakoriság eloszlások 2-3 Az adatok
RészletesebbenMATEMATIKAI STATISZTIKA KISFELADAT. Feladatlap
Közlekedésmérnök Kar Jármőtervezés és vzsgálat alapja I. Feladatlap NÉV:..tk.:. Feladat sorsz.:.. Feladat: Egy jármő futómő alkatrész terhelésvzsgálatakor felvett, az alkatrészre ható terhelı erı csúcsértékek
RészletesebbenAdatgyűjtés, adatkezelés, adattípusok
Adatgyűjtés, adatkezelés, adattípusok Varga Ágnes egyetemi tanársegéd varga.agnes@uni-corvinus.hu 2018/19. I. félév BCE Geo Intézet Társadalmi-gazdasági folyamatok feltárása Egyik legfontosabb és legizgalmasabb
RészletesebbenSTATISZTIKA I. Centrális mutatók. Helyzeti középértékek. Középértékek. Bimodális eloszlás, U. Módusz, Mo. 4. Előadás.
Centrális mutatók STATISZTIKA I. 4. Előadás Centrális mutatók 1/51 2/51 Középértékek Helyzeti középértékek A meghatározása gyakoriság vagy sorszám alapján Számítás nélkül Az elemek nagyság szerint rendezett
RészletesebbenTerületi fejlettségi egyenlőtlenségek alakulása Európában. Fábián Zsófia KSH
Területi fejlettségi egyenlőtlenségek alakulása Európában Fábián Zsófia KSH A vizsgálat célja Európa egyes térségei eltérő természeti, társadalmi és gazdasági adottságokkal rendelkeznek. Különböző történelmi
RészletesebbenBrósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. A fős osztály dolgozatot írt matematikából és a következő jegyek születtek: 6 darab jeles, 9 darab jó, 8 darab közepes, darab elégséges és darab elégtelen. Készíts gyakorisági táblázatot,
RészletesebbenLineáris regresszió. Statisztika I., 4. alkalom
Lneárs regresszó Statsztka I., 4. alkalom Lneárs regresszó Ha két folytonos változó lneárs kapcsolatban van egymással, akkor az egyk segítségével elıre jelezhetjük a másk értékét. Szükségünk van a függı
RészletesebbenA multikritériumos elemzés célja, alkalmazási területe, adat-transzformációs eljárások, az osztályozási eljárások lényege
A multkrtérumos elemzés célja, alkalmazás területe, adat-transzformácós eljárások, az osztályozás eljárások lényege Cél: tervváltozatok, objektumok értékelése (helyzetértékelés), döntéshozatal segítése
RészletesebbenVALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA
VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA A VALÓSZÍNŰSÉGI SZEMLÉLET ALAPOZÁSA 1-6. OSZTÁLY A biztos, a lehetetlen és a lehet, de nem biztos események megkülünböztetése Valószínűségi játékok, kísérletek események
RészletesebbenStatisztikai próbák. Ugyanazon problémára sokszor megvan mindkét eljárás.
Statsztka próbák Paraméteres. A populácó paraméteret becsüljük, ezekkel számolunk.. Az alapsokaság eloszlására van kkötés. Nem paraméteres Nncs lyen becslés Nncs kkötés Ugyanazon problémára sokszor megvan
RészletesebbenADATREDUKCIÓ I. Középértékek
ADATREDUKCIÓ I. Középértékek Adatredukcó 1. M a középérték: azonos fajta számszerű adatok közös jellemzője. 2. Követelmények: a) Számított középérték: közbenső helyet foglaljanak el, azaz x mn középérték
RészletesebbenKutatásmódszertan és prezentációkészítés
Kutatásmódszertan és prezentációkészítés 10. rész: Az adatelemzés alapjai Szerző: Kmetty Zoltán Lektor: Fokasz Nikosz Tizedik rész Az adatelemzés alapjai Tartalomjegyzék Bevezetés Leíró statisztikák I
Részletesebben20 PONT Aláírás:... A megoldások csak szöveges válaszokkal teljes értékőek!
SPEC 2009-2010. II. félév Statsztka II HÁZI dolgozat Név:... Neptun kód: 20 PONT Aláírás:... A megoldások csak szöveges válaszokkal teljes értékőek! 1. példa Egy üzemben tejport csomagolnak zacskókba,
RészletesebbenA GDP hasonlóképpen nem tükrözi a háztartások közötti munka- és termékcseréket.
FŐBB MUTATÓK A regionális GDP adatok minősége alapvetően 3 tényezőtől függ: az alkalmazott számítási módszertől a felhasznált adatok minőségétől a vizsgált területi egység nagyságától. A TERÜLETI EGYENLŐTLENSÉGEK
RészletesebbenGazdaságtudományi Kar. Gazdaságelméleti és Módszertani Intézet. Regresszió-számítás. 2. előadás. Kvantitatív statisztikai módszerek. Dr.
Gazdaságtudomán Kar Gazdaságelmélet és Módszertan Intézet Regresszó-számítás. előadás Kvanttatív statsztka módszerek Dr. Varga Beatr Gazdaságtudomán Kar Gazdaságelmélet és Módszertan Intézet Korrelácós
RészletesebbenStatisztika. Politológus képzés. Daróczi Gergely április 17. Politológia Tanszék
Statisztika Politológus képzés Daróczi Gergely Politológia Tanszék 2012. április 17. Outline 1 Leíró statisztikák 2 Középértékek Példa 3 Szóródási mutatók Példa 4 Néhány megjegyzés a grafikonokról 5 Számítások
Részletesebben1. Egy Kft dolgozóit a havi bruttó kereseteik alapján csoportosítottuk: Havi bruttó bér, ezer Ft/fő
Figyelem! A példasor nem tartalmazza valamennyi típuspéldát. A dolgozatban az órán leadott feladatok közül bármely típusú előfordulhat. A példasor már a második dolgozat anyagát gyakorló feladatokat is
RészletesebbenNémeth László Matematikaverseny április 16. A osztályosok feladatainak javítókulcsa
Németh László Matematikaverseny 007. április 16. A 9-10. osztályosok feladatainak javítókulcsa Feladatok csak 9. osztályosoknak 1. feladat a) Vegyük észre, hogy 7 + 5 felírható 1 + 3 + 6 + alakban, így
Részletesebben1. óra: Területi statisztikai alapok viszonyszámok, középértékek
1. óra: Területi statisztikai alapok viszonyszámok, középértékek Tér és társadalom (TGME0405-GY) gyakorlat 2018-2019. tanév Viszonyszámok Viszonyszá m Viszonyítandó adat (A) Viszonyítási alap (B) 1. Megoszlási
RészletesebbenBiomatematika 2 Orvosi biometria
Biomatematika 2 Orvosi biometria 2017.02.05. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)
RészletesebbenAz Országos Középiskolai Tanulmányi Verseny tanévi második fordulójának feladatmegoldásai. x 2 sin x cos (2x) < 1 x.
Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi második fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Oldja meg a következő egyenlőtlenséget, ha x > 0: x 2 sin
RészletesebbenORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!
ORVOSI STATISZTIKA Az orvos statsztka helye Élettan Anatóma Kéma Lehet kérdés?? Statsztka! Az orvos döntéseket hoz! Mkor jó egy döntés? Mennyre helyes egy döntés? Mekkora a tévedés lehetősége? Példa: test
RészletesebbenELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó június
GAZDASÁGSTATISZTIKA GAZDASÁGSTATISZTIKA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi
RészletesebbenAdatelemzés és adatbányászat MSc
Adatelemzés és adatbányászat MSc. téma Adatelemzés, statsztka elemek áttekntése Adatelemzés módszertana probléma felvetés módszer, adatok meghatározása nyers adatok adatforrás meghatározása adat tsztítás
RészletesebbenNövekvő regionális egyenlőtlenségek az Európai Unióban. Áldorfai György PhD. hallgató SZIE GTK RGVI - EGYRTDI
Növekvő regionális egyenlőtlenségek az Európai Unióban Áldorfai György PhD. hallgató SZIE GTK RGVI - EGYRTDI A Római Szerződés célja hogy biztosítsa a nemzetgazdaságok harmonizált fejlődését a Közösségen
RészletesebbenStatisztika I. 8. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 8. előadás Előadó: Dr. Ertsey Imre Minták alapján történő értékelések A statisztika foglalkozik. a tömegjelenségek vizsgálatával Bizonyos esetekben lehetetlen illetve célszerűtlen a teljes
RészletesebbenM4 TÁBLÁZATKEZELÉS ALAPJAI
Képletek Olyan egyenletek, amelyek a munkalapon szereplő értékekkel számításokat hajtanak végre. Jellemzői: - egyenlőségjellel = kezdődik Képlet részei: 1. Számtani műveleti jelek. 2. Állandók. 3. Hivatkozások.
RészletesebbenSTATISZTIKA KÉSZÍTETTE: TAKÁCS SÁNDOR
STATISZTIKA KÉSZÍTETTE: TAKÁCS SÁNDOR ALAPFOGALMAK Statisztika: latin status szóból ered: állapot Mindig egy állapotot tükröz Véletlen tömegjelenségek tanulmányozásával foglakozik Adatok megfigyelés, kísérlet
Részletesebben3. Évközi ellenőrzés módja: 2 zárhelyi dolgozat íratása. 4. A tárgy előírt külső szakmai gyakorlatai: -
Tantárgy neve Halmazok és függvények Tantárgy kódja MTB00 Meghrdetés féléve Kredtpont Összóraszám (elm+gyak + Számonkérés módja G Előfeltétel (tantárgy kód - Tantárgyfelelős neve Rozgony Tbor Tantárgyfelelős
Részletesebben2. előadás. Viszonyszámok típusai
2. előadás Viszonyszámok típusai Mérési skálák Nominális /névleges skála: kötetlen hozzárendelése a számoknak Sorrendi / Ordinális skála: sokaság egyedeinek egy közös tulajdonság szerinti sorbarendezése
RészletesebbenGazdaságtudományi Kar. Gazdaságelméleti és Módszertani Intézet. Korreláció-számítás. 1. előadás. Döntéselőkészítés módszertana. Dr.
Korrelácó-számítás 1. előadás Döntéselőkészítés módszertana Dr. Varga Beatr Két változó között kapcsolat Függetlenség: Az X smérv szernt hovatartozás smerete nem ad semmlen többletnformácót az Y szernt
RészletesebbenA leíró statisztikák
A leíró statisztikák A leíró statisztikák fogalma, haszna Gyakori igény az, hogy egy adathalmazt elemei egyenkénti felsorolása helyett néhány jellemző tulajdonságának megadásával jellemezzünk. Ezeket az
RészletesebbenMatematikai statisztikai elemzések 2.
Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematikai statisztikai elemzések 2. MSTE2 modul Helyzetmutatók, átlagok, kvantilisek. A szórás és szóródás egyéb mérőszámai.
RészletesebbenA valószínűségszámítás elemei
A valószínűségszámítás elemei Kísérletsorozatban az esemény relatív gyakorisága: k/n, ahol k az esemény bekövetkezésének abszolút gyakorisága, n a kísérletek száma. Pl. Jelenség: kockadobás Megfigyelés:
RészletesebbenThe original laser distance meter. The original laser distance meter
Leca Leca DISTO DISTO TM TM D510 X310 The orgnal laser dstance meter The orgnal laser dstance meter Tartalomjegyzék A műszer beállítása - - - - - - - - - - - - - - - - - - - - - - - - - 2 Bevezetés - -
RészletesebbenXXII. Vályi Gyula Emlékverseny április 8. V. osztály
V. osztály 1. Egy anya éveinek száma ugyanannyi, mint a lánya életkora hónapokban kifejezve. Mennyi idősek külön-külön, ha az anya 23 évvel és 10 hónappal idősebb a lányánál? 2. Melyek azok a 2016-nál
RészletesebbenMérési adatok feldolgozása. 2008.04.08. Méréselmélet PE_MIK MI_BSc, VI_BSc 1
Mérés adatok feldolgozása 2008.04.08. Méréselmélet PE_MIK MI_BSc, VI_BSc Bevezetés A mérés adatok külöböző formába, általába ömlesztve jeleek meg Ezeket az adatokat külöböző szempotok szert redez kértékel
RészletesebbenFeladatok: pontdiagram és dobozdiagram. Hogyan csináltuk?
Feladatok: pontdiagram és dobozdiagram Hogyan csináltuk? Alakmutatók: ferdeség, csúcsosság Alakmutatók a ferdeség és csúcsosság mérésére Ez eloszlás centrumát (középérték) és az adatok centrum körüli terpeszkedését
RészletesebbenKoncentráció és mérése gazdasági és társadalmi területeken. Kerékgyártó Györgyné BCE Statisztika Tanszék
Koncentrácó és mérése gazdaság és társadalm területeken Kerékgyártó Györgyné BCE Statsztka Tanszék Koncentrácó Fogalmát a XVIII. sz. másodk felétől egyre gyakrabban használták. Először a termelésre értelmezték,
RészletesebbenORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!
ORVOSI STATISZTIKA Az orvos statsztka helye Életta Aatóma Kéma Lehet kérdés?? Statsztka! Az orvos dötéseket hoz! Mkor jó egy dötés? Meyre helyes egy dötés? Mekkora a tévedés lehetősége? Példa: test hőmérséklet
RészletesebbenSzámtan, mértan, origami és a szabványos papírméretek
Számtan, mértan, origami és a szabványos papírméretek A papír gyártása, forgalmazása és feldolgozása során szabványos alakokat használunk. Ezeket a méreteket a szakirodalmak tartalmazzák. Az alábbiakban
RészletesebbenI. A gyökvonás. cd c) 6 d) 2 xx. 2 c) Szakaszvizsgára gyakorló feladatok 10. évfolyam. Kedves 10. osztályos diákok!
Kedves 10. osztályos diákok! Szakaszvizsgára gyakorló feladatok 10. évfolyam Közeleg a szakaszvizsga időpontja, amelyre 019. április 1-én kerül sor. A könnyebb felkészülés érdekében adjuk közre ezt a feladatsort,
RészletesebbenSULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA
1 SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA Heti óraszám: 3 Éves óraszám: 37 x 3 = 111 A tanmenet 101 óra beosztását tartalmazza. A dolgozatok írása és javítása 10 órát foglal
Részletesebben[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.08. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)
RészletesebbenKözúti közlekedésüzemvitel-ellátó. Tájékoztató
12/2013. (III. 29.) NFM rendelet szakma és vzsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 841 02 Közút közlekedésüzemvtel-ellátó Tájékoztató A vzsgázó az első lapra írja fel
RészletesebbenSTATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás
ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 9. Előadás Binomiális eloszlás Egyenletes eloszlás Háromszög eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell 2/62 Matematikai statisztika
RészletesebbenVARIANCIAANALÍZIS (szóráselemzés, ANOVA)
VARIANCIAANAÍZIS (szóráselemzés, ANOVA) Varancaanalízs. Varancaanalízs (szóráselemzés, ANOVA) Adott: egy vagy több tetszőleges skálájú független változó és egy legalább ntervallum skálájú függő változó.
RészletesebbenEmelt szintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: november. I. rész
Pataki János, november Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: november I rész feladat Oldja meg az alábbi egyenleteket: a) log 7 log log log 7 ; b) ( )
RészletesebbenMunkánk során a cellák tartalmát gyakran másolni szoktuk. Előfordul, hogy képleteket tartalmazó cellákat másolunk.
Táblázatkezelés 4. - Hivatkozások Az elmúlt órán végzett számításoknál, amikor a felhasználói képleteket készítettük, mindig annak a cellának a tartalmát használtuk, amelyben a számításhoz szükséges adat
RészletesebbenMinősítéses mérőrendszerek képességvizsgálata
Mnősítéses mérőrendszerek képességvzsgálata Vágó Emese, Dr. Kemény Sándor Budapest Műszak és Gazdaságtudomány Egyetem Kéma és Környezet Folyamatmérnök Tanszék Az előadás vázlata 1. Mnősítéses mérőrendszerek
RészletesebbenHAVRAN DÁNIEL. Pénzgazdálkodási szokások hatása a működőtőkére. A Magyar Posta példája
HAVRAN DÁNIEL Pénzgazdálkodás szokások haása a működőőkére. A Magyar Posa példája A hálózaos parágakban, ahogy a posa szolgálaásoknál s, a forgalomban lévő készpénz nagyméreű működőőké jelenhe. A Magyar
RészletesebbenRacionális számok: Azok a számok, amelyek felírhatók két egész szám hányadosaként ( p q
Szóbeli tételek matematikából 1. tétel 1/a Számhalmazok definíciója, jele (természetes számok, egész számok, racionális számok, valós számok) Természetes számok: A pozitív egész számok és a 0. Jele: N
RészletesebbenMINTAFELADATOK. 1. Az alábbi diagram egy kiskereskedelmi lánc boltjainak forgalomkoncentrációját szemlélteti:
1. Az alábbi diagram egy kiskereskedelmi lánc boltjainak forgalomkoncentrációját szemlélteti: 100% 90% 80% 70% 60% 50% 2010 2011 40% 30% 20% 10% 0% 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% a) Nevezze
RészletesebbenBIOSTATISZTIKA ÉS INFORMATIKA. Leíró statisztika
BIOSTATISZTIKA ÉS INFORMATIKA Leíró statisztika Első közelítésbe a statisztikai tevékeységeket égy csoportba sorolhatjuk, de ezek között ics éles határ:. adatgyűjtés, 2. az adatok áttekithetővé tétele,
RészletesebbenSTATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM.
STATISZTIKA 5 4,5 4 3,5 3 2,5 2 1,5 1 0,5 0 MAGY. MAT. TÖRT. KÉM. ANNA BÉLA CILI András hármas. Béla Az átlag 3,5! kettes. Éva ötös. Nóri négyes. 1 mérés: dolgokhoz valamely szabály alapján szám rendelése
RészletesebbenÁltalános Statisztika
Budapest Mőszak és Gazdaságtudomány Egyetem Gazdaság- és Társadalomtudomány Kar Nyugat-Magyarország Egyetem Savara Egyetem Központ Dr. Köves János Dr. Tóth Zsuzsanna Eszter Általános Statsztka oktatás
Részletesebbentörtet, ha a 1. Az egyszerűsített alak: 2 pont
1. Egyszerűsítse az 3 2 a + a a + 1 törtet, ha a 1. Az egyszerűsített alak: 2. Milyen számjegy állhat az X helyén, ha a négyjegyű 361 X szám 6-tal osztható? X = 3. Minden szekrény barna. Válassza ki az
RészletesebbenFüggvények Megoldások
Függvények Megoldások ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x x b) x x + c) x ( x + ) b) Az x függvény
RészletesebbenPárhuzamos algoritmusok
Párhuzamos algortmusok. Hatékonyság mértékek A árhuzamos algortmusok esetében fontos jellemző az m ( n, P, ) munka, amt a futás dő és a rocesszorszám szorzatával defnálunk. A P árhuzamos algortmus az A
Részletesebben2. Egy mértani sorozat második tagja 6, harmadik tagja 18. Adja meg a sorozat ötödik tagját!
1. Egy 27 fős osztályban mindenki tesz érettségi vizsgát angolból vagy németből. 23 diák vizsgázik angolból, 12 diák pedig németből. Hány olyan diák van az osztályban, aki angolból és németből is tesz
RészletesebbenÁTLAG(tartomány) DARAB(tartomány) DARAB2(tartomány) STATISZTIKAI FÜGGVÉNYEK
STATISZTIKAI FÜGGVÉNYEK ÁTLAG(tartomány) A tartomány terület numerikus értéket tartalmazó cellák értékének átlagát számítja ki. Ha a megadott tartományban nincs numerikus értéket tartalmazó cella, a #ZÉRÓOSZTÓ!
RészletesebbenBrósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. Oldd meg a következő egyenleteket! (Alaphalmaz: Z) a) (x 1) (x + 1) 7x + 1 = x (4 + x) + 2 b) 1 2 [5 (x 1) (1 + 2x) 2 4x] = (7 x) x c) 2 (x + 5) (x 2) 2 + (x + 1) 2 = 6 (2x + 1) d) 6 (x 8)
RészletesebbenÁLTALÁNOS STATISZTIKA
Berzseny Dánel Főskola ÁLTALÁNOS STATISZTIKA műszak menedzser alapszak Írta: Dr. Köves János Tóth Zsuzsanna Eszter Budapest 006 Tartalomjegyzék. VALÓSZÍNŰSÉGSZÁMÍTÁSI ALAPOK... 4.. A VALÓSZÍNŰSÉGSZÁMÍTÁS
RészletesebbenTanult nem paraméteres próbák, és hogy milyen probléma megoldására szolgálnak.
8. GYAKORLAT STATISZTIKAI PRÓBÁK ISMÉTLÉS: Tanult nem paraméteres próbák, és hogy mlyen probléma megoldására szolgálnak. Név Illeszkedésvzsgálat Χ próbával Illeszkedésvzsgálat grafkus úton Gauss papírral
Részletesebbenó ó ú ú ó ó ó ü ó ü Á Á ü É ó ü ü ü ú ü ó ó ü ó ü ó ó ú ú ú ü Ü ú ú ó ó ü ó ü ü Ü ü ú ó Ü ü ű ű ü ó ü ű ü ó ú ó ú ú ú ó ú ü ü ű ó ú ó ó ü ó ó ó ó ú ó ü ó ó ü ü ó ü ü Ü ü ó ü ü ü ó Ü ó ű ü ó ü ü ü ú ó ü
RészletesebbenÜ Ö Á Á Á Á Á É ű Ü Ú ű ű Á É ű Ú Ü ű Ü Ü Ü Ü Ü Ü Ü Ü Ü Á Ü Ü Ü Ö Ö Ú Ö Ü Ö ű ű ű ű ű Á ű Ú ű ű ű ű ű É Á Ö Ö Ö ű ű ű Á ű ű ű ű ű ű ű ű ű ű Ü Ü Ü Ü ű ű ű ű ű ű ű ű ű ű ű Ú ű ű ű ű ű ű Ü Ö Ü Ó Ö ű ű ű
RészletesebbenÖ Ó ú É ű É Ö Ö Ö Ü Ó Ú É ú É Ü Ú ú Ü ű ú Ü Ö Ö ú ű Ú ű ű ú Ö Ö Ö Ö É ú ú Ő Ö ú Ü Ó ú Ú Ü Ö ű ű ű Ö ű ú Ó ű Ö Ü ű ú ú ú ú É ú Ö ú ú Ü ú Ó ú ú ú ú ú ú ű ű ú ű ú ú ű Ö ú ú ú ű Ö ú ű ú ű Ü Ö Ü ű Ü Ö ú ú Ü
RészletesebbenÁ Á Ó É ö ó ó ó ő ő ó ö ő ő ű ó ú ö ó ó ő ó ü ó ó ő ó ó ő ó ü ó ő ő ő ó ő ő ö ó ó ó ö ö ü ö Á Á Ó ü ó ö ó ő ó ő ő Á É Á Ó ű ü ö ó ő ó ú ÉÉ ó ú ő ö ó ó ó ó ó ö ö ő ü ó ö ö ü ó ű ö ó ó ó ó ú ó ü ó ó ö ó
RészletesebbenÉ É É ü É ó ó É ű ó ÉÉ ó É ó É É ó É ü ó ó Ó ű ó ó ó ó ü É ü ű ó É É É É ü ü ó ó ó ü É ó É ó É ó ó ó ü ü ü ü ó ü ü ü ü ó ű ű É Í Ó Ü Ö ó ó ó Ó ó ü ü ü ű ó ü ü ű ü ü ó ü ű ü ó ü ó ó ó ó ó ó ó ü ó ó ó ű
RészletesebbenÁ ű ő ö Í é é ő Ö Ö é ő Ö ő ö é é Ö ü é ó Ő é é ó é ó é é é é Ö ó ó ő é Ü é ó ö ó ö é é Ő ú é é é é ő Ú é ó Ő ö Ő é é é é ű ö é Ö é é ó ű ö é ő é é é é é é é é é Ö é Ö ü é é é é ö ü é ó é ó ó é ü ó é é
Részletesebben