Adatsorok jellegadó értékei

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Adatsorok jellegadó értékei"

Átírás

1 Adatsorok jellegadó értéke Varga Ágnes egyetem tanársegéd Terület és térnformatka kvanttatív elemzés módszerek BCE Geo Intézet

2 Terület elemzés forgatókönyve vacsora hasonlat Terület elemzés forgatókönyve Kutatás (elemzés) kérdés meghatározása Vzsgálat terület keretének meghatározása Egy vacsora forgatókönyve Mt főzzünk? Menny vendéget várunk? Menny emberre főzünk? Szükséges adatok beszerzése adott terület sznten Elemzés módszertan kválasztása a kutatás kérdés megválaszolásához Elemzés Eredmények vzualzácója (térképek, grafkonok) és magyarázata. Hozzávalók beszerzése az elkészítendő ételhez a létszámhoz gazítva. Mlyen eszközt, eljárást válasszunk az étel elkészítéséhez? Étel elkészítése. Tálalás, felszolgálás!

3 Adatsorok jellegadó értéke Középértékek Számtan átlag / súlyozott számtan átlag Mértan átlag Helyzet középértékek (módusz, medán) Szélső értékek Maxmum Mnmum Adatsor terjedelme és szórása (átvezet a terület egyenlőtlenség mutatók felé) Terjedelem-típusú mutatók Szórás-típusú mutatók

4 Középértékek: átlagok Számtan átlag Az eredet számok helyébe helyettesítve azok összege változatlan n db adat (x ) Excel f x = ÁTLAG() Súlyozott számtan átlag n db fajlagos adat (y ) Súly (f ): a fajlagos mutató nevezőjében szereplő adat Mértan átlag Az eredet számok helyébe helyettesítve azok szorzata változatlan n db adat (x ) x * n n x 1 x n n x x 1 x 2... x y... x y n f f

5 Átlag szerepe a terület kutatásokban Egyszerű összehasonlítás Egy másk terület sznt átlaga hogyan vszonyul a vzsgált terület egységem értékéhez (lsd. alsó ábra) Vagy az adott terület sznt értékének kfejezése a magasabb terület egység százalékában (lsd. jobb oldal ábra) Súlyozatlan és súlyozott átlag!

6 Helyzet középértékek Medán Az az érték, amnél ksebb és nagyobb adatok száma egyenlő (felező pont) Extrém adatokat tartalmazó adatsorok esetében érdemes használn Medán/átlag: egyenlőtlenség mutató (mnél ksebb, annál nagyobb az egyenlőtlenség) Excel f x = MEDIÁN() Kvantlsek: kvartls (negyedelő), kvntls (ötödölő), decls (tzedelő), percentls (századoló)

7 Helyzet középértékek Módusz ( dvatos érték ) A legtöbbször előforduló érték Lehet többmóduszú (többcsúcsú) adatsor s Excel f x = MÓDUSZ() Módusz a gyakorlatban Melyk OP-ben valósult meg a legtöbb projekt? (kódolás/csak számok esetén) Mely borvdékbe tartozk a legtöbb haza településünk? (kódolás/csak számok esetén) Pozícóváltás két dőpont között melyk volt a leggyakorbb?

8 A szélső értékek és a terjedelem típusú egyenlőtlenség mutatók Maxmum Az adatsor legnagyobb értéke (x max ) Excel f x = MAX() Mnmum Az adatsor legksebb értéke (x mn ) Excel f x = MIN() Alapja a terjedelem típusú egyenlőtlenség mutatóknak Range (szóródás terjedelme): Legnagyobb és legksebb értéket felvevő terület egység között különbség Pl: EU egyes tagországaban NUTS3-as sznten mekkora a polarzáltság? Range-arány (adatsor terjedelme) Legnagyobb érték hányszorosa a legksebbnek Relatív range Legnagyobb és legksebb érték különbsége hányszorosa az átlagnak Mnél nagyobb ez az érték, annál nagyobb az adatsor polartása (lsd. kugró érték) P K x max x mn x x max mn Q x max x x mn

9 Súlyozatlan relatív terjedelem kszámításának lépése (abszolút mutatóknál) 1. K kell számítan az adatsor maxmumát (függvényvarázsló: max) 2. K kell számítan az adatsor mnmumát (függvényvarázsló: mn) 3. K kell vonn a maxmáls értékből a mnmálst (ez a terjedelem) 4. K kell számítan az adatsor (sma) átlagát (függvényvarázsló: átlag) 5. El kell osztan a terjedelmet az átlaggal

10 Súlyozatlan relatív terjedelem kszámítása Excelben A B C 1 x a x b 2 1. régó régó régó régó maxmum 24 =MAX(B2:B5) mnmum 0 =MIN(B2:B5) 10 =MAX(C2:C5) 10 =MIN(C2:C5) 8 terjedelem 24 =B6-B7 0 =C6-C7 9 átlag 10 =ÁTLAG(B2:B5) 10 =ÁTLAG(C2:C5) 10 relatív terjedelem 2,4 =B8/B9 0 =C8/C9

11 Súlyozott relatív terjedelem kszámításának lépése (fajlagos mutatóknál) 1. K kell számítan az adatsor maxmumát (függvényvarázsló: max) 2. K kell számítan az adatsor mnmumát (függvényvarázsló: mn) 3. K kell vonn a maxmáls értékből a mnmálst (ez a terjedelem) 4. K kell számítan az adatsor súlyozott átlagát 5. El kell osztan a terjedelmet a súlyozott átlaggal

12 Súlyozott relatív terjedelem kszámítása Excelben A B C D E F G 1 y a f a x a y b f b X b 1. régó =B2*C2 =E2*F régó 4 3, , régó 0 4, , régó összeg max. 24 =MAX(B2:B5) 10 =MAX(E2:E5) 8 mn. 0 =MIN(B2:B5) 10 =MIN(E2:E5) 9 terj. 24 =B6-B7 0 =E6-E7 10 s. átlag 5 =D6/C6 10 =G6/F6 11 rel terj 4,8 =B9/B10 rel terj 0 =E9/E10

13 A SZÓRÁS TÍPUSÚ EGYENLŐTLENSÉGI MUTATÓK

14 Szórás-típusú egyenlőtlenség mutatók Nem fajlagos (abszolút) mutatók (x ): (súlyozatlan) szórás Fajlagos mutatók (y ): súlyozott szórás A valód egyenlőtlenségeket a relatív szórással mérhetjük Nem fajlagos: (súlyozatlan) relatív szórás (szórás az átlag %-ában) Fajlagos mutatók: súlyozott relatív szórás (súlyozott szórás a súlyozott átlag %-ában)

15 Max Max átlag átlag Mn Mn A B Max, mn, átlag nem változk Relatív terjedelem nem változk; Szórás: nő

16 (Súlyozatlan) szórás: nem fajlagos mutatók esetében Adatsorok egyes értékenek (x ) az átlagtól való négyzetes eltérésének az átlaga Képlete 2 X = abszolút mutató régóban x x n = elemszám n Kszámítása Excel: f x = SZÓRÁSP() ( és nem SZÓRÁS) Angol nyelvű Excel f x = STDEVP() Értékkészlete: 0 σ Mnél nagyobb az értéke, annál nagyobb az egyenlőtlenség Mértékegysége: mnt az eredet értékek (X ) mértékegysége

17 (Súlyozatlan) relatív szórás: nem fajlagos mutatók esetében A valód egyenlőtlenségeket a relatív szórással mérhetjük Relatív szórás: abszolút mutatók esetében Képlete: σ = X adatsor szórása x = X adatsor átlaga Kszámítása v 100 x a szórás értékeket elosztjuk az átlaggal és megszorozzuk 100-zal (a szórás értéket az átlag százalékában fejezzük k) Értékkészlete: 0 v Mnél nagyobb az értéke, annál nagyobb az egyenlőtlenség Mértékegysége: %

18 Súlyozott szórás: fajlagos mutatók esetében Fajlagos mutatók (y ) esetében Adatsorok egyes értékenek (y ) az átlagtól való négyzetes eltérésének az átlaga Képlete y = fajlagos mutató régóban f = súly (fajlagos mutató nevezője) Értékkészlete: 0 σ Mnél nagyobb az értéke, annál nagyobb az egyenlőtlenség Mértékegysége: mnt az eredet értékek (y ) mértékegysége y f y 2 f

19 Súlyozott szórás kszámításának lépése 1. Kszámítom a fajlagos mutató súlyozott átlagát 2. Mnden térség esetében kszámítom a vzsgált fajlagos mutató értékenek eltérését a súlyozott átlagtól (Excel $) 3. Mnden térség esetében a kapott különbségeket négyzetre emelem (Excel jobb oldal Alt+3 együtt, majd 2 = ^2) 4. Mnden térség esetében a kapott értékeket megszorzom a térséghez tartozó súllyal 2 4. lépések egy oszlopban s megoldhatók 5. Az így kapott szorzatokat összegzem 6. Ezt az összeget elosztom a súlyok összegével 7. Ennek a hányadosnak a négyzetgyökét veszem (^0,5)

20 Súlyozott relatív szórás: fajlagos mutatók esetében A valód egyenlőtlenségeket a relatív szórással mérhetjük Fajlagos mutatók esetében: súlyozott relatív szórással Képlete: σ = y adatsor súlyozott szórása y = y adatsor súlyozott átlaga Kszámítása v 100 y A súlyozott szórás értékeket elosztjuk a súlyozott átlaggal és megszorozzuk 100- zal (a súlyozott szórás értéket a súlyozott átlag százalékában fejezzük k) Értékkészlete: 0 v Mnél nagyobb az értéke, annál nagyobb az egyenlőtlenség Mértékegysége: %

21 Súlyozott relatív szórás kszámítása Excelben A B C D E F G 1 y f x átl elt négyzet súlyozás 2 1. régó =B2*C2 19 =B2- B$7 361 =E2^2 361 =F2*C régó 4 3, , régó 0 4, , régó összeg =SZUM(D2:D5) 526 =SZUM(G2:G5) 7 s. átlag 5 =D6/C6 52,6 =G6/C6 8 s. szórás 7,25 =G7^0,5 9 s. relatív szórás 145,05 =B8/B7*100

22

23 Köszönöm a megtsztelő fgyelmet! varga.ag14@gmal.com

A sokaság/minta eloszlásának jellemzése

A sokaság/minta eloszlásának jellemzése 3. előadás A sokaság/mnta eloszlásának jellemzése tpkus értékek meghatározása; az adatok különbözőségének vzsgálata, a sokaság/mnta eloszlásgörbéjének elemzése. Eloszlásjellemzők Középértékek helyzet (Me,

Részletesebben

A területi polarizáltság mérőszámai

A területi polarizáltság mérőszámai A területi polarizáltság mérőszámai Duál mutató A területi polarizáltság mérőszámai: Relatív range, range arány Duál mutató Duál mutató Az adatsor 2 részcsoportja átlagainak hányadosa Egyszerű, világos

Részletesebben

4 2 lapultsági együttható =

4 2 lapultsági együttható = Leíró statsztka Egy kísérlet végeztével általában tetemes mennységű adat szokott összegyűln. Állandó probléma, hogy mt s kezdjünk - lletve mt tudunk kezden az adatokkal. A statsztka ebben segít mnket.

Részletesebben

A területi koncentráció interpretálása: kitüntetett helyzetek

A területi koncentráció interpretálása: kitüntetett helyzetek A területi koncentráció interpretálása: kitüntetett helyzetek Kitüntetett helyzetek Egy társadalmi-gazdasági jelenség területi elhelyezkedésének mérése, interpretálása Egy jelenség középponti koordinátáinak

Részletesebben

STATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai

STATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai Változékonyság (szóródás) STATISZTIKA I. 5. Előadás Szóródási mutatók A középértékek a sokaság elemeinek értéknagyságbeli különbségeit eltakarhatják. A változékonyság az azonos tulajdonságú, de eltérő

Részletesebben

Komplex regionális elemzés és fejlesztés tanév DE Népegészségügyi Iskola Egészségpolitika tervezés és finanszírozás MSc

Komplex regionális elemzés és fejlesztés tanév DE Népegészségügyi Iskola Egészségpolitika tervezés és finanszírozás MSc Komplex regonáls elemzés és fejlesztés 2016-2017. tanév DE Népegészségügy Iskola Egészségpoltka tervezés és fnanszírozás MSc 2. előadás Terület elemzés módszerek az egészségföldrajzban Terület ellátás

Részletesebben

Statisztikai alapfogalmak

Statisztikai alapfogalmak Statisztika I. KÉPLETEK 2011-2012-es tanév I. félév Statisztikai alapfogalmak Adatok pontossága Mért adat Abszolút hibakorlát Relatív hibakorlát Statisztikai elemzések viszonyszámokkal : a legutolsó kiírt

Részletesebben

ADATREDUKCIÓ I. Középértékek

ADATREDUKCIÓ I. Középértékek ADATREDUKCIÓ I. Középértékek Adatredukcó 1. M a középérték: azonos fajta számszerű adatok közös jellemzője. 2. Követelmények: a) Számított középérték: közbenső helyet foglaljanak el, azaz mn középérték

Részletesebben

A sokaság elemei közül a leggyakrabban előforduló érték. diszkrét folytonos

A sokaság elemei közül a leggyakrabban előforduló érték. diszkrét folytonos Középérték Középérték A középérték a statisztikai adatok tömör számszerű jellemzése. helyzeti középérték: módusz medián számított középérték: számtani átlag kronológikus átlag harmonikus átlag mértani

Részletesebben

Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus. KOKI,

Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus. KOKI, Bevezetés a bometrába Dr. Dnya Elek egyetem tanár PhD kurzus. KOKI, 205.0.08. ADATREDUKCIÓ I. Középértékek Adatredukcó. M a középérték: azonos fajta számszerű adatok közös jellemzője. 2. Követelmények:

Részletesebben

Statisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus

Statisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus Statisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus Gyakorisági sorok Mennyiségi ismérv jellemző rangsor készítünk. (pl. napi jegyeladások száma) A gyakorisági sor képzése igazából tömörítést jelent Nagyszámú

Részletesebben

Statisztika. Eloszlásjellemzők

Statisztika. Eloszlásjellemzők Statsztka Eloszlásjellemzők Statsztka adatok elemzése A sokaság jellemzése középértékekkel A sokaság jellemzéséek szempotja A sokaság jellemzéséek szempotja: A sokaság tpkus értékéek meghatározása. Az

Részletesebben

Statisztika I. 4. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 4. előadás. Előadó: Dr. Ertsey Imre Statsztka I. 4. előadás Előadó: Dr. Ertsey Imre KÖZÉPÉRTÉKEK A statsztka sor általáos jellemzésére szolgálak, a statsztka sokaságot egy számmal jellemzk. Számított középértékek: matematka számítás eredméyekét

Részletesebben

ADATREDUKCIÓ I. Középértékek

ADATREDUKCIÓ I. Középértékek ADATREDUKCIÓ I. Középértékek Adatredukcó 1. M a középérték: azonos fajta számszerű adatok közös jellemzője. 2. Követelmények: a) Számított középérték: közbenső helyet foglaljanak el, azaz mn középérték

Részletesebben

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz

Részletesebben

Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés

Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés Gazdaságstatisztika 2. előadás Egy ismérv szerinti rendezés Kóczy Á. László KGK VMI Áttekintés Gyakorisági sorok Grafikus ábrázolásuk Helyzetmutatók Szóródási mutatók Az aszimmetria mérőszámai Koncentráció

Részletesebben

Statisztika I. 3. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 3. előadás. Előadó: Dr. Ertsey Imre Statsztka I. 3. előadás Előadó: Dr. Ertsey Imre Vszonyszámok Statsztka munka: adatgyűjtés, rendszerezés, összegzés, értékelés. Vszonyszámok: Két statsztka adat arányát kfejező számok, Az un. leszármaztatott

Részletesebben

s n s x A m és az átlag Standard hiba A m becslése Információ tartalom Átlag Konfidencia intervallum Pont becslés Intervallum becslés

s n s x A m és az átlag Standard hiba A m becslése Információ tartalom Átlag Konfidencia intervallum Pont becslés Intervallum becslés A m és az átlag Standard hba Mnta átlag 1 170 Az átlagok szntén ngadoznak a m körül. s x s n Az átlagok átlagos eltérése a m- től! 168 A m konfdenca ntervalluma. 3 166 4 173 x s x ~ 68% ~68% annak a valószínűsége,

Részletesebben

Regresszió. Fő cél: jóslás Történhet:

Regresszió. Fő cél: jóslás Történhet: Fő cél: jóslás Történhet: Regresszó 1 változó több változó segítségével Lépések: Létezk-e valamlyen kapcsolat a 2 változó között? Kapcsolat természetének leírása (mat. egy.) A regresszós egyenlet alapján

Részletesebben

Példa: Egy üzletlánc boltjainak forgalmára vonatkozó adatok 1999. október hó: (adott a vastagon szedett!) S i g i z i g i z i

Példa: Egy üzletlánc boltjainak forgalmára vonatkozó adatok 1999. október hó: (adott a vastagon szedett!) S i g i z i g i z i . konzult. LEV. 013. ápr. 5. MENNYISÉGI ISMÉRV szernt ELEMZÉS Tk. 3-8., 88-90. oldal, kmarad: 70., 74. oldal A mennység smérv (X) lehet: dszkrét és folytonos. A rangsor a mennység smérv értékenek monoton

Részletesebben

Hipotézis vizsgálatok. Egy példa. Hipotézisek. A megfigyelt változó eloszlása Kérdés: Hatásos a lázcsillapító gyógyszer?

Hipotézis vizsgálatok. Egy példa. Hipotézisek. A megfigyelt változó eloszlása Kérdés: Hatásos a lázcsillapító gyógyszer? 01.09.18. Hpotézs vzsgálatok Egy példa Kérdések (példa) Hogyan adhatunk választ? Kérdés: Hatásos a lázcsllapító gyógyszer? Hatásos-e a gyógyszer?? rodalomból kísérletekből Hpotézsek A megfgyelt változó

Részletesebben

Indexszámítás során megválaszolandó kérdések. Hogyan változott a termelés értéke, az értékesítés árbevétele, az értékesítési forgalom?

Indexszámítás során megválaszolandó kérdések. Hogyan változott a termelés értéke, az értékesítés árbevétele, az értékesítési forgalom? Index-számítás Indexszámítás során megálaszolandó kérdések Hogyan áltozott a termelés értéke, az értékesítés árbeétele, az értékesítés forgalom? Hogyan áltozott a termelés, értékesítés mennysége? Hogyan

Részletesebben

A(a; b) = 2. A(a; b) = a+b. Példák A(37; 49) = x 2x = x = : 2 x = x = x

A(a; b) = 2. A(a; b) = a+b. Példák A(37; 49) = x 2x = x = : 2 x = x = x 10. osztály:nevezetes középértékek Összeállította:Keszeg ttila 1 1 számtani közép efiníció 1. (Két nemnegatív szám számtani közepe) Két nemnegatív szám számtani közepének a két szám összegének a felét

Részletesebben

Matematikai statisztika

Matematikai statisztika Matematikai statisztika PROGRAMTERVEZŐ INFORMATIKUS alapszak, A szakiráy Arató Miklós Valószíűségelméleti és Statisztika Taszék Természettudomáyi Kar 2019. február 18. Arató Miklós (ELTE) Matematikai statisztika

Részletesebben

Variancia-analízis (ANOVA) Mekkora a tévedés esélye? A tévedés esélye Miért nem csinálunk kétmintás t-próbákat?

Variancia-analízis (ANOVA) Mekkora a tévedés esélye? A tévedés esélye Miért nem csinálunk kétmintás t-próbákat? Varanca-analízs (NOV Mért nem csnálunk kétmntás t-próbákat? B Van különbség a csoportok között? Nncs, az eltérés csak véletlen! Ez a nullhpotézs. és B nncs különbség Legyen, B és C 3 csoport! B és C nncs

Részletesebben

Algoritmusok és adatszerkezetek I. 10. előadás

Algoritmusok és adatszerkezetek I. 10. előadás Algortmusok és adatszerkezetek I. 10. előadás Dnamkus programozás Feladat: Adott P 1,P 2, P n pénzjegyekkel kfzethető-e F fornt? Megoldás: Tegyük fel, hogy F P P... P... m! 1 2 m 1 Ekkor F P P P P......,

Részletesebben

Vizsgáljuk elôször, hogy egy embernek mekkora esélye van, hogy a saját

Vizsgáljuk elôször, hogy egy embernek mekkora esélye van, hogy a saját 376 Statisztika, valószínûség-számítás 1500. Az elsô kérdésre egyszerû válaszolni, elég egy ellenpélda, és biztosan nem lehet akkor így kiszámolni. Pl. legyen a három szám a 3; 5;. A két kisebb szám átlaga

Részletesebben

Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés. Gazdaságstatisztika KGK VMI

Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés. Gazdaságstatisztika KGK VMI Gazdaságstatisztika 2. előadás Egy ismérv szerinti rendezés Kóczy Á. László KGK VMI Áttekintés Gyakorisági sorok Grafikus ábrázolásuk Helyzetmutatók Szóródási mutatók Az aszimmetria mérőszámai Koncentráció

Részletesebben

KÖZBESZERZÉSI ADATBÁZIS

KÖZBESZERZÉSI ADATBÁZIS 14. melléklet a 44/2015. (XI. 2.) MvM rendelethez KÖZBESZERZÉSI DTBÁZIS Összegez az ajánlatok elbírálásáról I. szakasz: kérő I.1) Név címek 1 (jelölje meg az eljárásért felelős összes ajánlatkérőt) Hvatalos

Részletesebben

Elemi statisztika fizikusoknak

Elemi statisztika fizikusoknak 1. oldal Elemi statisztika fizikusoknak Pollner Péter Biológiai Fizika Tanszék pollner@elte.hu Az adatok leírása, megismerése és összehasonlítása 2-1 Áttekintés 2-2 Gyakoriság eloszlások 2-3 Az adatok

Részletesebben

MATEMATIKAI STATISZTIKA KISFELADAT. Feladatlap

MATEMATIKAI STATISZTIKA KISFELADAT. Feladatlap Közlekedésmérnök Kar Jármőtervezés és vzsgálat alapja I. Feladatlap NÉV:..tk.:. Feladat sorsz.:.. Feladat: Egy jármő futómő alkatrész terhelésvzsgálatakor felvett, az alkatrészre ható terhelı erı csúcsértékek

Részletesebben

Adatgyűjtés, adatkezelés, adattípusok

Adatgyűjtés, adatkezelés, adattípusok Adatgyűjtés, adatkezelés, adattípusok Varga Ágnes egyetemi tanársegéd varga.agnes@uni-corvinus.hu 2018/19. I. félév BCE Geo Intézet Társadalmi-gazdasági folyamatok feltárása Egyik legfontosabb és legizgalmasabb

Részletesebben

STATISZTIKA I. Centrális mutatók. Helyzeti középértékek. Középértékek. Bimodális eloszlás, U. Módusz, Mo. 4. Előadás.

STATISZTIKA I. Centrális mutatók. Helyzeti középértékek. Középértékek. Bimodális eloszlás, U. Módusz, Mo. 4. Előadás. Centrális mutatók STATISZTIKA I. 4. Előadás Centrális mutatók 1/51 2/51 Középértékek Helyzeti középértékek A meghatározása gyakoriság vagy sorszám alapján Számítás nélkül Az elemek nagyság szerint rendezett

Részletesebben

Területi fejlettségi egyenlőtlenségek alakulása Európában. Fábián Zsófia KSH

Területi fejlettségi egyenlőtlenségek alakulása Európában. Fábián Zsófia KSH Területi fejlettségi egyenlőtlenségek alakulása Európában Fábián Zsófia KSH A vizsgálat célja Európa egyes térségei eltérő természeti, társadalmi és gazdasági adottságokkal rendelkeznek. Különböző történelmi

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások Megoldások 1. A fős osztály dolgozatot írt matematikából és a következő jegyek születtek: 6 darab jeles, 9 darab jó, 8 darab közepes, darab elégséges és darab elégtelen. Készíts gyakorisági táblázatot,

Részletesebben

Lineáris regresszió. Statisztika I., 4. alkalom

Lineáris regresszió. Statisztika I., 4. alkalom Lneárs regresszó Statsztka I., 4. alkalom Lneárs regresszó Ha két folytonos változó lneárs kapcsolatban van egymással, akkor az egyk segítségével elıre jelezhetjük a másk értékét. Szükségünk van a függı

Részletesebben

A multikritériumos elemzés célja, alkalmazási területe, adat-transzformációs eljárások, az osztályozási eljárások lényege

A multikritériumos elemzés célja, alkalmazási területe, adat-transzformációs eljárások, az osztályozási eljárások lényege A multkrtérumos elemzés célja, alkalmazás területe, adat-transzformácós eljárások, az osztályozás eljárások lényege Cél: tervváltozatok, objektumok értékelése (helyzetértékelés), döntéshozatal segítése

Részletesebben

VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA

VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA A VALÓSZÍNŰSÉGI SZEMLÉLET ALAPOZÁSA 1-6. OSZTÁLY A biztos, a lehetetlen és a lehet, de nem biztos események megkülünböztetése Valószínűségi játékok, kísérletek események

Részletesebben

Statisztikai próbák. Ugyanazon problémára sokszor megvan mindkét eljárás.

Statisztikai próbák. Ugyanazon problémára sokszor megvan mindkét eljárás. Statsztka próbák Paraméteres. A populácó paraméteret becsüljük, ezekkel számolunk.. Az alapsokaság eloszlására van kkötés. Nem paraméteres Nncs lyen becslés Nncs kkötés Ugyanazon problémára sokszor megvan

Részletesebben

ADATREDUKCIÓ I. Középértékek

ADATREDUKCIÓ I. Középértékek ADATREDUKCIÓ I. Középértékek Adatredukcó 1. M a középérték: azonos fajta számszerű adatok közös jellemzője. 2. Követelmények: a) Számított középérték: közbenső helyet foglaljanak el, azaz x mn középérték

Részletesebben

Kutatásmódszertan és prezentációkészítés

Kutatásmódszertan és prezentációkészítés Kutatásmódszertan és prezentációkészítés 10. rész: Az adatelemzés alapjai Szerző: Kmetty Zoltán Lektor: Fokasz Nikosz Tizedik rész Az adatelemzés alapjai Tartalomjegyzék Bevezetés Leíró statisztikák I

Részletesebben

20 PONT Aláírás:... A megoldások csak szöveges válaszokkal teljes értékőek!

20 PONT Aláírás:... A megoldások csak szöveges válaszokkal teljes értékőek! SPEC 2009-2010. II. félév Statsztka II HÁZI dolgozat Név:... Neptun kód: 20 PONT Aláírás:... A megoldások csak szöveges válaszokkal teljes értékőek! 1. példa Egy üzemben tejport csomagolnak zacskókba,

Részletesebben

A GDP hasonlóképpen nem tükrözi a háztartások közötti munka- és termékcseréket.

A GDP hasonlóképpen nem tükrözi a háztartások közötti munka- és termékcseréket. FŐBB MUTATÓK A regionális GDP adatok minősége alapvetően 3 tényezőtől függ: az alkalmazott számítási módszertől a felhasznált adatok minőségétől a vizsgált területi egység nagyságától. A TERÜLETI EGYENLŐTLENSÉGEK

Részletesebben

Gazdaságtudományi Kar. Gazdaságelméleti és Módszertani Intézet. Regresszió-számítás. 2. előadás. Kvantitatív statisztikai módszerek. Dr.

Gazdaságtudományi Kar. Gazdaságelméleti és Módszertani Intézet. Regresszió-számítás. 2. előadás. Kvantitatív statisztikai módszerek. Dr. Gazdaságtudomán Kar Gazdaságelmélet és Módszertan Intézet Regresszó-számítás. előadás Kvanttatív statsztka módszerek Dr. Varga Beatr Gazdaságtudomán Kar Gazdaságelmélet és Módszertan Intézet Korrelácós

Részletesebben

Statisztika. Politológus képzés. Daróczi Gergely április 17. Politológia Tanszék

Statisztika. Politológus képzés. Daróczi Gergely április 17. Politológia Tanszék Statisztika Politológus képzés Daróczi Gergely Politológia Tanszék 2012. április 17. Outline 1 Leíró statisztikák 2 Középértékek Példa 3 Szóródási mutatók Példa 4 Néhány megjegyzés a grafikonokról 5 Számítások

Részletesebben

1. Egy Kft dolgozóit a havi bruttó kereseteik alapján csoportosítottuk: Havi bruttó bér, ezer Ft/fő

1. Egy Kft dolgozóit a havi bruttó kereseteik alapján csoportosítottuk: Havi bruttó bér, ezer Ft/fő Figyelem! A példasor nem tartalmazza valamennyi típuspéldát. A dolgozatban az órán leadott feladatok közül bármely típusú előfordulhat. A példasor már a második dolgozat anyagát gyakorló feladatokat is

Részletesebben

Németh László Matematikaverseny április 16. A osztályosok feladatainak javítókulcsa

Németh László Matematikaverseny április 16. A osztályosok feladatainak javítókulcsa Németh László Matematikaverseny 007. április 16. A 9-10. osztályosok feladatainak javítókulcsa Feladatok csak 9. osztályosoknak 1. feladat a) Vegyük észre, hogy 7 + 5 felírható 1 + 3 + 6 + alakban, így

Részletesebben

1. óra: Területi statisztikai alapok viszonyszámok, középértékek

1. óra: Területi statisztikai alapok viszonyszámok, középértékek 1. óra: Területi statisztikai alapok viszonyszámok, középértékek Tér és társadalom (TGME0405-GY) gyakorlat 2018-2019. tanév Viszonyszámok Viszonyszá m Viszonyítandó adat (A) Viszonyítási alap (B) 1. Megoszlási

Részletesebben

Biomatematika 2 Orvosi biometria

Biomatematika 2 Orvosi biometria Biomatematika 2 Orvosi biometria 2017.02.05. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny tanévi második fordulójának feladatmegoldásai. x 2 sin x cos (2x) < 1 x.

Az Országos Középiskolai Tanulmányi Verseny tanévi második fordulójának feladatmegoldásai. x 2 sin x cos (2x) < 1 x. Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi második fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Oldja meg a következő egyenlőtlenséget, ha x > 0: x 2 sin

Részletesebben

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések! ORVOSI STATISZTIKA Az orvos statsztka helye Élettan Anatóma Kéma Lehet kérdés?? Statsztka! Az orvos döntéseket hoz! Mkor jó egy döntés? Mennyre helyes egy döntés? Mekkora a tévedés lehetősége? Példa: test

Részletesebben

ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó június

ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó június GAZDASÁGSTATISZTIKA GAZDASÁGSTATISZTIKA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi

Részletesebben

Adatelemzés és adatbányászat MSc

Adatelemzés és adatbányászat MSc Adatelemzés és adatbányászat MSc. téma Adatelemzés, statsztka elemek áttekntése Adatelemzés módszertana probléma felvetés módszer, adatok meghatározása nyers adatok adatforrás meghatározása adat tsztítás

Részletesebben

Növekvő regionális egyenlőtlenségek az Európai Unióban. Áldorfai György PhD. hallgató SZIE GTK RGVI - EGYRTDI

Növekvő regionális egyenlőtlenségek az Európai Unióban. Áldorfai György PhD. hallgató SZIE GTK RGVI - EGYRTDI Növekvő regionális egyenlőtlenségek az Európai Unióban Áldorfai György PhD. hallgató SZIE GTK RGVI - EGYRTDI A Római Szerződés célja hogy biztosítsa a nemzetgazdaságok harmonizált fejlődését a Közösségen

Részletesebben

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 8. előadás Előadó: Dr. Ertsey Imre Minták alapján történő értékelések A statisztika foglalkozik. a tömegjelenségek vizsgálatával Bizonyos esetekben lehetetlen illetve célszerűtlen a teljes

Részletesebben

M4 TÁBLÁZATKEZELÉS ALAPJAI

M4 TÁBLÁZATKEZELÉS ALAPJAI Képletek Olyan egyenletek, amelyek a munkalapon szereplő értékekkel számításokat hajtanak végre. Jellemzői: - egyenlőségjellel = kezdődik Képlet részei: 1. Számtani műveleti jelek. 2. Állandók. 3. Hivatkozások.

Részletesebben

STATISZTIKA KÉSZÍTETTE: TAKÁCS SÁNDOR

STATISZTIKA KÉSZÍTETTE: TAKÁCS SÁNDOR STATISZTIKA KÉSZÍTETTE: TAKÁCS SÁNDOR ALAPFOGALMAK Statisztika: latin status szóból ered: állapot Mindig egy állapotot tükröz Véletlen tömegjelenségek tanulmányozásával foglakozik Adatok megfigyelés, kísérlet

Részletesebben

3. Évközi ellenőrzés módja: 2 zárhelyi dolgozat íratása. 4. A tárgy előírt külső szakmai gyakorlatai: -

3. Évközi ellenőrzés módja: 2 zárhelyi dolgozat íratása. 4. A tárgy előírt külső szakmai gyakorlatai: - Tantárgy neve Halmazok és függvények Tantárgy kódja MTB00 Meghrdetés féléve Kredtpont Összóraszám (elm+gyak + Számonkérés módja G Előfeltétel (tantárgy kód - Tantárgyfelelős neve Rozgony Tbor Tantárgyfelelős

Részletesebben

2. előadás. Viszonyszámok típusai

2. előadás. Viszonyszámok típusai 2. előadás Viszonyszámok típusai Mérési skálák Nominális /névleges skála: kötetlen hozzárendelése a számoknak Sorrendi / Ordinális skála: sokaság egyedeinek egy közös tulajdonság szerinti sorbarendezése

Részletesebben

Gazdaságtudományi Kar. Gazdaságelméleti és Módszertani Intézet. Korreláció-számítás. 1. előadás. Döntéselőkészítés módszertana. Dr.

Gazdaságtudományi Kar. Gazdaságelméleti és Módszertani Intézet. Korreláció-számítás. 1. előadás. Döntéselőkészítés módszertana. Dr. Korrelácó-számítás 1. előadás Döntéselőkészítés módszertana Dr. Varga Beatr Két változó között kapcsolat Függetlenség: Az X smérv szernt hovatartozás smerete nem ad semmlen többletnformácót az Y szernt

Részletesebben

A leíró statisztikák

A leíró statisztikák A leíró statisztikák A leíró statisztikák fogalma, haszna Gyakori igény az, hogy egy adathalmazt elemei egyenkénti felsorolása helyett néhány jellemző tulajdonságának megadásával jellemezzünk. Ezeket az

Részletesebben

Matematikai statisztikai elemzések 2.

Matematikai statisztikai elemzések 2. Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematikai statisztikai elemzések 2. MSTE2 modul Helyzetmutatók, átlagok, kvantilisek. A szórás és szóródás egyéb mérőszámai.

Részletesebben

A valószínűségszámítás elemei

A valószínűségszámítás elemei A valószínűségszámítás elemei Kísérletsorozatban az esemény relatív gyakorisága: k/n, ahol k az esemény bekövetkezésének abszolút gyakorisága, n a kísérletek száma. Pl. Jelenség: kockadobás Megfigyelés:

Részletesebben

The original laser distance meter. The original laser distance meter

The original laser distance meter. The original laser distance meter Leca Leca DISTO DISTO TM TM D510 X310 The orgnal laser dstance meter The orgnal laser dstance meter Tartalomjegyzék A műszer beállítása - - - - - - - - - - - - - - - - - - - - - - - - - 2 Bevezetés - -

Részletesebben

XXII. Vályi Gyula Emlékverseny április 8. V. osztály

XXII. Vályi Gyula Emlékverseny április 8. V. osztály V. osztály 1. Egy anya éveinek száma ugyanannyi, mint a lánya életkora hónapokban kifejezve. Mennyi idősek külön-külön, ha az anya 23 évvel és 10 hónappal idősebb a lányánál? 2. Melyek azok a 2016-nál

Részletesebben

Mérési adatok feldolgozása. 2008.04.08. Méréselmélet PE_MIK MI_BSc, VI_BSc 1

Mérési adatok feldolgozása. 2008.04.08. Méréselmélet PE_MIK MI_BSc, VI_BSc 1 Mérés adatok feldolgozása 2008.04.08. Méréselmélet PE_MIK MI_BSc, VI_BSc Bevezetés A mérés adatok külöböző formába, általába ömlesztve jeleek meg Ezeket az adatokat külöböző szempotok szert redez kértékel

Részletesebben

Feladatok: pontdiagram és dobozdiagram. Hogyan csináltuk?

Feladatok: pontdiagram és dobozdiagram. Hogyan csináltuk? Feladatok: pontdiagram és dobozdiagram Hogyan csináltuk? Alakmutatók: ferdeség, csúcsosság Alakmutatók a ferdeség és csúcsosság mérésére Ez eloszlás centrumát (középérték) és az adatok centrum körüli terpeszkedését

Részletesebben

Koncentráció és mérése gazdasági és társadalmi területeken. Kerékgyártó Györgyné BCE Statisztika Tanszék

Koncentráció és mérése gazdasági és társadalmi területeken. Kerékgyártó Györgyné BCE Statisztika Tanszék Koncentrácó és mérése gazdaság és társadalm területeken Kerékgyártó Györgyné BCE Statsztka Tanszék Koncentrácó Fogalmát a XVIII. sz. másodk felétől egyre gyakrabban használták. Először a termelésre értelmezték,

Részletesebben

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések! ORVOSI STATISZTIKA Az orvos statsztka helye Életta Aatóma Kéma Lehet kérdés?? Statsztka! Az orvos dötéseket hoz! Mkor jó egy dötés? Meyre helyes egy dötés? Mekkora a tévedés lehetősége? Példa: test hőmérséklet

Részletesebben

Számtan, mértan, origami és a szabványos papírméretek

Számtan, mértan, origami és a szabványos papírméretek Számtan, mértan, origami és a szabványos papírméretek A papír gyártása, forgalmazása és feldolgozása során szabványos alakokat használunk. Ezeket a méreteket a szakirodalmak tartalmazzák. Az alábbiakban

Részletesebben

I. A gyökvonás. cd c) 6 d) 2 xx. 2 c) Szakaszvizsgára gyakorló feladatok 10. évfolyam. Kedves 10. osztályos diákok!

I. A gyökvonás. cd c) 6 d) 2 xx. 2 c) Szakaszvizsgára gyakorló feladatok 10. évfolyam. Kedves 10. osztályos diákok! Kedves 10. osztályos diákok! Szakaszvizsgára gyakorló feladatok 10. évfolyam Közeleg a szakaszvizsga időpontja, amelyre 019. április 1-én kerül sor. A könnyebb felkészülés érdekében adjuk közre ezt a feladatsort,

Részletesebben

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA 1 SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA Heti óraszám: 3 Éves óraszám: 37 x 3 = 111 A tanmenet 101 óra beosztását tartalmazza. A dolgozatok írása és javítása 10 órát foglal

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.08. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)

Részletesebben

Közúti közlekedésüzemvitel-ellátó. Tájékoztató

Közúti közlekedésüzemvitel-ellátó. Tájékoztató 12/2013. (III. 29.) NFM rendelet szakma és vzsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 841 02 Közút közlekedésüzemvtel-ellátó Tájékoztató A vzsgázó az első lapra írja fel

Részletesebben

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 9. Előadás Binomiális eloszlás Egyenletes eloszlás Háromszög eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell 2/62 Matematikai statisztika

Részletesebben

VARIANCIAANALÍZIS (szóráselemzés, ANOVA)

VARIANCIAANALÍZIS (szóráselemzés, ANOVA) VARIANCIAANAÍZIS (szóráselemzés, ANOVA) Varancaanalízs. Varancaanalízs (szóráselemzés, ANOVA) Adott: egy vagy több tetszőleges skálájú független változó és egy legalább ntervallum skálájú függő változó.

Részletesebben

Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: november. I. rész

Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: november. I. rész Pataki János, november Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: november I rész feladat Oldja meg az alábbi egyenleteket: a) log 7 log log log 7 ; b) ( )

Részletesebben

Munkánk során a cellák tartalmát gyakran másolni szoktuk. Előfordul, hogy képleteket tartalmazó cellákat másolunk.

Munkánk során a cellák tartalmát gyakran másolni szoktuk. Előfordul, hogy képleteket tartalmazó cellákat másolunk. Táblázatkezelés 4. - Hivatkozások Az elmúlt órán végzett számításoknál, amikor a felhasználói képleteket készítettük, mindig annak a cellának a tartalmát használtuk, amelyben a számításhoz szükséges adat

Részletesebben

Minősítéses mérőrendszerek képességvizsgálata

Minősítéses mérőrendszerek képességvizsgálata Mnősítéses mérőrendszerek képességvzsgálata Vágó Emese, Dr. Kemény Sándor Budapest Műszak és Gazdaságtudomány Egyetem Kéma és Környezet Folyamatmérnök Tanszék Az előadás vázlata 1. Mnősítéses mérőrendszerek

Részletesebben

HAVRAN DÁNIEL. Pénzgazdálkodási szokások hatása a működőtőkére. A Magyar Posta példája

HAVRAN DÁNIEL. Pénzgazdálkodási szokások hatása a működőtőkére. A Magyar Posta példája HAVRAN DÁNIEL Pénzgazdálkodás szokások haása a működőőkére. A Magyar Posa példája A hálózaos parágakban, ahogy a posa szolgálaásoknál s, a forgalomban lévő készpénz nagyméreű működőőké jelenhe. A Magyar

Részletesebben

Racionális számok: Azok a számok, amelyek felírhatók két egész szám hányadosaként ( p q

Racionális számok: Azok a számok, amelyek felírhatók két egész szám hányadosaként ( p q Szóbeli tételek matematikából 1. tétel 1/a Számhalmazok definíciója, jele (természetes számok, egész számok, racionális számok, valós számok) Természetes számok: A pozitív egész számok és a 0. Jele: N

Részletesebben

MINTAFELADATOK. 1. Az alábbi diagram egy kiskereskedelmi lánc boltjainak forgalomkoncentrációját szemlélteti:

MINTAFELADATOK. 1. Az alábbi diagram egy kiskereskedelmi lánc boltjainak forgalomkoncentrációját szemlélteti: 1. Az alábbi diagram egy kiskereskedelmi lánc boltjainak forgalomkoncentrációját szemlélteti: 100% 90% 80% 70% 60% 50% 2010 2011 40% 30% 20% 10% 0% 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% a) Nevezze

Részletesebben

BIOSTATISZTIKA ÉS INFORMATIKA. Leíró statisztika

BIOSTATISZTIKA ÉS INFORMATIKA. Leíró statisztika BIOSTATISZTIKA ÉS INFORMATIKA Leíró statisztika Első közelítésbe a statisztikai tevékeységeket égy csoportba sorolhatjuk, de ezek között ics éles határ:. adatgyűjtés, 2. az adatok áttekithetővé tétele,

Részletesebben

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM.

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM. STATISZTIKA 5 4,5 4 3,5 3 2,5 2 1,5 1 0,5 0 MAGY. MAT. TÖRT. KÉM. ANNA BÉLA CILI András hármas. Béla Az átlag 3,5! kettes. Éva ötös. Nóri négyes. 1 mérés: dolgokhoz valamely szabály alapján szám rendelése

Részletesebben

Általános Statisztika

Általános Statisztika Budapest Mőszak és Gazdaságtudomány Egyetem Gazdaság- és Társadalomtudomány Kar Nyugat-Magyarország Egyetem Savara Egyetem Központ Dr. Köves János Dr. Tóth Zsuzsanna Eszter Általános Statsztka oktatás

Részletesebben

törtet, ha a 1. Az egyszerűsített alak: 2 pont

törtet, ha a 1. Az egyszerűsített alak: 2 pont 1. Egyszerűsítse az 3 2 a + a a + 1 törtet, ha a 1. Az egyszerűsített alak: 2. Milyen számjegy állhat az X helyén, ha a négyjegyű 361 X szám 6-tal osztható? X = 3. Minden szekrény barna. Válassza ki az

Részletesebben

Függvények Megoldások

Függvények Megoldások Függvények Megoldások ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x x b) x x + c) x ( x + ) b) Az x függvény

Részletesebben

Párhuzamos algoritmusok

Párhuzamos algoritmusok Párhuzamos algortmusok. Hatékonyság mértékek A árhuzamos algortmusok esetében fontos jellemző az m ( n, P, ) munka, amt a futás dő és a rocesszorszám szorzatával defnálunk. A P árhuzamos algortmus az A

Részletesebben

2. Egy mértani sorozat második tagja 6, harmadik tagja 18. Adja meg a sorozat ötödik tagját!

2. Egy mértani sorozat második tagja 6, harmadik tagja 18. Adja meg a sorozat ötödik tagját! 1. Egy 27 fős osztályban mindenki tesz érettségi vizsgát angolból vagy németből. 23 diák vizsgázik angolból, 12 diák pedig németből. Hány olyan diák van az osztályban, aki angolból és németből is tesz

Részletesebben

ÁTLAG(tartomány) DARAB(tartomány) DARAB2(tartomány) STATISZTIKAI FÜGGVÉNYEK

ÁTLAG(tartomány) DARAB(tartomány) DARAB2(tartomány) STATISZTIKAI FÜGGVÉNYEK STATISZTIKAI FÜGGVÉNYEK ÁTLAG(tartomány) A tartomány terület numerikus értéket tartalmazó cellák értékének átlagát számítja ki. Ha a megadott tartományban nincs numerikus értéket tartalmazó cella, a #ZÉRÓOSZTÓ!

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások Megoldások 1. Oldd meg a következő egyenleteket! (Alaphalmaz: Z) a) (x 1) (x + 1) 7x + 1 = x (4 + x) + 2 b) 1 2 [5 (x 1) (1 + 2x) 2 4x] = (7 x) x c) 2 (x + 5) (x 2) 2 + (x + 1) 2 = 6 (2x + 1) d) 6 (x 8)

Részletesebben

ÁLTALÁNOS STATISZTIKA

ÁLTALÁNOS STATISZTIKA Berzseny Dánel Főskola ÁLTALÁNOS STATISZTIKA műszak menedzser alapszak Írta: Dr. Köves János Tóth Zsuzsanna Eszter Budapest 006 Tartalomjegyzék. VALÓSZÍNŰSÉGSZÁMÍTÁSI ALAPOK... 4.. A VALÓSZÍNŰSÉGSZÁMÍTÁS

Részletesebben

Tanult nem paraméteres próbák, és hogy milyen probléma megoldására szolgálnak.

Tanult nem paraméteres próbák, és hogy milyen probléma megoldására szolgálnak. 8. GYAKORLAT STATISZTIKAI PRÓBÁK ISMÉTLÉS: Tanult nem paraméteres próbák, és hogy mlyen probléma megoldására szolgálnak. Név Illeszkedésvzsgálat Χ próbával Illeszkedésvzsgálat grafkus úton Gauss papírral

Részletesebben

ó ó ú ú ó ó ó ü ó ü Á Á ü É ó ü ü ü ú ü ó ó ü ó ü ó ó ú ú ú ü Ü ú ú ó ó ü ó ü ü Ü ü ú ó Ü ü ű ű ü ó ü ű ü ó ú ó ú ú ú ó ú ü ü ű ó ú ó ó ü ó ó ó ó ú ó ü ó ó ü ü ó ü ü Ü ü ó ü ü ü ó Ü ó ű ü ó ü ü ü ú ó ü

Részletesebben

Ü Ö Á Á Á Á Á É ű Ü Ú ű ű Á É ű Ú Ü ű Ü Ü Ü Ü Ü Ü Ü Ü Ü Á Ü Ü Ü Ö Ö Ú Ö Ü Ö ű ű ű ű ű Á ű Ú ű ű ű ű ű É Á Ö Ö Ö ű ű ű Á ű ű ű ű ű ű ű ű ű ű Ü Ü Ü Ü ű ű ű ű ű ű ű ű ű ű ű Ú ű ű ű ű ű ű Ü Ö Ü Ó Ö ű ű ű

Részletesebben

Ö Ó ú É ű É Ö Ö Ö Ü Ó Ú É ú É Ü Ú ú Ü ű ú Ü Ö Ö ú ű Ú ű ű ú Ö Ö Ö Ö É ú ú Ő Ö ú Ü Ó ú Ú Ü Ö ű ű ű Ö ű ú Ó ű Ö Ü ű ú ú ú ú É ú Ö ú ú Ü ú Ó ú ú ú ú ú ú ű ű ú ű ú ú ű Ö ú ú ú ű Ö ú ű ú ű Ü Ö Ü ű Ü Ö ú ú Ü

Részletesebben

Á Á Ó É ö ó ó ó ő ő ó ö ő ő ű ó ú ö ó ó ő ó ü ó ó ő ó ó ő ó ü ó ő ő ő ó ő ő ö ó ó ó ö ö ü ö Á Á Ó ü ó ö ó ő ó ő ő Á É Á Ó ű ü ö ó ő ó ú ÉÉ ó ú ő ö ó ó ó ó ó ö ö ő ü ó ö ö ü ó ű ö ó ó ó ó ú ó ü ó ó ö ó

Részletesebben

É É É ü É ó ó É ű ó ÉÉ ó É ó É É ó É ü ó ó Ó ű ó ó ó ó ü É ü ű ó É É É É ü ü ó ó ó ü É ó É ó É ó ó ó ü ü ü ü ó ü ü ü ü ó ű ű É Í Ó Ü Ö ó ó ó Ó ó ü ü ü ű ó ü ü ű ü ü ó ü ű ü ó ü ó ó ó ó ó ó ó ü ó ó ó ű

Részletesebben

Á ű ő ö Í é é ő Ö Ö é ő Ö ő ö é é Ö ü é ó Ő é é ó é ó é é é é Ö ó ó ő é Ü é ó ö ó ö é é Ő ú é é é é ő Ú é ó Ő ö Ő é é é é ű ö é Ö é é ó ű ö é ő é é é é é é é é é Ö é Ö ü é é é é ö ü é ó é ó ó é ü ó é é

Részletesebben