ADATREDUKCIÓ I. Középértékek
|
|
- Emil Farkas
- 6 évvel ezelőtt
- Látták:
Átírás
1 ADATREDUKCIÓ I. Középértékek
2 Adatredukcó 1. M a középérték: azonos fajta számszerű adatok közös jellemzője. 2. Követelmények: a) Számított középérték: közbenső helyet foglaljanak el, azaz mn középérték ma b) Helyzet középérték: tpkus értékek legyenek (gyakran forduljonak elő). c) Legyenek könnyen meghatározhatók. d) Legyenek egyértelműen defnálva. 3. A középérték az azonos fajta adatok tömegének számszerű jellemzője.
3 Középértékek Számított középértékek Helyzet középértékek Artmetka Harmonkus Módusz Medán átlag: X átlag: Xh Mo Me Geometra átlag: Xg Kvadratkus átlag: Xq
4 Számított középértékek Matematka összefüggés alapján számíthatók k: Számtan (Artmetka) átlag Egyszerű Súlyozott Harmonkus átlag Egyszerű Súlyozott Mértan (Geometra) átlag Egyszerű Súlyozott Négyzetes (Kvadratkus) átlag Egyszerű Súlyozott n n n f f a n a 1 1 _ 1 _ n n n f f h n h 1 1 _ 1 _ 1 n f f n n n g g 1 1 _ 1 _ n n n f f q n q _ 1 2 _
5 Adatokat nagyságszernt rendezzük. Helyzet mutatók Meghatározzuk a küszöb értéket és felosztjuk a tartományt a kívánt részre. Kvantlsek: az összes előforduló érték j/k (j=1,2,,k-1) része ksebb és 1-j/k része nagyobb. Pl. k=2: Medán (Me) k=3: tercls k=4: Qvartls (Q1, Q2=Me, Q3) k=5: kvntls k=10: decls k=100: percentls
6 Outler
7 Egyéb átlagok Interquartle mean (IQM) vagy mdmean: Nem érzékeny az outler értékekre:
8 Trmean vagy Tukey's trmean Kombnálja a medán és a mdhnge előnyet tekntettel az etrém értékekre:
9 Összefoglalás - Középértékek Az egyes adatfajtáknál mlyen középértékeket alkalmazunk? Átlag Medán Kvanttatív Ordnáls Módusz Nomnáls
10 ADATREDUKCIÓ II. Szóródás és mérése
11 A szóródás mérése Szóródás: azonos fajta számszerű adatok különbözősége Mérése: az smérvértékek valamlyen középértéktől vett vagy egymás között különbsége alapján történk. Szóródás mutatók A szóródás terjedelme Átlagos abszolút eltérés Szórásnégyzet, szórás, relatív szórás (Átlagos különbség) Koncentrácó 11
12 A szóródás terjedelme A legnagyobb és legksebb smérvérték különbsége R vagy T = X ma X mn Interquartls terjedelem: IQT = Q 3 Q 1 A mutatószámok kfejezk, hogy mekkora értékközben ngadoznak az smérvértékek. Gyakorlatban kevéssé használatos, mert csupán a két szélső értékre támaszkodk. 12
13 13 Átlagos abszolút eltérés Az egyes smérvértékek számtan átlagtól vett vagy a medántól vett eltérésenek abszolút értékeből számított átlag k k f f 1 1 k k f Me f d 1 1 Az átl.absz.elt a medán esetén a legksebb!
14 14 A szórásnégyzet (varanca) és szórás Az egyes értékek számtan átlagtól vett eltérés-négyzetenek átlaga: N N f f s Var ) ( ) ( N s N 1 2 ) ( Varanca vagy: szórásnégyzet Szórás: 1 ) ( 1 2 N s N Korrgált szórás:
15 Relatív szórás s V % *100 Elvonatkoztat az smérv-értékek nagyságrendjétől és mértékegységétől. Azt mutatja meg, hogy a szórás hányad része (hány százaléka) az átlagnak. 15
16 Relatív szórás (varácós együttható, V) Az adatok szórását osztjuk az átlaggal, majd szorozzuk 100%-al Kcs: a szórás, ha V<15%, Közepes: ha 15%<V<25%, Nagy: ha 25%<V<35%, Etrém (szélsőséges): ha V>35%
17 Boplot és nterquartls range (N(0,σ 2 ) populácó)
18 Átlag szórása (Standard error, SE) A mntaválasztás jóságát mutatja: a 0 közel érték a jó érték, mert ekkor helyes a mntaválasztás (dmenzós érték!): s s N Normáls eloszlás esetén az átlag ± 2SE-n belül van az gaz átlag kb. 95%-os valószínűséggel.
19 A szórás tulajdonsága Ha mnden értékhez ugyanazt a konstans számot hozzáadjuk (+a), a szórás változatlan marad. Ha mnden értéket ugyanazzal a k konstans számmal megszorozzuk, (k), a szórás s k-szorosára változk. Az eltérésnégyzet-összeg az átlagtól való eltérésekkel számolva a legksebb A szórásnégyzet felírható a négyzetes átlag és a számtan átlag négyzetének a különbségeként. A sokaságot jellemző teljes szórásnégyzet (varanca) megegyezk a rész-sokaságok külső és belső szórásnégyzetének összegével (ANOVA témakör): B K 19
20 A szórás kszámítható a négyzetes és a számtan átlag négyzetenek különbségéből s: 2 q 2 20
21 Hányzó értékek kezelése (Mssng values)
22 Hányzó érték: nem regsztrált adat. Hatása: erőteljesen befolyásolhatják az elemzés eredményet. Többváltozós módszereknél esetszám kesés.
23 Hányzó értékek jelölése 0 kód esetén a teendő kód használata: Szoftver felé való közlés Hányzó értékek kezelése: - üresen hagyjuk, - átlagot tesszük be: a helyettesítés rombolja a változók eloszlásfüggvényét, konfdenca-ntervallumát, megnövel az eloszlások csúcsosságát, a változók között lneárs kapcsolatokat s megváltoztatja, a korrelácós együttható közelebb kerül a 0-hoz.
24 MI (multple mputaton) Az MI célja, hogy a helyettesítésekkel együtt megtartsuk a változók eloszlását és a változók között asszocácókat. Szmulácón és legtöbbször Bayes- alapokon álló technka, ahol a megfgyelt adatokból m>1 verzóban modelleznek lehetséges adatokat a hányzók helyére, majd a végén egy algortmus szernt kombnálják az eredményeket (a becsléseket és a szórásokat).
25 MI Általános szabályként olyan változók esetében használhatjuk az mputálást, ahol változónként mamum az adatok 30 40%-a hányzk, de a teljes adatbázsban nncs több hányzó, mnt a teljes mátr 10 15%-a. Ezek az arányok a szakrodalom szernt egyáltalán nem adnak okot aggodalomra a helyettesítés metódusát lletően.
26 Legtöbb esetben MCMC (Markov chan Monte Carlo) modellt fog alkalmazn a program, ahol az egyes változók értékenél a több modellváltozó predkcót fogja felhasználn bzonyos terácós szám mellett. Összefoglalás: azokban a kutatásokban, amelyekben korrelácóalapú számításokat végeznek a kutatók, bztonsággal alkalmazható az adat-mputálás. Kutatásokban azonban törekedn kell a mnél teljesebb adatbázs létrehozására, eredményenket ekkor fogadhatjuk el mnden fajta szkepszs nélkül.
27 Aszmmetra mérőszáma
28 Eloszlások Egymóduszú Több móduszú Szmmetrkus Asszmetrkus U alakú Mérsékelten asszmetrkus Erősen asszmetrkus M alakú Balra ferdült Jobbra ferdült J alakú Fordított J alakú
29 Statsztka számítások Ecellel Mnta vzsgálata LEÍRÓ STATISZTIKA Megjegyzés: a statsztka függvények zömének paramétere az adathalmaz, ezért nem részletezzük az egyes függvények paraméterezését!
30 Függvények az Ecelben = SQ()- átlagtól való eltérések négyzetének összegét adja eredményül =SZÓRÁSP() STDEVP()- szórás =VARP() varanca (szórásnégyzet) =ÁTL.ELTÉRÉS átlagos abszolút eltérés AVEDEV()
31 Tovább átlagok megfelelő =ÁTLAG( ) - AVERAGE() függvénye =MÉRTANI.KÖZÉP GEOMEAN() Harmonkus átlag=harmean() =MÓDUSZ() MODE()
32 Ecel függvénye MEDIÁN() MEDIAN() KVARTILIS() QUARTILE() PERCENTILIS() PERCENTILE(): k-dk percentls SZÁZALÉKRANG() PERCENTRANK(): egy értéknek egy adathalmazon vett százalékos rangját adja MAX MIN KICSI() SMALL():Egy adathalmaz k-dk legksebb elemét adja értékül! NAGY() LARGE(): Egy adathalmaz k-dk legnagyobb elemét adja értékül! SORSZÁM()- RANK(): Egy szám sorszámát adja, meg ha az adatokat sorba rendezzük
33 Adatok kezelése Számláló - keresőfüggvények
34 Függvények DARAB () - COUNT() a megadott tartomány számmal ktöltött cellának a számát adja DARAB2() COUNTA() a megadott tartomány értékkel ktöltött cellának (nem üres) a számát adja DARABTELI () COUNTIF () a megadott tartományban megszámolja, hogy hány darab cella felel meg a megadott krtérumnak DARABÜRES () COUNTBLANK () A megadott tartományban megszámolja hány db cella üres
35 BECSLÉS A sokaság átlag becslése
36 A becslés alapfeladata Pl. Hányan láttak egy Frad-meccset a TV-ben? Jellemzően kétféle választ lehet adn: Pontbecslés Pl. A mnta alapján a sokaság nézettség arány 32 %. Vesznek egy mntát, azaz, megkérdeznek 1300 embert, és ebből következtetnek, hogy a teljes sokaság hányadrésze látta a műsort. Intervallumbecslés: A nézettség arány 95% valószínűséggel 29 és 35 % közé esk. 36
37 Sokaság és mnta A mntavétel módja lehet: véletlen és nem véletlen A véletlen kválasztás. Ismerjük a sokaság elemenek mntába kerülés valószínűségét. A vél. mnta fontos jellemzője: a reprezentatvtás. Egyszerű véletlen mntavétel Vsszatevéssel Vsszatevés nélkül Rétegzett mnta Csoportos és többlépcsős mnta 37
38 A nem-véletlen kválasztás Szsztematkus mntavétel (pl. a kjáratnál mnden 10- k vevő megkérdezése ) Kvóta szernt mnta Koncentrált mnta Önkényes mnta 38
39 Alapkérdések: A mntaátlag eloszlása Teknthető-e, ll. mkor teknthető a mntaátlag eloszlása normáls eloszlásúnak? A mntaátlag várható értéke és a sokaság átlag között összefüggés A mntaátlag szórása és a sokaság szórás között összefüggés 39
40 A mntaátlag eloszlása A mntaátlag valószínűség változó (mntáról mntára változk), amelynek van eloszlása, várható értéke, szórása. A mntaátlag normáls eloszlású, Ha a sokaság normáls eloszlású Vagy: ha a mnta elég nagy. (N > 30; pl. 100 elem) Ha a sokaság eloszlása nem smert és a mnta kcs (30 elem alatt), akkor a mntaátlag eloszlása sem smert. (Ekkor tovább megfontolásokra van szükség.) 40
41 A mntaátlag eloszlásának paramétere Ha a mnta véletlen (a sokaság eloszlásától függetlenül, akár vsszatevéses a mntavétel akár nem) akkor, E X (A mntaátlag várható értéke a sokaság átlag) A mntaátlagok szórása, (standard hba) Vsszatevéses mntánál: N Vsszatevés nélkül mntánál: N n N n 1 1 N N n Ahol N / n a kválasztás arány 41
42 A becslő-fg és a jó becslés krtéruma A becslő fg fogalma: A sokaság paraméter becslésére szolgáló, a mntaelemek értékétől függő függvény. pl. a mntaátlag egy becslőfg, mert értéke a mntaelemek értékétől függ, és ezzel becsüljük a sokaság átlagot. A jó becslés krtéruma Torzítatlanság Hatásosság Konzsztenca 42
43 Torzítatlan becslések A mntaátlag a sokaság átlag torzítatlan becslése X E() mntabel arány a sokaság aránynak torzítatlan becslése E( p) A mnta szórása a sokaság szórás torzított becslése. A mnta korrgált szórása már torzítatlan 2 ˆ s N 1 P E(s) 43
44 A jó becslés krtéruma (folyt) Hatásosság: a becslőfüggvény szórása. Mnél ksebb a szórása, annál hatásosabb Konzsztenca (az a tulajdonság, hogy egyre nagyobb mntát véve egyre pontosabb becslést kapunk) 44
45 BECSLÉS A sokaság várható érték ntervallum-becslése A sokaság várható értéket a mntaközéppel becsüljük. Ez így egy torzítatlan pontbecslés, - amely nem fog pontosan egybeesn a sokaság tényleges várható értékével. Meg tudunk azonban adn egy ntervallumot, amelybe a sokaság várható érték egy előre adott (pl. 95%-os) valószínűséggel beleesk. 45
46 Konfdencantervallum (Confdence nterval)
47 Határozzuk meg körül azt az ntervallumot ambe előre meghatározott valószínűséggel esk a várható érték (μ). A várható értéket (μ) pontosan nem tudjuk, de körül van: nagy (1-α) valószínűséggel a fent ntervallumban, és kcs (α) valószínűséggel esk ezen kívülre. Ezt az ntervallumot a várható érték becslésére szolgáló 100 (1- α)% konfdenca ntervallumnak nevezzük. Leggyakrabban 90 v. 95%-os megbízhatóság szntet választunk (vagys α = 0,1 ll. 0,05).
48 Az átlagra vonatkozó 95%-os bzonyosság ntervallum szemléltetése az adott kísérlet képzeletbel smétlésevel Ha a kísérletet képzeletben 100-szor megsmételnénk, a 100 kapott 95%-os konfdenca ntervallum közül várhatóan 95 fogja tartalmazn a populácó átlagát, és 5 nem. Bostatsztka alapsmeretek Boda Krsztna Leíró statsztka A véletlen ngadozás Konfdencantervallum Egyváltozós módszerek 48
49 t-eloszlás
50
51
52 CI ntervallumok ábrázolása 5,494 90%-os 5,99 5,388 5,445 95%-os 98%-os 6,038 6,095
53 Szgnfkanca vzsgálatok és a konfdencantervallum kapcsolata (H0: μ 1 = μ 2, azaz μ 1 - μ 2 =0, Ha: μ 1 μ 2 ) p-érték szgnfkanca 95% CI p<0.05 szgn. 5%-os sznten pl. (4.5, 10.7) 0 nncs benne a konf. ntervallumban p > 0.05 nem szgn. 5%-os sz. pl. (-1.72, 5.81) 0 benne van a konf. ntervallumban Szgnfkáns, p<0.05 Szgnfkáns. p<0.05 Nem szgnfkáns, p> Megjegyzés. Ha relatív kockázatot vagy esélyhányados vzsgálunk, akkor a konfdencantervallumban az 1-et keressük, hogy az értéket tartalmazza-e. Bostatsztka alapsmeretek Boda Krsztna Leíró statsztka A véletlen ngadozás Konfdencantervallum Egyváltozós módszerek
54 Krtkus-értéket számoló függvények Student's t-dstrbuton a) the two-taled value: =T.INV.2T(0.05,10) = b) the left-taled value: =T.INV(0.025,10) = Normal dstrbuton =NORM.S.INV(1-(0,05/2)) = 1,9600
55 A sokaság átlag ntervallumbecslése 95 %-os megbízhatóság sznt mellett Ismerjük a mntaátlag eloszlását, és szórását. Tudjuk, hogy M ( ) X Kérdés: mekkora az az ntervallum, amelybe a véletlen mnta átlaga, ll. annak standardje 95 % valószínűséggel esk? Átrendezve: X 1,96 1,96 Rövdebb formában: 1,96 X 1, 96 X 1,96 Tehát 95 % a valószínűsége annak, hogy a sokaság a mntaátlag 1,96 szórásny környezetében található. X 55
56 56 Az ntervallumbecslés általános gondolatmenete 1 z X z P p p z X z z p X Annak a valószínűsége, hogy N z X p Átrendezve Tömörebben:
57 Kfejezések Az (1-) valószínűség a megbízhatóság sznt, vagy konfdenca-sznt Az (1-) valószínűséghez tartozó ntervallum a megbízhatóság ntervallum vagy konfdencantervallum A z p szorzat a mamáls hba vagy hbahatár. z p 57
ADATREDUKCIÓ I. Középértékek
ADATREDUKCIÓ I. Középértékek Adatredukcó 1. M a középérték: azonos fajta számszerű adatok közös jellemzője. 2. Követelmények: a) Számított középérték: közbenső helyet foglaljanak el, azaz mn középérték
RészletesebbenBevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus. KOKI,
Bevezetés a bometrába Dr. Dnya Elek egyetem tanár PhD kurzus. KOKI, 205.0.08. ADATREDUKCIÓ I. Középértékek Adatredukcó. M a középérték: azonos fajta számszerű adatok közös jellemzője. 2. Követelmények:
RészletesebbenADATREDUKCIÓ I. Középértékek
ADATREDUKCIÓ I. Középértékek Adatredukcó 1. M a középérték: azonos fajta számszerű adatok közös jellemzője. 2. Követelmények: a) Számított középérték: közbenső helyet foglaljanak el, azaz x mn középérték
RészletesebbenKÖVETKEZTETŐ STATISZTIKA
ÁVF GM szak 2010 ősz KÖVETKEZTETŐ STATISZTIKA A MINTAVÉTEL BECSLÉS A sokasági átlag becslése 2010 ősz Utoljára módosítva: 2010-09-07 ÁVF Oktató: Lipécz György 1 A becslés alapfeladata Pl. Hányan láttak
RészletesebbenA sokaság/minta eloszlásának jellemzése
3. előadás A sokaság/mnta eloszlásának jellemzése tpkus értékek meghatározása; az adatok különbözőségének vzsgálata, a sokaság/mnta eloszlásgörbéjének elemzése. Eloszlásjellemzők Középértékek helyzet (Me,
RészletesebbenORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!
ORVOSI STATISZTIKA Az orvos statsztka helye Élettan Anatóma Kéma Lehet kérdés?? Statsztka! Az orvos döntéseket hoz! Mkor jó egy döntés? Mennyre helyes egy döntés? Mekkora a tévedés lehetősége? Példa: test
Részletesebbens n s x A m és az átlag Standard hiba A m becslése Információ tartalom Átlag Konfidencia intervallum Pont becslés Intervallum becslés
A m és az átlag Standard hba Mnta átlag 1 170 Az átlagok szntén ngadoznak a m körül. s x s n Az átlagok átlagos eltérése a m- től! 168 A m konfdenca ntervalluma. 3 166 4 173 x s x ~ 68% ~68% annak a valószínűsége,
RészletesebbenHipotézis vizsgálatok. Egy példa. Hipotézisek. A megfigyelt változó eloszlása Kérdés: Hatásos a lázcsillapító gyógyszer?
01.09.18. Hpotézs vzsgálatok Egy példa Kérdések (példa) Hogyan adhatunk választ? Kérdés: Hatásos a lázcsllapító gyógyszer? Hatásos-e a gyógyszer?? rodalomból kísérletekből Hpotézsek A megfgyelt változó
RészletesebbenRegresszió. Fő cél: jóslás Történhet:
Fő cél: jóslás Történhet: Regresszó 1 változó több változó segítségével Lépések: Létezk-e valamlyen kapcsolat a 2 változó között? Kapcsolat természetének leírása (mat. egy.) A regresszós egyenlet alapján
Részletesebben20 PONT Aláírás:... A megoldások csak szöveges válaszokkal teljes értékőek!
SPEC 2009-2010. II. félév Statsztka II HÁZI dolgozat Név:... Neptun kód: 20 PONT Aláírás:... A megoldások csak szöveges válaszokkal teljes értékőek! 1. példa Egy üzemben tejport csomagolnak zacskókba,
RészletesebbenAdatsorok jellegadó értékei
Adatsorok jellegadó értéke Varga Ágnes egyetem tanársegéd varga.ag14@gmal.com Terület és térnformatka kvanttatív elemzés módszerek BCE Geo Intézet Terület elemzés forgatókönyve vacsora hasonlat Terület
Részletesebben4 2 lapultsági együttható =
Leíró statsztka Egy kísérlet végeztével általában tetemes mennységű adat szokott összegyűln. Állandó probléma, hogy mt s kezdjünk - lletve mt tudunk kezden az adatokkal. A statsztka ebben segít mnket.
RészletesebbenSTATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai
Változékonyság (szóródás) STATISZTIKA I. 5. Előadás Szóródási mutatók A középértékek a sokaság elemeinek értéknagyságbeli különbségeit eltakarhatják. A változékonyság az azonos tulajdonságú, de eltérő
RészletesebbenStatisztikai próbák. Ugyanazon problémára sokszor megvan mindkét eljárás.
Statsztka próbák Paraméteres. A populácó paraméteret becsüljük, ezekkel számolunk.. Az alapsokaság eloszlására van kkötés. Nem paraméteres Nncs lyen becslés Nncs kkötés Ugyanazon problémára sokszor megvan
RészletesebbenPélda: Egy üzletlánc boltjainak forgalmára vonatkozó adatok 1999. október hó: (adott a vastagon szedett!) S i g i z i g i z i
. konzult. LEV. 013. ápr. 5. MENNYISÉGI ISMÉRV szernt ELEMZÉS Tk. 3-8., 88-90. oldal, kmarad: 70., 74. oldal A mennység smérv (X) lehet: dszkrét és folytonos. A rangsor a mennység smérv értékenek monoton
RészletesebbenStatisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus
Statisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus Gyakorisági sorok Mennyiségi ismérv jellemző rangsor készítünk. (pl. napi jegyeladások száma) A gyakorisági sor képzése igazából tömörítést jelent Nagyszámú
RészletesebbenGazdaságtudományi Kar. Gazdaságelméleti és Módszertani Intézet. Korreláció-számítás. 1. előadás. Döntéselőkészítés módszertana. Dr.
Korrelácó-számítás 1. előadás Döntéselőkészítés módszertana Dr. Varga Beatr Két változó között kapcsolat Függetlenség: Az X smérv szernt hovatartozás smerete nem ad semmlen többletnformácót az Y szernt
RészletesebbenStatisztika. Eloszlásjellemzők
Statsztka Eloszlásjellemzők Statsztka adatok elemzése A sokaság jellemzése középértékekkel A sokaság jellemzéséek szempotja A sokaság jellemzéséek szempotja: A sokaság tpkus értékéek meghatározása. Az
RészletesebbenTanult nem paraméteres próbák, és hogy milyen probléma megoldására szolgálnak.
8. GYAKORLAT STATISZTIKAI PRÓBÁK ISMÉTLÉS: Tanult nem paraméteres próbák, és hogy mlyen probléma megoldására szolgálnak. Név Illeszkedésvzsgálat Χ próbával Illeszkedésvzsgálat grafkus úton Gauss papírral
RészletesebbenStatisztika feladatok
Statsztka ok Informatka Tudományok Doktor Iskola Bzonyítandó, hogy: azaz 1 Tekntsük az alább statsztkákat: Igazoljuk, hogy torzítatlan statsztkák! Melyk a leghatásosabb közöttük? (Ez az együttes eloszlásfüggvényük.)
RészletesebbenKutatásmódszertan és prezentációkészítés
Kutatásmódszertan és prezentációkészítés 10. rész: Az adatelemzés alapjai Szerző: Kmetty Zoltán Lektor: Fokasz Nikosz Tizedik rész Az adatelemzés alapjai Tartalomjegyzék Bevezetés Leíró statisztikák I
RészletesebbenVariancia-analízis (ANOVA) Mekkora a tévedés esélye? A tévedés esélye Miért nem csinálunk kétmintás t-próbákat?
Varanca-analízs (NOV Mért nem csnálunk kétmntás t-próbákat? B Van különbség a csoportok között? Nncs, az eltérés csak véletlen! Ez a nullhpotézs. és B nncs különbség Legyen, B és C 3 csoport! B és C nncs
RészletesebbenTáblázatok 4/5. C: t-próbát alkalmazunk és mivel a t-statisztika értéke 3, ezért mind a 10%-os, mind. elutasítjuk a nullhipotézist.
1. Az X valószínőség változó 1 várható értékő és 9 szórásnégyzető. Y tıle független várható értékkel és 1 szórásnégyzettel. a) Menny X + Y várható értéke? 13 1 b) Menny X -Y szórásnégyzete? 13 1 összesen
RészletesebbenElemi statisztika fizikusoknak
1. oldal Elemi statisztika fizikusoknak Pollner Péter Biológiai Fizika Tanszék pollner@elte.hu Az adatok leírása, megismerése és összehasonlítása 2-1 Áttekintés 2-2 Gyakoriság eloszlások 2-3 Az adatok
RészletesebbenA leíró statisztikák
A leíró statisztikák A leíró statisztikák fogalma, haszna Gyakori igény az, hogy egy adathalmazt elemei egyenkénti felsorolása helyett néhány jellemző tulajdonságának megadásával jellemezzünk. Ezeket az
RészletesebbenLineáris regresszió. Statisztika I., 4. alkalom
Lneárs regresszó Statsztka I., 4. alkalom Lneárs regresszó Ha két folytonos változó lneárs kapcsolatban van egymással, akkor az egyk segítségével elıre jelezhetjük a másk értékét. Szükségünk van a függı
RészletesebbenStatisztika elméleti összefoglaló
1 Statisztika elméleti összefoglaló Tel.: 0/453-91-78 1. Tartalomjegyzék 1. Tartalomjegyzék.... Becsléselmélet... 3 3. Intervallumbecslések... 5 4. Hipotézisvizsgálat... 8 5. Regresszió-számítás... 11
RészletesebbenMatematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók
Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz
RészletesebbenSTATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás
ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 9. Előadás Binomiális eloszlás Egyenletes eloszlás Háromszög eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell 2/62 Matematikai statisztika
RészletesebbenMintavétel fogalmai STATISZTIKA, BIOMETRIA. Mintavételi hiba. Statisztikai adatgyűjtés. Nem véletlenen alapuló kiválasztás
STATISZTIKA, BIOMETRIA. Előadás Mintavétel, mintavételi technikák, adatbázis Mintavétel fogalmai A mintavételt meg kell tervezni A sokaság elemei: X, X X N, lehet véges és végtelen Mintaelemek: x, x x
RészletesebbenORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!
ORVOSI STATISZTIKA Az orvos statsztka helye Életta Aatóma Kéma Lehet kérdés?? Statsztka! Az orvos dötéseket hoz! Mkor jó egy dötés? Meyre helyes egy dötés? Mekkora a tévedés lehetősége? Példa: test hőmérséklet
RészletesebbenNagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem
agy számok törvényei Statisztikai mintavétel Várható érték becslése Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem A mérés mint statisztikai mintavétel A méréssel az eloszlásfüggvénnyel
RészletesebbenA Statisztika alapjai
A Statisztika alapjai BME A3c Magyar Róbert 2016.05.12. Mi az a Statisztika? A statisztika a valóság számszerű információinak megfigyelésére, összegzésére, elemzésére és modellezésére irányuló gyakorlati
Részletesebben[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát
RészletesebbenGazdaságtudományi Kar. Gazdaságelméleti és Módszertani Intézet. Regresszió-számítás. 2. előadás. Kvantitatív statisztikai módszerek. Dr.
Gazdaságtudomán Kar Gazdaságelmélet és Módszertan Intézet Regresszó-számítás. előadás Kvanttatív statsztka módszerek Dr. Varga Beatr Gazdaságtudomán Kar Gazdaságelmélet és Módszertan Intézet Korrelácós
RészletesebbenMATEMATIKAI STATISZTIKA KISFELADAT. Feladatlap
Közlekedésmérnök Kar Jármőtervezés és vzsgálat alapja I. Feladatlap NÉV:..tk.:. Feladat sorsz.:.. Feladat: Egy jármő futómő alkatrész terhelésvzsgálatakor felvett, az alkatrészre ható terhelı erı csúcsértékek
RészletesebbenMatematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása
Matematikai alapok és valószínőségszámítás Statisztikai becslés Statisztikák eloszlása Mintavétel A statisztikában a cél, hogy az érdeklõdés tárgyát képezõ populáció bizonyos paramétereit a populációból
RészletesebbenELTE TáTK Közgazdaságtudományi Tanszék ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter június
ÖKONOMETRIA ÖKONOMETRIA Készült a TÁMOP-4.1.-08//A/KMR-009-0041pálázat projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudomán Tanszékén az ELTE Közgazdaságtudomán Tanszék, az MTA Közgazdaságtudomán
RészletesebbenFEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen
RészletesebbenA valószínűségszámítás elemei
A valószínűségszámítás elemei Kísérletsorozatban az esemény relatív gyakorisága: k/n, ahol k az esemény bekövetkezésének abszolút gyakorisága, n a kísérletek száma. Pl. Jelenség: kockadobás Megfigyelés:
RészletesebbenELTE TáTK Közgazdaságtudományi Tanszék ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter június
ÖKONOMETRIA ÖKONOMETRIA Készült a TÁMOP-4.1.-08//A/KMR-009-0041pályázat projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudomány Tanszékén az ELTE Közgazdaságtudomány Tanszék, az MTA Közgazdaságtudomány
RészletesebbenNemparaméteres módszerek. Krisztina Boda PhD SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet
Nemparaméteres módszerek Krsztna Boda PhD SZTE ÁOK Orvos Fzka és Orvos Informatka Intézet Paraméteres próbák Paraméter: egy szám, amely a populácó eloszlását jellemz (és általában meghatározza). A normáls
RészletesebbenAdatelemzés és adatbányászat MSc
Adatelemzés és adatbányászat MSc. téma Adatelemzés, statsztka elemek áttekntése Adatelemzés módszertana probléma felvetés módszer, adatok meghatározása nyers adatok adatforrás meghatározása adat tsztítás
RészletesebbenA sokaság elemei közül a leggyakrabban előforduló érték. diszkrét folytonos
Középérték Középérték A középérték a statisztikai adatok tömör számszerű jellemzése. helyzeti középérték: módusz medián számított középérték: számtani átlag kronológikus átlag harmonikus átlag mértani
RészletesebbenÁLTALÁNOS STATISZTIKA
Berzseny Dánel Főskola ÁLTALÁNOS STATISZTIKA műszak menedzser alapszak Írta: Dr. Köves János Tóth Zsuzsanna Eszter Budapest 006 Tartalomjegyzék. VALÓSZÍNŰSÉGSZÁMÍTÁSI ALAPOK... 4.. A VALÓSZÍNŰSÉGSZÁMÍTÁS
RészletesebbenNemparaméteres eljárások
Nemparaméteres eljárások Bevezetés Az ntervallum vagy a hányados skálán végzett méréseknél az adatokból számolhatunk átlagot, szórásnégyzetet, szórást Fontos módszerek alapulnak ezeknek a származtatott
RészletesebbenStatisztikai alapfogalmak
Statisztika I. KÉPLETEK 2011-2012-es tanév I. félév Statisztikai alapfogalmak Adatok pontossága Mért adat Abszolút hibakorlát Relatív hibakorlát Statisztikai elemzések viszonyszámokkal : a legutolsó kiírt
RészletesebbenMatematikai statisztika c. tárgy oktatásának célja és tematikája
Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:
RészletesebbenLeíró és matematikai statisztika el adásnapló Matematika alapszak, matematikai elemz szakirány 2016/2017. tavaszi félév
Leíró és matematikai statisztika el adásnapló Matematika alapszak, matematikai elemz szakirány 2016/2017. tavaszi félév A pirossal írt anyagrészeket nem fogom közvetlenül számon kérni a vizsgán, azok háttérismeretként,
RészletesebbenA maximum likelihood becslésről
A maximum likelihood becslésről Definíció Parametrikus becsléssel foglalkozunk. Adott egy modell, mellyel elképzeléseink szerint jól leírható a meghatározni kívánt rendszer. (A modell típusának és rendszámának
RészletesebbenFEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,
RészletesebbenSTATISZTIKAI ALAPOK. Statisztikai alapok_eloszlások_becslések 1
STATISZTIKAI ALAPOK Statisztikai alapok_eloszlások_becslések 1 Pulzus példa Egyetemista fiatalokból álló csoport minden tagjának (9 fő) megmérték a pulzusát (PULSE1), majd kisorsolták ki fusson és ki nem
RészletesebbenVéletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.
Valószín ségelméleti és matematikai statisztikai alapfogalmak összefoglalása (Kemény Sándor - Deák András: Mérések tervezése és eredményeik értékelése, kivonat) Véletlen jelenség: okok rendszere hozza
RészletesebbenGRADUÁLIS BIOSTATISZTIKAI KURZUS február hó 22. Dr. Dinya Elek egyetemi docens
GRADUÁLIS BIOSTATISZTIKAI KURZUS 2012. február hó 22. Dr. Dinya Elek egyetemi docens Biometria fogalma The active pursuit of biological knowledge by quantitative methods Sir R. A. Fisher, 1948 BIOMETRIA
RészletesebbenSTATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM.
STATISZTIKA 5 4,5 4 3,5 3 2,5 2 1,5 1 0,5 0 MAGY. MAT. TÖRT. KÉM. ANNA BÉLA CILI András hármas. Béla Az átlag 3,5! kettes. Éva ötös. Nóri négyes. 1 mérés: dolgokhoz valamely szabály alapján szám rendelése
RészletesebbenSTATISZTIKAI ALAPOK. Statisztikai alapok_eloszlások_becslések 1
STATISZTIKAI ALAPOK Statisztikai alapok_eloszlások_becslések 1 Pulzus példa Egyetemista fiatalokból álló csoport minden tagjának (9 fő) megmérték a pulzusát (PULSE1), majd kisorsolták ki fusson és ki nem
RészletesebbenA multikritériumos elemzés célja, alkalmazási területe, adat-transzformációs eljárások, az osztályozási eljárások lényege
A multkrtérumos elemzés célja, alkalmazás területe, adat-transzformácós eljárások, az osztályozás eljárások lényege Cél: tervváltozatok, objektumok értékelése (helyzetértékelés), döntéshozatal segítése
RészletesebbenBAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011.
BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011. 1 Mérési hibák súlya és szerepe a mérési eredményben A mérési hibák csoportosítása A hiba rendűsége Mérési bizonytalanság Standard és kiterjesztett
RészletesebbenStatisztika I. 8. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 8. előadás Előadó: Dr. Ertsey Imre Minták alapján történő értékelések A statisztika foglalkozik. a tömegjelenségek vizsgálatával Bizonyos esetekben lehetetlen illetve célszerűtlen a teljes
RészletesebbenMinősítéses mérőrendszerek képességvizsgálata
Mnősítéses mérőrendszerek képességvzsgálata Vágó Emese, Dr. Kemény Sándor Budapest Műszak és Gazdaságtudomány Egyetem Kéma és Környezet Folyamatmérnök Tanszék Az előadás vázlata 1. Mnősítéses mérőrendszerek
Részletesebben? közgazdasági statisztika
Valószíűségszámítás és a statsztka Valószíűség számítás Matematka statsztka Alkalmazott statsztka? közgazdaság statsztka épesség statsztka orvos statsztka Stb. Példa: vércsoportok Az eloszlás A AB B Elem
RészletesebbenStatisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1
Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában
RészletesebbenVARIANCIAANALÍZIS (szóráselemzés, ANOVA)
VARIANCIAANAÍZIS (szóráselemzés, ANOVA) Varancaanalízs. Varancaanalízs (szóráselemzés, ANOVA) Adott: egy vagy több tetszőleges skálájú független változó és egy legalább ntervallum skálájú függő változó.
RészletesebbenSTATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Mi a modell? Matematikai statisztika. 300 dobás. sűrűségfüggvénye. Egyenletes eloszlás
ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 7. Előadás Egyenletes eloszlás Binomiális eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell /56 Matematikai statisztika Reprezentatív mintavétel
RészletesebbenExtrém-érték elemzés. Extrém-érték eloszlások. A normálhatóság feltétele. Megjegyzések. Extrém-érték modellezés
Extrém-érték modellezés Zemplén András Alkalmazott modul 03. február. Extrém-érték elemzés Klasszkus módszerek: év maxmumon alapulnak Küszöb felett értékek elemzése: adott szntet meghaladó mnden árvízbıl
RészletesebbenÁltalános Statisztika
Budapest Mőszak és Gazdaságtudomány Egyetem Gazdaság- és Társadalomtudomány Kar Nyugat-Magyarország Egyetem Savara Egyetem Központ Dr. Köves János Dr. Tóth Zsuzsanna Eszter Általános Statsztka oktatás
Részletesebben(eseményalgebra) (halmazalgebra) (kijelentéskalkulus)
Valószínűségszámítás Valószínűség (probablty) 0 és 1 között valós szám, amely egy esemény bekövetkezésének esélyét fejez k: 0 - (sznte) lehetetlen, 0.5 - azonos eséllyel gen vagy nem, 1 - (sznte) bztos
RészletesebbenTÉRBELI STATISZTIKAI VIZSGÁLATOK, ÁTLAGOS JELLEMZŐK ÉS TENDENCIÁK MAGYARORSZÁGON. Bihari Zita, OMSZ Éghajlati Elemző Osztály OMSZ
TÉRBELI STATISZTIKAI VIZSGÁLATOK, ÁTLAGOS JELLEMZŐK ÉS TENDENCIÁK MAGYARORSZÁGON Bhar Zta, OMSZ Éghajlat Elemző Osztály OMSZ Áttekntés Térbel vzsgálatok Alkalmazott módszer: MISH Eredmények Tervek A módszer
RészletesebbenA m becslése. A s becslése. A (tapasztalati) szórás. n m. A minta és a populáció kapcsolata. x i átlag
016.09.09. A m beclée A beclée = Az adatok átlago eltérée a m-től. (tapaztalat zórá) = az elemek átlago eltérée az átlagtól. átlag: az elemekhez képet középen kell elhelyezkedne. x x 0 x n x Q x x x 0
RészletesebbenStatisztikai következtetések Nemlineáris regresszió Feladatok Vége
[GVMGS11MNC] Gazdaságstatisztika 10. előadás: 9. Regressziószámítás II. Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet A standard lineáris modell
RészletesebbenBiomatematika 2 Orvosi biometria
Biomatematika 2 Orvosi biometria 2017.02.05. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)
RészletesebbenFEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 8 VIII. REGREssZIÓ 1. A REGREssZIÓs EGYENEs Két valószínűségi változó kapcsolatának leírására az eddigiek alapján vagy egy numerikus
RészletesebbenExtrém-érték elemzés. Extrém-érték eloszlások. A normálhatóság feltétele. Megjegyzések. Extrém-érték modellezés
Etrém-érték modellezés Zemplén András Alkalmazott modl 016. febrár -9. Etrém-érték elemzés Klasszks módszerek: év mammon alaplnak Küszöb felett értékek elemzése: adott szntet meghaladó mnden árvízből használ
RészletesebbenMETROLÓGIA ÉS HIBASZÁMíTÁS
METROLÓGIA ÉS HIBASZÁMíTÁS Metrológa alapfogalmak A metrológa a mérések tudománya, a mérésekkel kapcsolatos smereteket fogja össze. Méréssel egy objektum valamlyen tulajdonságáról számszerű értéket kapunk.
RészletesebbenBevezető Adatok rendezése Adatok jellemzése Időbeli elemzés
Gazdaságstatisztika 2. előadás Egy ismérv szerinti rendezés Kóczy Á. László KGK VMI Áttekintés Gyakorisági sorok Grafikus ábrázolásuk Helyzetmutatók Szóródási mutatók Az aszimmetria mérőszámai Koncentráció
RészletesebbenKísérlettervezési alapfogalmak:
Kísérlettervezés alapfogalmak: Tényező, faktor (factor) független változó, ható tényező (kezelés, gyógyszer, takarmány, genotípus, élőhely, stb.) amnek hatását a kísérletben vzsgáln vagy összehasonlítan
Részletesebbeny ij = µ + α i + e ij
Elmélet STATISZTIKA 3. Előadás Variancia-analízis Lineáris modellek A magyarázat a függő változó teljes heterogenitásának két részre bontását jelenti. A teljes heterogenitás egyik része az, amelynek okai
Részletesebben6. Előadás. Vereb György, DE OEC BSI, október 12.
6. Előadás Visszatekintés: a normális eloszlás Becslés, mintavételezés Reprezentatív minta A statisztika, mint változó Paraméter és Statisztika Torzítatlan becslés A mintaközép eloszlása - centrális határeloszlás
RészletesebbenExtrém-érték elemzés. Extrém-érték eloszlások. Megjegyzések. A normálhatóság feltétele. Extrém-érték modellezés
Extrém-érték modellezés Zemplén András Val.modellek 2018. febrár 21. Extrém-érték elemzés Klasszks módszerek: év maxmmon alaplnak Küszöb felett értékek elemzése: adott szntet meghaladó mnden árvízből használ
RészletesebbenBevezető Adatok rendezése Adatok jellemzése Időbeli elemzés. Gazdaságstatisztika KGK VMI
Gazdaságstatisztika 2. előadás Egy ismérv szerinti rendezés Kóczy Á. László KGK VMI Áttekintés Gyakorisági sorok Grafikus ábrázolásuk Helyzetmutatók Szóródási mutatók Az aszimmetria mérőszámai Koncentráció
RészletesebbenSTATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése
4. A modell érvényességének ellenőrzése STATISZTIKA 4. Előadás Variancia-analízis Lineáris modellek 1. Függetlenség 2. Normális eloszlás 3. Azonos varianciák A maradék független a kezelés és blokk hatástól
RészletesebbenStatisztika. Politológus képzés. Daróczi Gergely április 17. Politológia Tanszék
Statisztika Politológus képzés Daróczi Gergely Politológia Tanszék 2012. április 17. Outline 1 Leíró statisztikák 2 Középértékek Példa 3 Szóródási mutatók Példa 4 Néhány megjegyzés a grafikonokról 5 Számítások
RészletesebbenKabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a
Kabos: Statisztika II. t-próba 9.1 Egymintás z-próba Ha ismert a doboz szórása de nem ismerjük a doboz várhatóértékét, akkor a H 0 : a doboz várhatóértéke = egy rögzített érték hipotézisről úgy döntünk,
RészletesebbenDr. Ratkó István. Matematikai módszerek orvosi alkalmazásai. 2010.11.08. Magyar Tudomány Napja. Gábor Dénes Főiskola
Dr. Ratkó István Matematka módszerek orvos alkalmazása 200..08. Magyar Tudomány Napja Gábor Dénes Főskola A valószínűségszámítás és matematka statsztka főskola oktatásakor a hallgatók néha megkérdezk egy-egy
RészletesebbenAlgoritmusok és adatszerkezetek gyakorlat 09 Rendezések
Algortmusok és adatszerkezetek gyakorlat 09 Rendezések Néhány órával ezelőtt megsmerkedtünk már a Merge Sort rendező algortmussal. A Merge Sort-ról tuduk, hogy a legrosszabb eset dőgénye O(n log n). Tetszőleges
RészletesebbenÁltalánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg
LMeasurement.tex, March, 00 Mérés Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg a mérendő mennyiségben egy másik, a mérendővel egynemű, önkényesen egységnek választott
RészletesebbenIntelligens elosztott rendszerek
Intellgens elosztott rendszerek VIMIAC2 Adatelőkészítés: hhetőségvzsgálat normálás stb. Patak Béla BME I.E. 414, 463-26-79 atak@mt.bme.hu, htt://www.mt.bme.hu/general/staff/atak Valamlyen dőben állandó,
RészletesebbenKomplex regionális elemzés és fejlesztés tanév DE Népegészségügyi Iskola Egészségpolitika tervezés és finanszírozás MSc
Komplex regonáls elemzés és fejlesztés 2016-2017. tanév DE Népegészségügy Iskola Egészségpoltka tervezés és fnanszírozás MSc 2. előadás Terület elemzés módszerek az egészségföldrajzban Terület ellátás
Részletesebben1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása
HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat
RészletesebbenStatisztika I. 4. előadás. Előadó: Dr. Ertsey Imre
Statsztka I. 4. előadás Előadó: Dr. Ertsey Imre KÖZÉPÉRTÉKEK A statsztka sor általáos jellemzésére szolgálak, a statsztka sokaságot egy számmal jellemzk. Számított középértékek: matematka számítás eredméyekét
Részletesebben[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.15. Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza) alkotja az eseményteret. Esemény: az eseménytér részhalmazai.
RészletesebbenSTATISZTIKA. A Föld pályája a Nap körül. Philosophiae Naturalis Principia Mathematica (A természetfilozófia matematikai alapelvei, 1687)
STATISZTIKA 10. Előadás Megbízhatósági tartományok (Konfidencia intervallumok) Sir Isaac Newton, 1643-1727 Philosophiae Naturalis Principia Mathematica (A természetfilozófia matematikai alapelvei, 1687)
RészletesebbenIDA ELŐADÁS I. Bolgár Bence október 17.
IDA ELŐADÁS I. Bolgár Bence 2014. október 17. I. Generatív és dszkrmnatív modellek Korábban megsmerkedtünk a felügyelt tanulással (supervsed learnng). Legyen adott a D = {, y } P =1 tanító halmaz, ahol
RészletesebbenVéletlenszám generátorok. 6. előadás
Véletlenszám generátorok 6. előadás Véletlenszerű változók, valószínűség véletlen, véletlen változók valószínűség fogalma egy adott esemény bekövetkezésének esélye értékét 0 és között adjuk meg az összes
RészletesebbenMax-stabilis folyamatok. 6. előadás, március 29. Smith (1990) konstrukciója. Példák
Max-stabls folyamatok 6. előadás, 2017. márcus 29. Zemplén András Valószínűségelmélet és Statsztka Tanszék Természettudomány Kar Eötvös Loránd Tudományegyetem Árngadozások előadás Legyen T R d egy Borel-halmaz.
RészletesebbenLaboratóriumi kontrollkártya használata Tananyag. Készítette: Muránszky Géza vegyészmérnök Oktató: Lőrinc Anna minőségirányítási előadó
Laboratórum kontrollkártya használata Tananyag Készítette: Muránszky Géza vegyészmérnök Oktató: Lőrnc Anna mnőségrányítás előadó Tartalom. Bevezetés... 3. A kontroll kártyák típusa... 4 3. A statsztka
RészletesebbenTeljes eseményrendszer. Valószínőségszámítás. Példák. Teljes valószínőség tétele. Példa. Bayes tétele
Teljes eseményrendszer Valószínőségszámítás 3. elıadás 2009.09.22. Defnícó. Események A 1, A 2,..., sorozata teljes eseményrendszer, ha egymást páronként kzárják és egyesítésük Ω. Tulajdonság: P A ) +
RészletesebbenFEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:
Részletesebben[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.08. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)
RészletesebbenBiostatisztika e-book Dr. Dinya Elek
TÁMOP-4../A/-/-0-005 Egészségügy Ügyvtelszervező Szakrány: Tartalomfejlesztés és Elektronkus Tananyagfejlesztés a BSc képzés keretében Bostatsztka e-book Dr. Dnya Elek Tartalomjegyzék. Bevezetés a mátrok
Részletesebben