Extrém-érték elemzés. Extrém-érték eloszlások. A normálhatóság feltétele. Megjegyzések. Extrém-érték modellezés
|
|
- Boglárka Kiss
- 5 évvel ezelőtt
- Látták:
Átírás
1 Etrém-érték modellezés Zemplén András Alkalmazott modl 016. febrár -9. Etrém-érték elemzés Klasszks módszerek: év mammon alaplnak Küszöb felett értékek elemzése: adott szntet meghaladó mnden árvízből használ adatot. Többdmenzós módszerek: a közel mérőállomások összefüggőségét s vzsgálja (etrémmok együttes vselkedése) Etrém-érték eloszlások Legyenek X 1, X,,X n független, azonos eloszlású valószínűség változók. Ha vannak a n, b n normáló konstansok, hogy [ma(x 1, X,, X n )-a n ]/ b n nemelfajló határeloszláshoz közelít, akkor ez a határeloszlás szükségképpen ma-stabls vagy úgynevezett etrém-érték eloszlás. Etrém-érték eloszlások karakterzácója Normalzált mammok lehetséges határeloszlása: Frechet: F ( ) ep( ) (>0) poztív parameter. Webll: Gmbel: F ( ) ep( ( ) F( ) ep( ep( )) ) (<0) Megjegyzések Bzonyítás technka, az eloszlásfüggvény és a mamm művelet kapcsolatán alapl. Az adódó függvényegyenletnek ez a 3 megoldása van. Az eredmények hasonlóak a stabls eloszlások karaktersztks függvényehez. Érdekes kérdés: adott F eloszlásfüggvény esetén melyk határeloszláshoz konvergál az F eloszlású mnta normalzált mamma? Nem mnden esetben lehet normáln: dszkrét eloszlásokra oszcllálhat a mamm eloszlása. A normálhatóság feltétele Folytonos eloszlásokra az eloszlásfüggvény reglárs vselkedése szükséges a felső végpont közelében (teljesül mnden fontos eloszlásra): F az paraméterű Fréchet eloszlás ma-vonzás tartományához tartozk (FMDA(F )), akkor és csak akkor, ha 1-F~ - L() (L lassú változású függvény: L(t)/L()1 ha ) F MDA(W )), akkor és csak akkor, ha F < és 1- F( F 1/) ~ - L() A Gmbel MDA jellemzése bonyolltabb, lényegében az eponencáls lecsengésű eloszlások tartoznak de (példa: eponencáls, normáls).
2 ha Általánosított etrém-érték (GEV) eloszlás G z ( z) ep,, 1 1 z 0. 1/ Néhány példa GEV eloszlás sűrűségfüggvényére (Lokácós és skála paramétert s tartalmazó modell.) Függetlenség vzsgálata Év mammok, Vásárosnamény Tegyük fel, hogy megtsztítottk adatankat. A kndlópont az év mammok függetlensége. Seres dat Atokorrelácó függvény: R(X t,x t+k ) a Záhony vízsznt év mamm sorozatára ACF Lag Tovább jellemzők Vsszatérés szntek (adott dő, pl. 5, 50 év alatt várhatóan egyszer kapnk lyen vagy magasabb értéket) becslése Konfdenca ntervallmok (olyan ntervallmok, melyek nagy valószínűséggel tartalmazzák az smeretlen paramétereket) konstrálása, lehetséges módszerek: a mamm lkelhood becslés aszmptotkájából profl lkelhood alapján Vsszatérés szntek GEV p-kvantlse: z p (1 yp ), ha 0 log y p, ha = 0, ahol log( 1 p), G,, ( zp) 1 p. ẑ p y p az az árvíznagyság, amelyet átlagosan 1/p évente egyszer halad meg az éves mamáls árvíz. Annak valószínűsége, hogy 1/p évnél előbb megjelenk, nagyobb ½-nél! ˆ Ha 0, akkor az eloszlás becsült felső végpontja z ˆ ˆ / ˆ. ˆ0
3 Vsszatérés sznt-görbe z p ábrázoljk log(1-p) vel szemben, logartmks skálán. Lneárs, ha = 0, konkáv, határértéke ha < 0 konve, ha > 0 Folyt.: = 0. pont.: = -0. retrn level Küszöb fölött csúcsok módszere (POT) Azok az események etrémek, amelyek meghaladnak egy rögzített, magas küszöböt Előnye: Több adatot lehet használn A becsléseket nem befolyásolják kcs árvzek Hátránya: Függ a küszöb megválasztásától A declsterezés (annak eldöntése, hogy mely mammok származnak egy eseményből) nem mndg egyértelmű retrn perod (years) Elmélet alapok Legyenek X 1, X,,X n független, azonos eloszlású val. változók. Ha ennek a sorozatnak a normalzált mamma konvergál egy etrém-érték eloszláshoz (μ,σ,ξ paraméterekkel), akkor / y 1 ~ ) P( X y X ) 1 (1 ha y>0 és 1y / ~ 0 ahol ~ ( ) (Általánosított Pareto eloszlás, GPD.) Az aszmptotka n és végtelenhez tartása mellett érvényes. ACF Atokorrelácó függvény, Záhony vízsznt baloldal: mnden 400 fölött értékre jobb oldal: deklaszterezés tán (a csúcsok) Seres dat[, ] ACF Seres dat Vsszatérés szntek Az általánosított Pareto eloszlás p-kvantlse: 1, ha 0; p 1 p 1 p log, ha = 0, ahol p n P( X ). ˆ n Ha n y az évente észlelt sznt felett mammok átlagos száma T évente vsszatérő az 1/T*n y kvantls Lag Lag Ha ˆ 0, akkor az eloszlás felső végpontja ˆ / ˆ ˆ1.
4 Küszöb választás Átlagos meghaladás ábrája: Tetszőleges küszöbre ábrázoljk az X- átlagát (azokra a megfgyelésekre, amelyekre X>) függvényében. Ha a Pareto modell gaz, ez a görbe közel lneárs. A megmagyarázása nehéz lehet a megfgyelések mammához közel megfgyelhető nagy ngadozása matt. Alternatíva: tekntsük a paraméterbecslések értéket különböző küszöbök esetén. Staconartás Kérdés, hogy az adatok valóban teknthetők-e staconársnak (alternatíva: lehet trend/perodks komponens). Lehet klasszks tesztekkel vzsgáln (pl. ch-négyzet). Az egyk módszert be s mtatjk. Nemparaméteres megközelítés Mann-Kendall trendteszt S n 1 n 1 j1 Független, azonos eloszlású, egyezések nélkül esetre: n( n 1)(n 5) ES=0, D ( S) 18 sgn( j ) Ha n nagy, S közelítőleg normáls eloszlású. Alkalmazható már n>10-re s. Néhány érték (a standardzált S- statsztka értéke) Év mammok vízállás vízhozam Szeged Záhony 0.03 V.Namény A nap mamáls vízállásra (Záhony): S=-.4. Mért? Az alacsony vízállásértékek lefelé mtató trendje az ok. Ugyanez az érték a vízhozamra: S=-.47 Staconárs sorozatok Ha nem teljesül a függetlenség (mnt pl. az eredet naponként méréseknél), a normalzált mammok határeloszlása továbbra s GEV eloszlás, ha a függőség a távol megfgyelések között 0-hoz tart. Az év mammokra a GEV modell tehát elméletleg s megalapozott. POT modellekre, a klaszter-mammok használhatóak. (A klasztereket defnáln kell).
5 A nemstaconartás esete Lneárs regresszós modellek beépíthetőek a mamm lkelhood megközelítésbe. Profl lkelhood, lkelhood-hányados próbák számíthatóak az egymásba ágyazott modellekre. Esetleg szétbontva a megfgyeléseket évszakokra, külön-külön teljesülhet a staconartás. Másk alkalmazás: gépjármű felelősség bztosítás Adattsztítás (negatív károk, nem megfelelő dőpontok, stb. kszűrése.) Inflácós hatás elemzése (lényeges, mert a mntát azonos eloszlásúnak képzeljük). Negyedéves eltolással 15 db 1 éves részre bontottk az adatokat. KSH fogyasztó árnde adatok nem megfelelőek (gyorsabb a kárkfzetés növekedése). Az nflácós hatás becslése Az ágazat kárnövekedés ráta A kárkfzetés adatok medánjara (a kgró értékek matt az átlag nem megfelelő!) llesztett nemparaméteres smítás eredményeként adódott az ágazat kárnövekedés ráta a vzsgált tartományon. Ez tartalmazza az nflácót, a gépjármű-állomány megváltozásának hatását mnden más, trend jellegű kárnagyság-módosító hatást. Az adatok jelenértékre transzformálásához ezt k kellett egészíten az dőszak elején és végén A KSH adata és a számolt kárnagyság-növekedés hónapok o smított hav árnde számított kárnagyság A KSH adata és a becsült kárnagyság-növekedés. A kezdő hónap júls, az tolsó hónap a KSH adatanál 004 október, a kárnagyság-adatsornál 004. janár. Etrapolácó: hónappal eltolt (éves mozgóátlaggal smított) KSH árnde segítségével kapott lneárs regresszóval. becsült kárnövekedés A kárnagyság-növekedés etrapolácója o számított kárnagyság etrapolált értékek Kssé csökkent a változás dnamkája az eredet adatsorhoz képest. gyakorság A jelenértékre transzformált adatok gyakorság Károk össz-száma: kb Néhány alapstatsztka: Medán: 7.9*10-4 Átlag: 0.00 Felső kvartls: %-os kvantls: %-os kvantls: hónap relatív károk relatív károk
6 A bztosítás kockázat és az etrém-érték elemzés A legnagyobb kockázatot a nagy károk jelentk. A m esetünkben: Kvantls 50% 75% 90% 95% 99% 99.9% Részarány 7.7% % 41.% 53.1% 71.8% 87% Azaz a kárkfzetés közel feléért a legnagyobb 5% a felelős. Nncsenek természetesen adódó blokkok (év mammok). alak-paraméter krt.érték vs. teszt-stat. krt.érték vs. teszt-stat Alkalmazás a küszöbválasztáshoz Kárnagyságok Az alak-paraméter változása a küszöbsznt függvényében Az A-D statsztka értéke a küszöbsznt függvényében Küszöb kvantls Olyan küszöböt választnk, melyre a próba elfogadja a GPD modell lleszkedését. Az ábrából leolvasható, hogy felett szntek jönnek számításba. A szokásos gond: torzítás (alacsony szntnél) vs. nagy szórás (magas szntnél) Választásank: , Modell dagnosztka Valószínűség ábra (P-P plot), a pontja: ˆ ( ) {( F( n ), )} n 1 Kvantls ábra (Q-Q plot), a pontja: {( ( ) n, Fˆ 1 ( ))} n 1 Mndkét esetben a pontok közel kell, hogy legyenek a fődagonálshoz, ha jó az lleszkedés. Pareto eloszlás llesztése az adott szntet meghaladó kárkfzetés adatokra GPD eloszlás skála: 0.00 alak: paraméterekkel QQ-plot A küszöbsznt: GPD eloszlás skála: alak: paraméterekkel QQ-plot A küszöbsznt: Nem jó az lleszkedés A kapott eloszlások gyan véges várható értékűek, de a szórás végtelen. Alternatíva: lognormáls eloszlás ln 1 ( A sűrűségfüggvénye: f ) e A paraméterek mamm lkelhood N N becslése: ln( ) ^ ln( ) ^ 1 N, Az lleszkedés nem jó a teljes adatsorra (túl gyors a lecsengése a ténylegesen fellépő nagy károkhoz képest). 1 N Lognormáls eloszlás llesztése a relatív kárnagyságra
7 Módosítás Csak az -nál ksebb károkra llesztjük a lognormáls eloszlást, a nagyobbakra GPD-t. Mamm lkelhood becslés: nmerks módszerekkel lehet mamalzáln a loglkelhood függvényt: n* (ln( ) ) n*ln( ) ( n n*)(1 F( )) 1 ahol n* jelöl az -nál ksebb károk számát, F pedg a (,) paraméterű lognormáls eloszlás eloszlásfüggvényét Lognormáls eloszlás llesztése a relatív kárnagyságra levágás: <0.005 Továbblépés A GPD lleszkedés nem volt megfelelő annak ellenére, hogy a statsztka feltehetően elsősorban a közepesen nagy mntaelemek nagy számának és vszonylag jó lleszkedésének köszönhetően elfogadta a GPD-modellt. Továbbfejlesztett modell: késlekedés dőtől való függés fgyelembe vétele. A késlekedés dő A néhány, rendelkezésre álló adat egyke. Alapstatsztká: Átlag: 17 nap, Medán: 4 nap, Felső kvartls: 7 nap Mamm: 1515 nap. Beépíthető a modellbe, feltételezésenk: Skálaparaméter változása: t t (t a késlekedés dő) Alakparaméter nem változk. Mamm lkelhood módszer most s alkalmazható. Illeszkedésvzsgálat a háttérváltozót s tartalmazó modellben A kvantls (QQ) plot-ot módosítan kell: ~ 1 ˆ Yt Y t log 1 ˆ ˆ t ˆ standard eponencáls eloszlású, ha teljesül a modell (Coles, []). A késlekedés dőtől függő modell Skálaparaméter változása: (t a késlekedés dő) t t Alakparaméter nem változk Mamm lkelhood módszer most s alkalmazható PP-plot, a küszöbsznt A késlekedés dõtõl függõ Lkelhood statsztka értéke: Szgnfkanca szntje: QQ-plot, a küszöbsznt A késlekedés dõtõl függõ GPD eloszlás skála(1): 1.9e-05 skála () alak: paraméterekkel
8 Modell szgnfkancavzsgálata Az előzőek értelmében D l 1( M1) l0( M 0) 1 szabadságfokú eloszlású, ha nncs szgnfkáns lneárs trend a skálaparaméterre. Ennek az értéke most D=10.3, lletve D=69.1, am gyakorlatlag tetszőlegesen kcs p mellett szgnfkáns hatást mtat. A késlekedés dő és a kárnagyság késlekedés dõ Nem értékelhető az ábra r=0.05 relatív kárnagyság Az ábrák mtatják, hogy csak a magas kvantlsek érzékenyek a késlekedés dőre ezért kaptk az erős összefüggést a Pareto eloszlás llesztésénél Tovább lehetőségek relatív kár A kárkfzetés feltételes kvantlse Feltétel: a késlekedés ksebb a p-kvantlsénél 5% 50% 75% 90% relatív kár A kárkfzetés feltételes kvantlse Feltétel: a késlekedés ksebb a p-kvantlsénél 95% 97.5% 99% 99.9% A kárkfzetés deje már egyáltalán nem jelentkezk tényezőként (azaz elfogadható az nflácó kszűrésére alkalmazott modell) PP-plot, a küszöbsznt Bekövetkezés dejétõl függõ Lkelhood statsztka értéke: e-06 Szgnfkanca szntje: QQ-plot, a küszöbsznt Bekövetkezés dejétõl függõ GPD eloszlás skála(1): 0 skála () alak: paraméterekkel valószínûség (p) valószínûség (p) A becslések bzonytalansága Szmlácós vzsgálatok: bootstrap (az eredet mntából vsszatevéses mntákat véve) a küszöb-értékre Késl.dõtõl való függés Alakparaméter Tapasztalat 95%-os konfdenca-ntervallmok: (1.181;.98)*10-5 (0.64;0.796) Tehát az dőfüggő paraméter becslése bzonytalanabb, de a nagyságrendje ennek s pontos. Bzonyosnak teknthető tehát, hogy a kárösszeg nem véges szórású. Konfdenca ntervallmok más esetekre Ha nem lenne szerepe a késlekedés dőnek, ksebb lenne a szórása a paraméterbecsléseknek, példál: (0.74; 0.750) lenne a 95%-os konfdenca ntervallm az alakparaméterre. A modellt feltételezve, GPD-eloszlásból s generáltnk mntákat. Az alakparaméter ngadozása tt s hasonló volt az általnk kapott értékekhez: (0.637; 0.76) a 95%- os konfdenca ntervallm, tehát a modell alkalmazása ebből a szempontból s reáls. 5.0 e-06.0 e e-05 Becsült paraméter Becsült paraméter
9 Tovább kérdések A bztosító számára példál az év összkárkfzetés lényegesebb mennység. Szmlácó: a nagy károkat a becsült paraméteres modellel közelítve, a késlekedés dőt a tapasztalat eloszlásával. Eredmények (a megfgyelt kfzetés %-ában): az esetek 0.5 %-ában > 150% az esetek 0.%-ában > 00% Pontosabb szmlácóhoz/vzsgálathoz a ksebb károkkal s kell foglalkozn. Itt más eloszlás jön szóba.
Extrém-érték elemzés. Extrém-érték eloszlások. Megjegyzések. A normálhatóság feltétele. Extrém-érték modellezés
Extrém-érték modellezés Zemplén András Val.modellek 2018. febrár 21. Extrém-érték elemzés Klasszks módszerek: év maxmmon alaplnak Küszöb felett értékek elemzése: adott szntet meghaladó mnden árvízből használ
RészletesebbenExtrém-érték elemzés. Extrém-érték eloszlások. A normálhatóság feltétele. Megjegyzések. Extrém-érték modellezés
Extrém-érték modellezés Zemplén András Alkalmazott modul 03. február. Extrém-érték elemzés Klasszkus módszerek: év maxmumon alapulnak Küszöb felett értékek elemzése: adott szntet meghaladó mnden árvízbıl
Részletesebbens n s x A m és az átlag Standard hiba A m becslése Információ tartalom Átlag Konfidencia intervallum Pont becslés Intervallum becslés
A m és az átlag Standard hba Mnta átlag 1 170 Az átlagok szntén ngadoznak a m körül. s x s n Az átlagok átlagos eltérése a m- től! 168 A m konfdenca ntervalluma. 3 166 4 173 x s x ~ 68% ~68% annak a valószínűsége,
RészletesebbenHipotézis vizsgálatok. Egy példa. Hipotézisek. A megfigyelt változó eloszlása Kérdés: Hatásos a lázcsillapító gyógyszer?
01.09.18. Hpotézs vzsgálatok Egy példa Kérdések (példa) Hogyan adhatunk választ? Kérdés: Hatásos a lázcsllapító gyógyszer? Hatásos-e a gyógyszer?? rodalomból kísérletekből Hpotézsek A megfgyelt változó
RészletesebbenTovábblépés. Általános, lineáris modell. Példák. Jellemzık. Matematikai statisztika 12. elıadás,
Matematikai statisztika. elıadás, 9.5.. Továbblépés Ha nem fogadható el a reziduálisok korrelálatlansága: Lehetnek fel nem tárt periódusok De más kapcsolat is fennmaradhat az egymáshoz közeli megfigyelések
RészletesebbenORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!
ORVOSI STATISZTIKA Az orvos statsztka helye Élettan Anatóma Kéma Lehet kérdés?? Statsztka! Az orvos döntéseket hoz! Mkor jó egy döntés? Mennyre helyes egy döntés? Mekkora a tévedés lehetősége? Példa: test
RészletesebbenStatisztikai próbák. Ugyanazon problémára sokszor megvan mindkét eljárás.
Statsztka próbák Paraméteres. A populácó paraméteret becsüljük, ezekkel számolunk.. Az alapsokaság eloszlására van kkötés. Nem paraméteres Nncs lyen becslés Nncs kkötés Ugyanazon problémára sokszor megvan
RészletesebbenRegresszió. Fő cél: jóslás Történhet:
Fő cél: jóslás Történhet: Regresszó 1 változó több változó segítségével Lépések: Létezk-e valamlyen kapcsolat a 2 változó között? Kapcsolat természetének leírása (mat. egy.) A regresszós egyenlet alapján
Részletesebben4 2 lapultsági együttható =
Leíró statsztka Egy kísérlet végeztével általában tetemes mennységű adat szokott összegyűln. Állandó probléma, hogy mt s kezdjünk - lletve mt tudunk kezden az adatokkal. A statsztka ebben segít mnket.
RészletesebbenA sokaság/minta eloszlásának jellemzése
3. előadás A sokaság/mnta eloszlásának jellemzése tpkus értékek meghatározása; az adatok különbözőségének vzsgálata, a sokaság/mnta eloszlásgörbéjének elemzése. Eloszlásjellemzők Középértékek helyzet (Me,
RészletesebbenLineáris regresszió. Statisztika I., 4. alkalom
Lneárs regresszó Statsztka I., 4. alkalom Lneárs regresszó Ha két folytonos változó lneárs kapcsolatban van egymással, akkor az egyk segítségével elıre jelezhetjük a másk értékét. Szükségünk van a függı
RészletesebbenMatematikai statisztika
Matematka statsztka 8. elıadás http://www.math.elte.hu/~arato/matstat0.htm Kétmtás eset: függetle mták + + + = + ) ( ) ( ) ( Y Y X X Y X m m m t m Ha smert a szórás: (X elemő, σ szórású, Y m elemő, σ szórású),
Részletesebben20 PONT Aláírás:... A megoldások csak szöveges válaszokkal teljes értékőek!
SPEC 2009-2010. II. félév Statsztka II HÁZI dolgozat Név:... Neptun kód: 20 PONT Aláírás:... A megoldások csak szöveges válaszokkal teljes értékőek! 1. példa Egy üzemben tejport csomagolnak zacskókba,
RészletesebbenBevezetés. 1. előadás, 2015. február 11. Módszerek. Tematika
Bevezetés 1. előadás, 2015. február 11. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettudományi Kar Eötvös Loránd Tudományegyetem Áringadozások előadás Heti 2 óra előadás + 2 óra
RészletesebbenTáblázatok 4/5. C: t-próbát alkalmazunk és mivel a t-statisztika értéke 3, ezért mind a 10%-os, mind. elutasítjuk a nullhipotézist.
1. Az X valószínőség változó 1 várható értékő és 9 szórásnégyzető. Y tıle független várható értékkel és 1 szórásnégyzettel. a) Menny X + Y várható értéke? 13 1 b) Menny X -Y szórásnégyzete? 13 1 összesen
RészletesebbenVariancia-analízis (ANOVA) Mekkora a tévedés esélye? A tévedés esélye Miért nem csinálunk kétmintás t-próbákat?
Varanca-analízs (NOV Mért nem csnálunk kétmntás t-próbákat? B Van különbség a csoportok között? Nncs, az eltérés csak véletlen! Ez a nullhpotézs. és B nncs különbség Legyen, B és C 3 csoport! B és C nncs
RészletesebbenMinősítéses mérőrendszerek képességvizsgálata
Mnősítéses mérőrendszerek képességvzsgálata Vágó Emese, Dr. Kemény Sándor Budapest Műszak és Gazdaságtudomány Egyetem Kéma és Környezet Folyamatmérnök Tanszék Az előadás vázlata 1. Mnősítéses mérőrendszerek
RészletesebbenFEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:
RészletesebbenTanult nem paraméteres próbák, és hogy milyen probléma megoldására szolgálnak.
8. GYAKORLAT STATISZTIKAI PRÓBÁK ISMÉTLÉS: Tanult nem paraméteres próbák, és hogy mlyen probléma megoldására szolgálnak. Név Illeszkedésvzsgálat Χ próbával Illeszkedésvzsgálat grafkus úton Gauss papírral
RészletesebbenA multikritériumos elemzés célja, alkalmazási területe, adat-transzformációs eljárások, az osztályozási eljárások lényege
A multkrtérumos elemzés célja, alkalmazás területe, adat-transzformácós eljárások, az osztályozás eljárások lényege Cél: tervváltozatok, objektumok értékelése (helyzetértékelés), döntéshozatal segítése
Részletesebben1 Y t = X tmod(n) azaz periodikusan kiterjesztjük a mintát. 3 Adott b blokkméretre készítsünk N =mb (N N)
Alkalmazása az összefüggő esetre 7. előadás, 2017. áprls 5. Zemplén András Valószínűségelmélet és Statsztka Tanszék Természettdomány Kar Eötös Loránd Tdományegyetem Árngadozások előadás Crclar blokk bootstrap
RészletesebbenStatisztika feladatok
Statsztka ok Informatka Tudományok Doktor Iskola Bzonyítandó, hogy: azaz 1 Tekntsük az alább statsztkákat: Igazoljuk, hogy torzítatlan statsztkák! Melyk a leghatásosabb közöttük? (Ez az együttes eloszlásfüggvényük.)
Részletesebbene (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma:
Normális eloszlás ξ valószínűségi változó normális eloszlású. ξ N ( µ, σ 2) Paraméterei: µ: várható érték, σ 2 : szórásnégyzet (µ tetszőleges, σ 2 tetszőleges pozitív valós szám) Normális eloszlás sűrűségfüggvénye:
RészletesebbenBevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus. KOKI,
Bevezetés a bometrába Dr. Dnya Elek egyetem tanár PhD kurzus. KOKI, 205.0.08. ADATREDUKCIÓ I. Középértékek Adatredukcó. M a középérték: azonos fajta számszerű adatok közös jellemzője. 2. Követelmények:
RészletesebbenVARIANCIAANALÍZIS (szóráselemzés, ANOVA)
VARIANCIAANAÍZIS (szóráselemzés, ANOVA) Varancaanalízs. Varancaanalízs (szóráselemzés, ANOVA) Adott: egy vagy több tetszőleges skálájú független változó és egy legalább ntervallum skálájú függő változó.
RészletesebbenHipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok
STATISZTIKA 1. Előadás Hipotézisvizsgálatok Tematika 1. Hipotézis vizsgálatok 2. t-próbák 3. Variancia-analízis 4. A variancia-analízis validálása, erőfüggvény 5. Korreláció számítás 6. Kétváltozós lineáris
RészletesebbenHipotézis, sejtés STATISZTIKA. Kétmintás hipotézisek. Tudományos hipotézis. Munkahipotézis (H a ) Nullhipotézis (H 0 ) 11. Előadás
STATISZTIKA Hipotézis, sejtés 11. Előadás Hipotézisvizsgálatok, nem paraméteres próbák Tudományos hipotézis Nullhipotézis felállítása (H 0 ): Kétmintás hipotézisek Munkahipotézis (H a ) Nullhipotézis (H
Részletesebbenx, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel:
Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel: Valószínűségi változó általános fogalma: A : R leképezést valószínűségi változónak nevezzük, ha : ( ) x, x R, x rögzített esetén esemény.
RészletesebbenIntelligens elosztott rendszerek
Intellgens elosztott rendszerek VIMIAC2 Adatelőkészítés: hhetőségvzsgálat normálás stb. Patak Béla BME I.E. 414, 463-26-79 atak@mt.bme.hu, htt://www.mt.bme.hu/general/staff/atak Valamlyen dőben állandó,
RészletesebbenElliptikus eloszlások, kopuláik. 7. előadás, 2015. március 25. Elliptikusság tesztelése. Arkhimédeszi kopulák
Elliptiks eloszlások, kopláik 7. előadás, 215. márcis 25. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettdományi Kar Eötös Loránd Tdományegyetem Áringadozások előadás Sűrűségfüggényük
RészletesebbenMax-stabilis folyamatok. 6. előadás, március 29. Smith (1990) konstrukciója. Példák
Max-stabls folyamatok 6. előadás, 2017. márcus 29. Zemplén András Valószínűségelmélet és Statsztka Tanszék Természettudomány Kar Eötvös Loránd Tudományegyetem Árngadozások előadás Legyen T R d egy Borel-halmaz.
RészletesebbenStatisztikai módszerek a skálafüggetlen hálózatok
Statisztikai módszerek a skálafüggetlen hálózatok vizsgálatára Gyenge Ádám1 1 Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Számítástudományi és Információelméleti
RészletesebbenAdatelemzés és adatbányászat MSc
Adatelemzés és adatbányászat MSc. téma Adatelemzés, statsztka elemek áttekntése Adatelemzés módszertana probléma felvetés módszer, adatok meghatározása nyers adatok adatforrás meghatározása adat tsztítás
RészletesebbenKísérlettervezési alapfogalmak:
Kísérlettervezés alapfogalmak: Tényező, faktor (factor) független változó, ható tényező (kezelés, gyógyszer, takarmány, genotípus, élőhely, stb.) amnek hatását a kísérletben vzsgáln vagy összehasonlítan
Részletesebben10. Alakzatok és minták detektálása
0. Alakzatok és mnták detektálása Kató Zoltán Képfeldolgozás és Számítógépes Grafka tanszék SZTE http://www.nf.u-szeged.hu/~kato/teachng/ 2 Hough transzformácó Éldetektálás során csak élpontok halmazát
RészletesebbenDr. Ratkó István. Matematikai módszerek orvosi alkalmazásai. 2010.11.08. Magyar Tudomány Napja. Gábor Dénes Főiskola
Dr. Ratkó István Matematka módszerek orvos alkalmazása 200..08. Magyar Tudomány Napja Gábor Dénes Főskola A valószínűségszámítás és matematka statsztka főskola oktatásakor a hallgatók néha megkérdezk egy-egy
RészletesebbenTeljes eseményrendszer. Valószínőségszámítás. Példák. Teljes valószínőség tétele. Példa. Bayes tétele
Teljes eseményrendszer Valószínőségszámítás 3. elıadás 2009.09.22. Defnícó. Események A 1, A 2,..., sorozata teljes eseményrendszer, ha egymást páronként kzárják és egyesítésük Ω. Tulajdonság: P A ) +
Részletesebbenbiometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás
Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani
Részletesebben14 A Black-Scholes-Merton modell. Options, Futures, and Other Derivatives, 8th Edition, Copyright John C. Hull
14 A Black-choles-Merton modell Copyright John C. Hull 01 1 Részvényárak viselkedése (feltevés!) Részvényár: μ: elvárt hozam : volatilitás Egy rövid Δt idő alatt a hozam normális eloszlású véletlen változó:
RészletesebbenKísérlettervezés alapfogalmak
Kísérlettervezés alapfogalmak Rendszermodellezés Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Kísérlettervezés Cél: a modell paraméterezése a valóság alapján
RészletesebbenELTE TáTK Közgazdaságtudományi Tanszék ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter június
ÖKONOMETRIA ÖKONOMETRIA Készült a TÁMOP-4.1.-08//A/KMR-009-0041pálázat projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudomán Tanszékén az ELTE Közgazdaságtudomán Tanszék, az MTA Közgazdaságtudomán
RészletesebbenNagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem
agy számok törvényei Statisztikai mintavétel Várható érték becslése Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem A mérés mint statisztikai mintavétel A méréssel az eloszlásfüggvénnyel
RészletesebbenNemparaméteres eljárások
Nemparaméteres eljárások Bevezetés Az ntervallum vagy a hányados skálán végzett méréseknél az adatokból számolhatunk átlagot, szórásnégyzetet, szórást Fontos módszerek alapulnak ezeknek a származtatott
RészletesebbenÖtvözetek mágneses tulajdonságú fázisainak vizsgálata a hiperbolikus modell alkalmazásával
AGY 4, Kecskemét Ötvözetek mágneses tulajdonságú fázsanak vzsgálata a hperbolkus modell alkalmazásával Dr. Mészáros István egyetem docens Budapest Műszak és Gazdaságtudomány Egyetem Anyagtudomány és Technológa
RészletesebbenFEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,
RészletesebbenHipotéziselmélet - paraméteres próbák. eloszlások. Matematikai statisztika Gazdaságinformatikus MSc szeptember 10. 1/58
u- t- Matematikai statisztika Gazdaságinformatikus MSc 2. előadás 2018. szeptember 10. 1/58 u- t- 2/58 eloszlás eloszlás m várható értékkel, σ szórással N(m, σ) Sűrűségfüggvénye: f (x) = 1 e (x m)2 2σ
RészletesebbenADATREDUKCIÓ I. Középértékek
ADATREDUKCIÓ I. Középértékek Adatredukcó 1. M a középérték: azonos fajta számszerű adatok közös jellemzője. 2. Követelmények: a) Számított középérték: közbenső helyet foglaljanak el, azaz mn középérték
RészletesebbenAz entrópia statisztikus értelmezése
Az entrópa statsztkus értelmezése A tapasztalat azt mutatja hogy annak ellenére hogy egy gáz molekulá egyed mozgást végeznek vselkedésükben mégs szabályszerűségek vannak. Statsztka jellegű vselkedés szabályok
RészletesebbenGyakorlati kérdések. 2. előadás, február 22. Szimuláció (Chambers, 1976) Michael-féle szórásstabilizált P-P plot
Gyakorlati kérdések 2. előadás, 2017. február 22. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettudományi Kar Eötvös Loránd Tudományegyetem Áringadozások előadás Paraméterbecslés:
RészletesebbenSTATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás
ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 9. Előadás Binomiális eloszlás Egyenletes eloszlás Háromszög eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell 2/62 Matematikai statisztika
RészletesebbenSzerven belül egyenetlen dóziseloszlások és az LNT-modell
Szerven belül egyenetlen dózseloszlások és az LNT-modell Madas Balázs Gergely, Balásházy Imre MTA Energatudomány Kutatóközpont XXXVIII. Sugárvédelm Továbbképző Tanfolyam Hunguest Hotel Béke 2013. áprls
RészletesebbenGazdaságtudományi Kar. Gazdaságelméleti és Módszertani Intézet. Regresszió-számítás. 2. előadás. Kvantitatív statisztikai módszerek. Dr.
Gazdaságtudomán Kar Gazdaságelmélet és Módszertan Intézet Regresszó-számítás. előadás Kvanttatív statsztka módszerek Dr. Varga Beatr Gazdaságtudomán Kar Gazdaságelmélet és Módszertan Intézet Korrelácós
RészletesebbenADATREDUKCIÓ I. Középértékek
ADATREDUKCIÓ I. Középértékek Adatredukcó 1. M a középérték: azonos fajta számszerű adatok közös jellemzője. 2. Követelmények: a) Számított középérték: közbenső helyet foglaljanak el, azaz mn középérték
RészletesebbenMATEMATIKAI STATISZTIKA KISFELADAT. Feladatlap
Közlekedésmérnök Kar Jármőtervezés és vzsgálat alapja I. Feladatlap NÉV:..tk.:. Feladat sorsz.:.. Feladat: Egy jármő futómő alkatrész terhelésvzsgálatakor felvett, az alkatrészre ható terhelı erı csúcsértékek
RészletesebbenADATREDUKCIÓ I. Középértékek
ADATREDUKCIÓ I. Középértékek Adatredukcó 1. M a középérték: azonos fajta számszerű adatok közös jellemzője. 2. Követelmények: a) Számított középérték: közbenső helyet foglaljanak el, azaz x mn középérték
RészletesebbenFEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,
RészletesebbenORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!
ORVOSI STATISZTIKA Az orvos statsztka helye Életta Aatóma Kéma Lehet kérdés?? Statsztka! Az orvos dötéseket hoz! Mkor jó egy dötés? Meyre helyes egy dötés? Mekkora a tévedés lehetősége? Példa: test hőmérséklet
RészletesebbenGazdaságtudományi Kar. Gazdaságelméleti és Módszertani Intézet. Korreláció-számítás. 1. előadás. Döntéselőkészítés módszertana. Dr.
Korrelácó-számítás 1. előadás Döntéselőkészítés módszertana Dr. Varga Beatr Két változó között kapcsolat Függetlenség: Az X smérv szernt hovatartozás smerete nem ad semmlen többletnformácót az Y szernt
RészletesebbenBevezetés a hipotézisvizsgálatokba
Bevezetés a hipotézisvizsgálatokba Nullhipotézis: pl. az átlag egy adott µ becslése : M ( x -µ ) = 0 Alternatív hipotézis: : M ( x -µ ) 0 Szignifikancia: - teljes bizonyosság csak teljes enumerációra -
Részletesebben4. előadás. Kiegyenlítő számítások MSc 2018/19 1 / 41
4. előadás Kiegyenlítő számítások MSc 2018/19 1 / 41 Áttekintés Extrém érték elmélet Monte Carlo eljárások 2 / 41 Extrém érték elmélet Bevezetés Alapvető módszerek (GEV és POT) Extrém érték eloszlások
RészletesebbenVéletlenszám generátorok. 6. előadás
Véletlenszám generátorok 6. előadás Véletlenszerű változók, valószínűség véletlen, véletlen változók valószínűség fogalma egy adott esemény bekövetkezésének esélye értékét 0 és között adjuk meg az összes
RészletesebbenStatisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1
Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában
Részletesebbenegyenletesen, és c olyan színű golyót teszünk az urnába, amilyen színűt húztunk. Bizonyítsuk
Valószínűségszámítás 8. feladatsor 2015. november 26. 1. Bizonyítsuk be, hogy az alábbi folyamatok mindegyike martingál. a S n, Sn 2 n, Y n = t n 1+ 1 t 2 Sn, t Fn = σ S 1,..., S n, 0 < t < 1 rögzített,
RészletesebbenBAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011.
BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011. 1 Mérési hibák súlya és szerepe a mérési eredményben A mérési hibák csoportosítása A hiba rendűsége Mérési bizonytalanság Standard és kiterjesztett
RészletesebbenKísérlettervezés alapfogalmak
Kísérlettervezés alapfogalmak Rendszermodellezés Budapest University of Technology and Economics Fault Tolerant Systems Research Group Budapest University of Technology and Economics Department of Measurement
RészletesebbenStatisztikai. Statisztika Sportszervező BSc képzés (levelező tagozat) Témakörök. Statisztikai alapfogalmak. Statisztika fogalma. Statisztika fogalma
Témakörök Statsztka Sortszerező BSc kézés (leelező tagozat) 2-2-es tané félé Oktató: Dr Csáfor Hajnalka főskola docens Vállalkozás-gazdaságtan Tsz E-mal: hcsafor@ektfhu Statsztka fogalmak Statsztka elemzések
RészletesebbenJövedelem és szubjektív jóllét: az elemzési módszer megválasztásának hatása a levonható következtetésekre
Tanulmányok Jövedelem és szubjektív jóllét: az elemzés módszer megválasztásának hatása a levonható következtetésekre Hajdu Tamás, az MTA Közgazdaságés Regonáls Tudomány Kutatóközpont Közgazdaságtudomány
RészletesebbenIBNR számítási módszerek áttekintése
1/13 IBNR számítási módszerek áttekintése Prokaj Vilmos email: Prokaj.Vilmos@pszaf.hu 1. Kifutási háromszög Év 1 2 3 4 5 2/13 1 X 1,1 X 1,2 X 1,3 X 1,4 X 1,5 2 X 2,1 X 2,2 X 2,3 X 2,4 X 2,5 3 X 3,1 X 3,2
RészletesebbenA maximum likelihood becslésről
A maximum likelihood becslésről Definíció Parametrikus becsléssel foglalkozunk. Adott egy modell, mellyel elképzeléseink szerint jól leírható a meghatározni kívánt rendszer. (A modell típusának és rendszámának
RészletesebbenFEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 8 VIII. REGREssZIÓ 1. A REGREssZIÓs EGYENEs Két valószínűségi változó kapcsolatának leírására az eddigiek alapján vagy egy numerikus
RészletesebbenIDA ELŐADÁS I. Bolgár Bence október 17.
IDA ELŐADÁS I. Bolgár Bence 2014. október 17. I. Generatív és dszkrmnatív modellek Korábban megsmerkedtünk a felügyelt tanulással (supervsed learnng). Legyen adott a D = {, y } P =1 tanító halmaz, ahol
Részletesebben1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása
HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat
RészletesebbenCHT& NSZT Hoeffding NET mom. stabilis. 2011. november 9.
CHT& NSZT Hoeffding NET mom. stabilis Becslések, határeloszlás tételek Székely Balázs 2011. november 9. CHT& NSZT Hoeffding NET mom. stabilis 1 CHT és NSZT 2 Hoeffding-egyenlőtlenség Alkalmazása: Beengedés
RészletesebbenEmpirikus nehézségek. Termelési és költségfüggvények - elmélet. Termelési és költségfüggvények elmélet, folyt. Becslés három megközelítés
Panel elemzés alkalmazása termelés függvények becslése Mkroökonometra, 5. hét Bíró Ankó A tananyag a Gazdaság Versenyhvatal Versenykultúra özpontja és a udás-ökonóma Alapítvány támogatásával készült az
RészletesebbenFEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen
Részletesebben4 205 044-2012/11 Változtatások joga fenntartva. Kezelési útmutató. UltraGas kondenzációs gázkazán. Az energia megőrzése környezetünk védelme
HU 4 205 044-2012/11 Változtatások joga fenntartva Kezelés útmutató UltraGas kondenzácós gázkazán Az energa megőrzése környezetünk védelme Tartalomjegyzék UltraGas 15-1000 4 205 044 1. Kezelés útmutató
RészletesebbenKészítette: Fegyverneki Sándor
VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y
RészletesebbenFEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 2 II. A valószínűségi VÁLTOZÓ És JELLEMZÉsE 1. Valószínűségi VÁLTOZÓ Definíció: Az leképezést valószínűségi változónak nevezzük, ha
RészletesebbenLOGIT-REGRESSZIÓ a függő változó: névleges vagy sorrendi skála
LOGIT-REGRESSZIÓ a függő változó: névleges vagy sorrendi skála a független változó: névleges vagy sorrendi vagy folytonos skála BIOMETRIA2_NEMPARAMÉTERES_5 1 Y: visszafizeti-e a hitelt x: fizetés (életkor)
RészletesebbenSTATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Mi a modell? Matematikai statisztika. 300 dobás. sűrűségfüggvénye. Egyenletes eloszlás
ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 7. Előadás Egyenletes eloszlás Binomiális eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell /56 Matematikai statisztika Reprezentatív mintavétel
RészletesebbenNemparaméteres próbák
Nemparaméteres próbák Budapesti Mőszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Mőegyetem rkp. 3. D ép. 334. Tel: 463-16-80 Fax: 463-30-91 http://www.vizgep.bme.hu
RészletesebbenTÉRBELI STATISZTIKAI VIZSGÁLATOK, ÁTLAGOS JELLEMZŐK ÉS TENDENCIÁK MAGYARORSZÁGON. Bihari Zita, OMSZ Éghajlati Elemző Osztály OMSZ
TÉRBELI STATISZTIKAI VIZSGÁLATOK, ÁTLAGOS JELLEMZŐK ÉS TENDENCIÁK MAGYARORSZÁGON Bhar Zta, OMSZ Éghajlat Elemző Osztály OMSZ Áttekntés Térbel vzsgálatok Alkalmazott módszer: MISH Eredmények Tervek A módszer
RészletesebbenLeast Squares becslés
Least Squares becslés A négyzetes hibafüggvény: i d i ( ) φx i A négyzetes hibafüggvény mellett a minimumot biztosító megoldás W=( d LS becslés A gradiens számítása és nullává tétele eredményeképp A megoldás
RészletesebbenHatáreloszlástétel a maximumokra. 3. előadás, március 1. A bizonyítás vázlata. Típusok. Tétel (Fisher és Tippet, 1928)
Határeloszlástétel a maximumokra 3. előadás, 2017. március 1. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettudományi Kar Eötvös Loránd Tudományegyetem Áringadozások előadás Tétel
RészletesebbenMatematika A3 Valószínűségszámítás, 6. gyakorlat 2013/14. tavaszi félév
Matematika A3 Valószínűségszámítás, 6. gyakorlat 2013/14. tavaszi félév 1. A várható érték és a szórás transzformációja 1. Ha egy valószínűségi változóhoz hozzáadunk ötöt, mínusz ötöt, egy b konstanst,
RészletesebbenNemparaméteres módszerek. Krisztina Boda PhD SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet
Nemparaméteres módszerek Krsztna Boda PhD SZTE ÁOK Orvos Fzka és Orvos Informatka Intézet Paraméteres próbák Paraméter: egy szám, amely a populácó eloszlását jellemz (és általában meghatározza). A normáls
RészletesebbenTöbbváltozós lineáris regressziós modell feltételeinek
Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Petrovics Petra Doktorandusz Többváltozós lineáris regressziós modell x 1, x 2,, x p
Részletesebben,...,q 3N és 3N impulzuskoordinátával: p 1,
Louvlle tétele Egy tetszőleges klasszkus mechanka rendszer állapotát mnden t dőpllanatban megadja a kanónkus koordnáták összessége. Legyen a rendszerünk N anyag pontot tartalmazó. Ilyen esetben a rendszer
RészletesebbenÁLTALÁNOS STATISZTIKA
Berzseny Dánel Főskola ÁLTALÁNOS STATISZTIKA műszak menedzser alapszak Írta: Dr. Köves János Tóth Zsuzsanna Eszter Budapest 006 Tartalomjegyzék. VALÓSZÍNŰSÉGSZÁMÍTÁSI ALAPOK... 4.. A VALÓSZÍNŰSÉGSZÁMÍTÁS
RészletesebbenAbszolút folytonos valószín ségi változó (4. el adás)
Abszolút folytonos valószín ségi változó (4. el adás) Deníció (Abszolút folytonosság és s r ségfüggvény) Az X valószín ségi változó abszolút folytonos, ha van olyan f : R R függvény, melyre P(X t) = t
RészletesebbenOKTATÁSGAZDASÁGTAN. Készítette: Varga Júlia Szakmai felelős: Varga Júlia június
OKTATÁSGAZDASÁGTAN Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázat projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudomány Tanszékén az ELTE Közgazdaságtudomány Tanszék az MTA Közgazdaságtudomány
RészletesebbenFoglalkoztatáspolitika. Modellek, mérés.
Foglalkoztatáspoltka. Modellek, mérés. Galas Péter Budapest, 20 Galas Péter, 20 Kézrat lezárva: 20. júnus Bevezetés A tananyag célja a foglalkoztatáspoltka közgazdaságtan szempontú elemzésében és értékelésében
RészletesebbenELTE TáTK Közgazdaságtudományi Tanszék ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter június
ÖKONOMETRIA ÖKONOMETRIA Készült a TÁMOP-4.1.-08//A/KMR-009-0041pályázat projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudomány Tanszékén az ELTE Közgazdaságtudomány Tanszék, az MTA Közgazdaságtudomány
RészletesebbenNKFP6-BKOMSZ05. Célzott mérőhálózat létrehozása a globális klímaváltozás magyarországi hatásainak nagypontosságú nyomon követésére. II.
NKFP6-BKOMSZ05 Célzott mérőhálózat létrehozása a globáls klímaváltozás magyarország hatásanak nagypontosságú nyomon követésére II. Munkaszakasz 2007.01.01. - 2008.01.02. Konzorcumvezető: Országos Meteorológa
RészletesebbenHipotézis vizsgálatok
Hipotézis vizsgálatok Hipotézisvizsgálat Hipotézis: az alapsokaság paramétereire vagy az alapsokaság eloszlására vonatkozó feltevés. Hipotézis ellenőrzés: az a statisztikai módszer, amelynek segítségével
RészletesebbenValószínűségi változók. Várható érték és szórás
Matematikai statisztika gyakorlat Valószínűségi változók. Várható érték és szórás Valószínűségi változók 2016. március 7-11. 1 / 13 Valószínűségi változók Legyen a (Ω, A, P) valószínűségi mező. Egy X :
RészletesebbenGVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet
GVMST22GNC Statisztika II. 3. előadás: 8. Hipotézisvizsgálat Kóczy Á. László Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Hipotézisvizsgálat v becslés Becslés Ismeretlen paraméter Közeĺıtő
RészletesebbenBalogh Edina Árapasztó tározók működésének kockázatalapú elemzése PhD értekezés Témavezető: Dr. Koncsos László egyetemi tanár
Balogh Edna Árapasztó tározók működésének kockázatalapú elemzése PhD értekezés Témavezető: Dr. Koncsos László egyetem tanár Budapest Műszak és Gazdaságtudomány Egyetem Építőmérnök Kar 202 . Bevezetés,
RészletesebbenPhilosophiae Doctores. A sorozatban megjelent kötetek listája a kötet végén található
Phlosophae Doctores A sorozatban megjelent kötetek lstája a kötet végén található Benedek Gábor Evolúcós gazdaságok szmulácója AKADÉMIAI KIADÓ, BUDAPEST 3 Kadja az Akadéma Kadó, az 795-ben alapított Magyar
RészletesebbenTöbbváltozós lineáris regressziós modell feltételeinek tesztelése I.
Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Kvantitatív statisztikai módszerek Petrovics Petra Többváltozós lineáris regressziós
Részletesebben