IDA ELŐADÁS I. Bolgár Bence október 17.
|
|
- Sára Kis
- 5 évvel ezelőtt
- Látták:
Átírás
1 IDA ELŐADÁS I. Bolgár Bence október 17. I. Generatív és dszkrmnatív modellek Korábban megsmerkedtünk a felügyelt tanulással (supervsed learnng). Legyen adott a D = {, y } P =1 tanító halmaz, ahol rendszernt X R d, d az adatok dmenzója, y Y-ra pedg pl. Y = {+1, 1} (klasszfkácó) vagy Y = R (regresszó). Célunk, hogy bármely új mntára y-t predktáljuk. I.A. Generatív modellek Az ún. generatív modellek esetében p(, y)-t keressük (nnen a generatív kfejezés s: a p(, y) együttes eloszlás smeretében akár új mntákat s tudunk generáln). Innen p(y ) = p(,y) p(), azaz adott esetén a y jósolható. Mért jobb nekünk p(y ) smerete, mnt egy egyszerű pontbecslés? Konfdenca-értékek származtatása. Bár adott -re mndkét esetben ugyanazt az értéket jósoljuk, mégs, az egyk esetben bztosabbak lehetünk az eredmény helyességében: p(y ) Mnták eldobása. Bzonytalanság esetén adott esetben egy-egy mnta akár el s dobható. Kegyensúlyozatlan osztályozás kompenzácója. Tegyük fel, hogy a feladat egy rtka betegség dagnosztzálása; jelölje C b a beteg osztályt: p(c b ) p( C b )p(c b ). Mvel az egészséges emberek sokkal nagyobb arányban fordulnak elő, a modellünk majdnem tökéletes eredményt fog elérn akkor s, ha mnden pácenst egészségesnek nylvánít. Ennek kküszöbölésére tanítsuk a modellt egy mesterségesen kegyensúlyozott adathalmazon. A fent képlet alapján a kapott posteror arányos a prorral, így nncs más dolgunk, mnt a kapott poszterort leosztan a mesterséges prorral (azaz a kegyensúlyozás után az adott osztályba eső mnták arányával), majd vsszaszorozn az eredet populácóra jellemző prorral. Modellek kombnácója. Éljünk az alább nav feltételezéssel: p( A, B C b ) = p( A C b )p( B C b ), azaz pl. a betegség dagnosztzálására két teszt s rendelkezésre áll, amelyek eredménye feltételesen (!) független egymástól. Ekkor p(c b A, B ) p( A, B C b )p(c b ) p( A C b )p( B C b )p(c b ) p(c b A )p(c b B ) p(c b ) A generatív modellek tovább előnye közé tartozk a margnálsok smerete. A p() eloszlás például felhasználható az ún. outlerek (kugró, rendellenes mnták) detekcójára. A generatív modellek hátránya, hogy rendszernt sok mntát és nagy számítás teljesítményt gényelnek (mntakompletás, számítás kompletás). y
2 I.B. Dszkrmnatív modellek A dszkrmnatív modelleknél közvetlenül p(y )-et becsüljük. Ekkor az együttes eloszlást, lletve p()-et elveszítjük, ám a fent előnyök nagy része továbbra s megmarad. Az alább ábra smét egy osztályozás feladatot mutat: p( C 1 ) p( C 2 ) p(c 2 ) p(c 1 ) Látható, hogy p( C 1 ) baloldal módusza egyáltalán nem befolyásolja a poszterort az együttes eloszlás smerete tehát nncs khatással a predkcóra. I.C. Dszkrmnatív függvények Itt olyan f : X Y, f F függvényt keresünk, amelyre f() = y, azaz a p(y ) eloszlást s elveszítjük (annak mnden előnyével együtt), y-ra csak pontbecslést kapunk. Előny vszont, hogy általában hatékonyan számítható és jó predktív teljesítménnyel bíró eljárásokhoz jutunk (pl. SVM). Felmerül a kérdés, hogy hogyan válasszuk meg f-et? f() f() f() Az ábra bal oldalán a hat adatpontunkra egy ötödfokú polnomot llesztettünk. Ez a függvény hat szabad paraméterrel bír, így r = 0 hbával rálleszhető a tanítómntákra. Megmutatható, hogy ennek ellenére a modell általánosítóképessége rossz f gyakorlatlag nem tett mást, mnt megjegyezte a tanítómntákra adandó válaszokat. Lényegesen jobb általánosítóképesség érhető el, ha F-et megszorítjuk, pl. a legfeljebb n-edfokú polnomokra (az ábra közepén n = 1, azaz lneárs regresszót végeztünk) így a szabad paraméterek számát, más szóval a modell kompletását csökkentjük (tt gondolhatunk például az Occam borotvája elvre). A modell kompletásának csökkentésére másk megközelítés az f függvény regularzácója. Az ábra jobb oldalán szntén ötödfokú polnomot llesztettünk, ám korlátoztuk az együtthatók nagyságát. A regularzált rzkómnmalzálás (RRM) során a hba mnmalzálása mellett a függvény kompletásának mnmalzálására törekszünk, amelyet például mérhetünk a függény valamlyen f normájával. A következő szakasz egy olyan keretet tárgyal, amely magába foglalja a regularzácó kérdését, a korábban már megsmert kernel módszereket, valamnt elmélet garancákat s szolgáltat.
3 II. Reproducng Kernel Hlbert Space (RKHS) Tekntsük a H := {f f = α k(, )} teret, ahol k(, ) : X X R egy kernel függvény (azaz szmmetrkus és poztív defnt). Ekkor a k(, ) : X R függvények bázst alkotnak a H térben. Tudjuk, f regularzácójához szükségünk lesz egy normára, valamnt a legtöbb kernel gép gényel egy belső szorzatot. Defnáljunk tehát egy belső szorzatot a fent téren a következőképpen: 1. Defnícó. Legyen f, g H, f = α k(, ), g = j β jk(, j ). Ekkor f, g := α β j k(, j ). j 1. Következmény. A fent választással f, g = α β j k(, j ) = j 2. Következmény. Szntén azonnal látható, hogy α g( ) = j β j f( j ). f, k(, ) = α k(, ) = f(). Ez a reprodukáló tulajdonság (reproducng property). Ahhoz, hogy H vektortér legyen (és így az algortmusok működjenek), be kell látnunk, hogy a fent defnált belső szorzat eleget tesz a követelményeknek. 1. Állítás., valóban belső szorzat a H téren. Bzonyítás. Az alább tulajdonságokat kell belátn: Szmmetrkus: k szmmetrájának közvetlen következménye. Blneárs: pl. f + f, g = j β j(f + f )( j ) = j β jf( j ) + j β jf ( j ) = f, g + f, g. A λf, g = λ f, g eset hasonlóképpen látható; a blneartás a szmmetra felhasználásával következk. f, f 0. Tudjuk, hogy f, f = j α α j k(, j ) = α T Kα, ahonnan az állítás következk K poztív defnt volta matt. f, f = 0 f = 0. Az egyk rány következk az f() 2 = f, k(, ) 2 k(, ) f, f egyenlőtlenségből, ahol a Cauchy-Schwarz-Bunyakovszkj egyenlőtlenséget használtuk. A másk rány trváls. Emlékezzünk vssza, hogy számos algortmus nemlnearzálásának alapötlete az volt, hogy az mntákat egy másk (gyakran magasabb dmenzójú) térbe képeztük, majd ebben futtattuk az eredet (lneárs) algortmusunkat. A kernel trükk alkalmazása során pedg a leképezés eplct megadása helyett mntegy lecseréltük az eukldesz belső szorzatot a k kernel függvényre:, j φ( ), φ( j ) = k(, j ). A reprodukáló tulajdonságból mmár azt s tudjuk, hogyan írható fel ez a leképezés, ugyans k(, j ) = k(, ), k(, j ), így látjuk, hogy a φ leképezés nem más, mnt φ : k(, ). Hogyan néz k φ a gyakorlatban?
4 1. Példa. Legyen a k : X X R kernel függvény a következő: k(, j ) =, 2. Az egyszerűség kedvéért kétdmenzós esetet tekntünk, azaz legyen =, j =. Ekkor φ ( ), φ ( ) = k (, = (a 1 b 1 + ) 2 ) =, 2 = a 1 b 1 a 1 b 1 + a 1 b 1 + a 1 b 1 + = a 1 a 1 b 1 b 1 + a 1 b 1 + a 1 b 1 + a 1 a 1 b 1 b 1 = a 1 a 1, b 1 b 1. ( ) a 1 a 1 Következk, hogy φ = a 1 a 1, azaz k rögzítésével megkaptuk a φ leképezést s. A fent k a polnomáls kernelek specáls esete: k(, j ) = (, j + a) d, ahol d a kernel foka, a pedg a homogén/nhomogén tulajdonságért felel. Látjuk, hogy a másodfokú homogén polnomáls kernel (d = 2, a = 0) a feature-párok terébe képez ez hasznos pl. képfeldolgozásnál, ahol az éldetekcó történhet pel-párok alapján. Magasabb fokú kernelek a feature-n-esek terébe képeznek, a 0 esetén pedg nhomogén kereszt-tagok s megjelennek a reprezentácóban (azaz feature 1-esek + feature 2-esek feature-n-esek). A fent példa jól mutatja a kernel trükk lényegét: míg nagy d esetén a φ() reprezentácók belső szorzata a nagy dmenzó matt közvetlenül már nem kszámítható, a k függvény segítségével mégscsak gyorsan megkaphatjuk. Térjünk most vssza f regularzácójára és az f normára. 1. Tétel. (Kmeldorf Wahba reprezenter tétel). Legyen adott Ω : R + R szgorúan monoton növő függvény, L : (X R R) P R általános veszteségfüggvény. Ekkor a L (( 1, y 1, f( 1 )),..., (( P, y P, f( P ))) + Ω ( f ) regularzált rzkó mnden mnmalzátora a következő alakban írható: f() = α k(, ). 2. Példa. Kétosztályos SVM. L (( 1, y 1, f( 1 )),..., (( P, y P, f( P ))) = 1 P Ω ( f ) = λ 2 f 2 Ez a felírás ekvvalens a következővel: ma (0, 1 y f ( )) mn 1 2 f 2 + C ξ s.t. y f( ) 1 ξ, ξ 0,
5 am a kétosztályos SVM prmálja, ha fgyelembe vesszük, hogy f() = w T + b (ezt nem bzonyítjuk; a Resz reprezentácós tétel következménye). A Kmeldorf Wahba tétel garantálja, hogy a megoldás s a kívánt alakot vesz fel. Fgyeljük meg, hogy mvel f = α k(, ), f 2 mnmalzálása ekvvalens az α együtthatók korlátozásával (nagyon hasonlóan az előző szakaszban látott polnom-llesztéshez). Korábban azt s láttuk, hogy a kétosztályos SVM duál feladata a következő: 1 mn α α j y y j k(, j ) α 2 j s.t. 0 α C, ahol a kényszerfeltétel szntén az α együtthatók korlátozását jelent. Magas C esetén a korlát magasabb, am gyengébb regularzácót jelent kompleebb modelleket és esetlegesen túllleszkedést eredményezve. α
4 2 lapultsági együttható =
Leíró statsztka Egy kísérlet végeztével általában tetemes mennységű adat szokott összegyűln. Állandó probléma, hogy mt s kezdjünk - lletve mt tudunk kezden az adatokkal. A statsztka ebben segít mnket.
RészletesebbenSupport Vector Machines
Support Vector Machnes Ormánd Róbert MA-SZE Mest. Int. Kutatócsoport 2009. február 17. Előadás vázlata Rövd bevezetés a gép tanulásba Bevezetés az SVM tanuló módszerbe Alapötlet Nem szeparálható eset Kernel
RészletesebbenEgy negyedrendű rekurzív sorozatcsaládról
Egy negyedrendű rekurzív sorozatcsaládról Pethő Attla Emlékül Kss Péternek, a rekurzív sorozatok fáradhatatlan kutatójának. 1. Bevezetés Legyenek a, b Z és {1, 1} olyanok, hogy a 2 4b 2) 0, b 2 és ha 1,
RészletesebbenHipotézis vizsgálatok. Egy példa. Hipotézisek. A megfigyelt változó eloszlása Kérdés: Hatásos a lázcsillapító gyógyszer?
01.09.18. Hpotézs vzsgálatok Egy példa Kérdések (példa) Hogyan adhatunk választ? Kérdés: Hatásos a lázcsllapító gyógyszer? Hatásos-e a gyógyszer?? rodalomból kísérletekből Hpotézsek A megfgyelt változó
Részletesebbens n s x A m és az átlag Standard hiba A m becslése Információ tartalom Átlag Konfidencia intervallum Pont becslés Intervallum becslés
A m és az átlag Standard hba Mnta átlag 1 170 Az átlagok szntén ngadoznak a m körül. s x s n Az átlagok átlagos eltérése a m- től! 168 A m konfdenca ntervalluma. 3 166 4 173 x s x ~ 68% ~68% annak a valószínűsége,
RészletesebbenStatisztikai próbák. Ugyanazon problémára sokszor megvan mindkét eljárás.
Statsztka próbák Paraméteres. A populácó paraméteret becsüljük, ezekkel számolunk.. Az alapsokaság eloszlására van kkötés. Nem paraméteres Nncs lyen becslés Nncs kkötés Ugyanazon problémára sokszor megvan
Részletesebben(eseményalgebra) (halmazalgebra) (kijelentéskalkulus)
Valószínűségszámítás Valószínűség (probablty) 0 és 1 között valós szám, amely egy esemény bekövetkezésének esélyét fejez k: 0 - (sznte) lehetetlen, 0.5 - azonos eséllyel gen vagy nem, 1 - (sznte) bztos
RészletesebbenTeljes eseményrendszer. Valószínőségszámítás. Példák. Teljes valószínőség tétele. Példa. Bayes tétele
Teljes eseményrendszer Valószínőségszámítás 3. elıadás 2009.09.22. Defnícó. Események A 1, A 2,..., sorozata teljes eseményrendszer, ha egymást páronként kzárják és egyesítésük Ω. Tulajdonság: P A ) +
RészletesebbenRegresszió. Fő cél: jóslás Történhet:
Fő cél: jóslás Történhet: Regresszó 1 változó több változó segítségével Lépések: Létezk-e valamlyen kapcsolat a 2 változó között? Kapcsolat természetének leírása (mat. egy.) A regresszós egyenlet alapján
Részletesebbend(f(x), f(y)) q d(x, y), ahol 0 q < 1.
Fxponttétel Már a hétköznap életben s gyakran tapasztaltuk, hogy két pont között a távolságot nem feltétlenül a " kettő között egyenes szakasz hossza" adja Pl két település között a távolságot közlekedés
RészletesebbenA sokaság/minta eloszlásának jellemzése
3. előadás A sokaság/mnta eloszlásának jellemzése tpkus értékek meghatározása; az adatok különbözőségének vzsgálata, a sokaság/mnta eloszlásgörbéjének elemzése. Eloszlásjellemzők Középértékek helyzet (Me,
RészletesebbenKOMBINATORIKA ELŐADÁS osztatlan matematika tanár hallgatók számára. Szita formula
KOMBINATORIKA ELŐADÁS osztatlan matematka tanár hallgatók számára Szta formula Előadó: Hajnal Péter 2015. 1. Bevezető példák 1. Feladat. Hány olyan sorbaállítása van a a, b, c, d, e} halmaznak, amelyben
RészletesebbenORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!
ORVOSI STATISZTIKA Az orvos statsztka helye Élettan Anatóma Kéma Lehet kérdés?? Statsztka! Az orvos döntéseket hoz! Mkor jó egy döntés? Mennyre helyes egy döntés? Mekkora a tévedés lehetősége? Példa: test
RészletesebbenKernel gépek vizsgálata
Kernel gépek vizsgálata Kooperáció és gépi tanulás laboratórium (VIMIMB02) 2018. március 5. Elméleti alapok A mérés során újabb kernel gépeket fogunk megismerni: a szupportvektor-gépek (SVM) regressziós
RészletesebbenBUDAPESTI MŰ SZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR VASÚTI JÁRMŰVEK ÉS JÁRMŰRENDSZERANALÍZIS TANSZÉK
BUDAPESTI MŰ SZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR VASÚTI JÁRMŰVEK ÉS JÁRMŰRENDSZERANALÍZIS TANSZÉK MÉRNÖKI MATAMATIKA Segédlet a Bessel-függvények témaköréhez a Közlekedésmérnök
RészletesebbenVARIANCIAANALÍZIS (szóráselemzés, ANOVA)
VARIANCIAANAÍZIS (szóráselemzés, ANOVA) Varancaanalízs. Varancaanalízs (szóráselemzés, ANOVA) Adott: egy vagy több tetszőleges skálájú független változó és egy legalább ntervallum skálájú függő változó.
Részletesebben1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak
1. Generátorrendszer Generátorrendszer. Tétel (Freud, 4.3.4. Tétel) Legyen V vektortér a T test fölött és v 1,v 2,...,v m V. Ekkor a λ 1 v 1 + λ 2 v 2 +... + λ m v m alakú vektorok, ahol λ 1,λ 2,...,λ
RészletesebbenMesterséges Intelligencia MI
Mesterséges Intellgenca MI Egyszerű döntés. Tanuljuk meg! Dobroweck Tadeusz Eredcs Péter, és mások BME I.E. 437, 463-28-99 dobroweck@mt.bme.hu, http://www.mt.bme.hu/general/staff/tade Neuron doktrna: S.
Részletesebben20 PONT Aláírás:... A megoldások csak szöveges válaszokkal teljes értékőek!
SPEC 2009-2010. II. félév Statsztka II HÁZI dolgozat Név:... Neptun kód: 20 PONT Aláírás:... A megoldások csak szöveges válaszokkal teljes értékőek! 1. példa Egy üzemben tejport csomagolnak zacskókba,
RészletesebbenA DÖNTÉSELMÉLET ALAPJAI
J 2 A DÖNTÉSELMÉLET ALAJAI óformán életünk mnden percében döntéseket kell hoznunk, és tesszük ezt mnden elmélet megalapozottság nélkül. Sajnos a mndennap életben felmerülő egyed döntésekre még nem skerült
RészletesebbenHely és elmozdulás - meghatározás távolságméréssel
Hely és elmozdulás - meghatározás távolságméréssel Bevezetés A repülő szerkezetek repülőgépek, rakéták, stb. helyének ( koordnátának ) meghatározása nem új feladat. Ezt a szakrodalom részletesen taglalja
RészletesebbenNumerikus módszerek 1.
Numerikus módszerek 1. 6. előadás: Vektor- és mátrixnormák Lócsi Levente ELTE IK 2013. október 14. Tartalomjegyzék 1 Vektornormák 2 Mátrixnormák 3 Természetes mátrixnormák, avagy indukált normák 4 Mátrixnormák
RészletesebbenGonda János VÉGES TESTEK
Gonda János VÉGES TESTEK Budapest, 2011 Lektorálta Bu Mnh Phong Utolsó módosítás dátuma: 2018. áprls 5. Előszó Ez a jegyzet az ELTE-n tartott Véges testek lletve Véges testek alkalmazásokhoz című tárgy
RészletesebbenÖsszeállította: dr. Leitold Adrien egyetemi docens
Skaláris szorzat az R n vektortérben Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok skaláris szorzata Két R n -beli vektor skaláris szorzata: Legyen a = (a 1,a 2,,a n ) és b
RészletesebbenOsztályozó algoritmusok vizsgálata
Osztályozó algortmusok vzsgálata Önálló laboratórum beszámoló Készítette: Kollár Nándor Konzulens: Kupcsk András 2009-2-4 Osztályozás A gép tanulás, adatfeldolgozás területének egyk ága az osztályozás,
RészletesebbenMéréselmélet: 5. előadás,
5. Modellllesztés (folyt.) Méréselmélet: 5. előadás, 03.03.3. Út az adaptív elárásokhoz: (85) és (88) alapán: W P, ( ( P). Ez utóbb mndkét oldalát megszorozva az mátrxszal: W W ( ( n ). (9) Feltételezve,
RészletesebbenAz entrópia statisztikus értelmezése
Az entrópa statsztkus értelmezése A tapasztalat azt mutatja hogy annak ellenére hogy egy gáz molekulá egyed mozgást végeznek vselkedésükben mégs szabályszerűségek vannak. Statsztka jellegű vselkedés szabályok
RészletesebbenBiostatisztika e-book Dr. Dinya Elek
TÁMOP-4../A/-/-0-005 Egészségügy Ügyvtelszervező Szakrány: Tartalomfejlesztés és Elektronkus Tananyagfejlesztés a BSc képzés keretében Bostatsztka e-book Dr. Dnya Elek Tartalomjegyzék. Bevezetés a mátrok
Részletesebben1. Absztrakt terek 1. (x, y) x + y X és (λ, x) λx X. műveletek értelmezve vannak, és amelyekre teljesülnek a következő axiómák:
1. Absztrakt terek 1 1. Absztrakt terek 1.1. Lineáris terek 1.1. Definíció. Az X halmazt lineáris térnek vagy vektortérnek nevezzük a valós számtest (komplex számtest) felett, ha bármely x, y X elemekre
Részletesebben7. Regisztráció. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (
Kató Zoltán: Ipar Képfeldolgozás 7. Regsztrácó Kató Zoltán Képfeldolgozás és Számítógépes Grafka tanszék SZE (http://www.nf.u-szeged.hu/~kato/teachng/ Kató Zoltán: Ipar Képfeldolgozás Kép mozak agyobb
RészletesebbenFrank András MATROIDELMÉLET május 20.
Frank András KOMBINATORIKUS OPTIMALIZÁLÁS, II: MATROIDELMÉLET 2011. május 20. ELTE TTK, Operácókutatás Tanszék 1 1. Fejezet MATROIDELMÉLETI ALAPOK 1.1 BEVEZETÉS A matrod egy (S, F) párral megadható absztrakt
RészletesebbenIntelligens elosztott rendszerek
Intellgens elosztott rendszerek VIMIAC2 Adatelőkészítés: hhetőségvzsgálat normálás stb. Patak Béla BME I.E. 414, 463-26-79 atak@mt.bme.hu, htt://www.mt.bme.hu/general/staff/atak Valamlyen dőben állandó,
RészletesebbenA Bevezetés a matematikába című tárgy 3. félévével kapcsolatos tudnivalók
A Bevezetés a matematkába című tárgy 3. félévével kapcsolatos tudnvalók A tárgy vzsgá két részből állnak, egy tesztjellegű írásbelből, valamnt egy szóbelből. Az írásbeln nncs osztályzat, a szóbel vzsga
RészletesebbenPéldák ekvivalencia relációra (TÉTELként kell tudni ezeket zárthelyin, vizsgán):
F NIK INÁRIS RLÁIÓK INÁRIS RLÁIÓK (és hasonló mátrxok s tt!) Defnícó: z R bnárs relácó, ha R {( a, b) a, b } nárs relácók lehetséges tuladonsága:. Reflexív ha ( x,.(a). Szmmetrkus ha ( x, y) ( y,.(b).
RészletesebbenIndirekt térfogat-vizualizáció. Fourier térfogat-vizualizáció. Tomográfiás rekonstrukció. Radon-transzformáció. A Fourier vetítő sík tétel
Vzualzácós algortmusok csoportosítása Indrekt térfogat-vzualzácó Csébfalv Balázs Budapest Műszak és Gazdaságtudomány Egyetem Irányítástechnka és Informatka Tanszék Drekt vzualzácó: Közvetlenül a dszkrét
RészletesebbenDr. Jelasity Márk Mesterséges Intelligencia I. (I602, IB602)
Dr. Jelasty Márk Mesterséges ntellgenca. (602, B602) kurzus nyolcadk előadásának jegyzete (2008. október 20-a) Készítette: Bóna Bence BOBNAAT.SZE NF-MAT V. Bayes-áló Ebben a részben egy szsztematkus módszert
RészletesebbenMETROLÓGIA ÉS HIBASZÁMíTÁS
METROLÓGIA ÉS HIBASZÁMíTÁS Metrológa alapfogalmak A metrológa a mérések tudománya, a mérésekkel kapcsolatos smereteket fogja össze. Méréssel egy objektum valamlyen tulajdonságáról számszerű értéket kapunk.
RészletesebbenBevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus. KOKI,
Bevezetés a bometrába Dr. Dnya Elek egyetem tanár PhD kurzus. KOKI, 205.0.08. ADATREDUKCIÓ I. Középértékek Adatredukcó. M a középérték: azonos fajta számszerű adatok közös jellemzője. 2. Követelmények:
RészletesebbenPhilosophiae Doctores. A sorozatban megjelent kötetek listája a kötet végén található
Phlosophae Doctores A sorozatban megjelent kötetek lstája a kötet végén található Benedek Gábor Evolúcós gazdaságok szmulácója AKADÉMIAI KIADÓ, BUDAPEST 3 Kadja az Akadéma Kadó, az 795-ben alapított Magyar
RészletesebbenOrosz Gyula: Markov-láncok. 4. Statisztikus golyójátékok
. Statsztkus golyójátékok Egy urnában kezdetben különböző színű golyók vannak. Ezek közül véletlenszerűen kválasztunk egyet, és a követett stratégától függően kveszünk vagy beteszünk újabb golyókat az
RészletesebbenDr. Ratkó István. Matematikai módszerek orvosi alkalmazásai. 2010.11.08. Magyar Tudomány Napja. Gábor Dénes Főiskola
Dr. Ratkó István Matematka módszerek orvos alkalmazása 200..08. Magyar Tudomány Napja Gábor Dénes Főskola A valószínűségszámítás és matematka statsztka főskola oktatásakor a hallgatók néha megkérdezk egy-egy
RészletesebbenGAMMA-SPEKTRUMOK KIÉRTÉKELÉSÉNEK MATEMATIKAI MÓDSZEREI II. REGULARIZÁCIÓS MÓDSZEREK
GAMMA-SPEKTRUMOK KIÉRTÉKELÉSÉNEK MATEMATIKAI MÓDSZEREI II MATHEMATICAL METHODS OF GAMMA-SPECTRUM S EVALUATION II REGULATING METHODS HANKA LÁSZLÓ GAMMA-SPEKTRUMOK KIÉRTÉKELÉSÉNEK MATEMATIKAI MÓDSZEREI II
RészletesebbenBékefi Zoltán. Közlekedési létesítmények élettartamra vonatkozó hatékonyság vizsgálati módszereinek fejlesztése. PhD Disszertáció
Közlekedés létesítmények élettartamra vonatkozó hatékonyság vzsgálat módszerenek fejlesztése PhD Dsszertácó Budapest, 2006 Alulírott kjelentem, hogy ezt a doktor értekezést magam készítettem, és abban
RészletesebbenAz elektromos kölcsönhatás
TÓTH.: lektrosztatka/ (kbővített óravázlat) z elektromos kölcsönhatás Rég tapasztalat, hogy megdörzsölt testek különös erőket tudnak kfejten. Így pl. megdörzsölt műanyagok (fésű), megdörzsölt üveg- vagy
RészletesebbenTöréskép optimalizálás Elmélet, megvalósítás, alkalmazás
Elmélet, megvalósítás, alkalmazás Készítették: Borbély Dánel Szerkezet-építőmérnök Msc hallgató Borbély Gábor Alkalmazott matematka Msc hallgató Koppány Zoltán Földmérő- és Térnformatka mérnök Msc hallgató
RészletesebbenA bankközi jutalék (MIF) elő- és utóélete a bankkártyapiacon. A bankközi jutalék létező és nem létező versenyhatásai a Visa és a Mastercard ügyek
BARA ZOLTÁN A bankköz utalék (MIF) elő- és utóélete a bankkártyapacon. A bankköz utalék létező és nem létező versenyhatása a Vsa és a Mastercard ügyek Absztrakt Az előadás 1 rövden átteknt a két bankkártyatársasággal
RészletesebbenÁltalános esetben az atomok (vagy molekulák) nem függetlenek, közöttük erős
I. BEVEZETÉS A STATISZTIKUS MÓDSZEREKBE Ebben a fejezetben konkrét példán vzsgáljuk meg, hogy mlyen jellegzetes tulajdonsága vannak a makroszkopkus testeknek statsztkus fzka szempontból. A megoldás során
Részletesebben17. előadás: Vektorok a térben
17. előadás: Vektorok a térben Szabó Szilárd A vektor fogalma A mai előadásban n 1 tetszőleges egész szám lehet, de az egyszerűség kedvéért a képletek az n = 2 esetben szerepelnek. Vektorok: rendezett
RészletesebbenA KroneckerCapelli-tételb l következik, hogy egy Bx = 0 homogén lineáris egyenletrendszernek
10. gyakorlat Mátrixok sajátértékei és sajátvektorai Azt mondjuk, hogy az A M n mátrixnak a λ IR szám a sajátértéke, ha létezik olyan x IR n, x 0 vektor, amelyre Ax = λx. Ekkor az x vektort az A mátrix
RészletesebbenMechanizmus-tervezés: szociális jóléti függvény nem kooperatív (versengő) ágensek. A megegyezés keresése és elérése: Tárgyalás (Negotiation)
Tárgyalások/1 Mechanzmus-tervezés: szocáls jólét függvény nem kooperatív (versengő) ágensek (Szavazás (Votng)) (Árverés (Aucton)) A megegyezés keresése és elérése: Tárgyalás (Negotaton) (Érvelés (Argung))
RészletesebbenKLASSZIKUS TERMODINAMIKA
Klasszkus termodnamka KLASSZIKUS ERMODINAMIKA Póta György: Modern fzka kéma (Dgtáls ankönyvtár, 2013), 1.1 fejezet P. W. Atkns: Fzka kéma I. (ankönyvkadó, Budapest, 2002) Amkor először tanulod, egyáltalán
Részletesebben3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás
3D - geometra modellezés, alakzatrekonstrukcó, nyomtatás b Háromszöghálók - algortmusok http://cgtbmehu/portal/node/3 https://wwwvkbmehu/kepzes/targyak/viiiav54 Dr Várady Tamás, Dr Salv Péter BME, Vllamosmérnök
RészletesebbenAdatelemzés és adatbányászat MSc
Adatelemzés és adatbányászat MSc. téma Adatelemzés, statsztka elemek áttekntése Adatelemzés módszertana probléma felvetés módszer, adatok meghatározása nyers adatok adatforrás meghatározása adat tsztítás
RészletesebbenELTE TáTK Közgazdaságtudományi Tanszék ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter június
ÖKONOMETRIA ÖKONOMETRIA Készült a TÁMOP-4.1.-08//A/KMR-009-0041pályázat projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudomány Tanszékén az ELTE Közgazdaságtudomány Tanszék, az MTA Közgazdaságtudomány
RészletesebbenADATREDUKCIÓ I. Középértékek
ADATREDUKCIÓ I. Középértékek Adatredukcó 1. M a középérték: azonos fajta számszerű adatok közös jellemzője. 2. Követelmények: a) Számított középérték: közbenső helyet foglaljanak el, azaz mn középérték
RészletesebbenA kvantum-információelmélet alapjai
Eötvös Loránd Tudományegyetem Matematka Intézet Seres István András A kvantum-nformácóelmélet alapja BSc szakdolgozat Témavezet : dr. Frenkel Péter ELTE Algebra és Számelmélet Tanszék 2014. Budapest Köszönetnylvánítás
Részletesebben,...,q 3N és 3N impulzuskoordinátával: p 1,
Louvlle tétele Egy tetszőleges klasszkus mechanka rendszer állapotát mnden t dőpllanatban megadja a kanónkus koordnáták összessége. Legyen a rendszerünk N anyag pontot tartalmazó. Ilyen esetben a rendszer
RészletesebbenA korlátozás programozás alapjai
A korlátozás programozás alapa Kovács András akovacs@mt.bme.hu Bevezetés Ez a segédlet a Mesterséges Intellgenca Labor c. tárgyat felvett hallgatókhoz szól, és feltételez a logka programozás elmélet alapanak,
Részletesebben1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás)
Matematika A2c gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 2017/18 ősz 1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) 1. Valós vektorterek-e a következő
RészletesebbenBels pontos módszer geometriai programozási feladatra
Bels pontos módszer geometra programozás feladatra MSc Szakdolgozat Deák Attla Alkalmazott matematkus szak Operácókutatás szakrány Témavezet : Illés Tbor, egyetem docens Operácókutatás Tanszék Eötvös Loránd
RészletesebbenA MOLEKULADINAMIKAI MÓDSZEREK SZISZTEMATIKUS TÁRGYALÁSA: KLASSZIKUS DINAMIKA A POSTERIORI KORREKCIÓJA
A MOLEKULADINAMIKAI MÓDSZEREK SZISZTEMATIKUS TÁRGYALÁSA: KLASSZIKUS DINAMIKA A POSTERIORI KORREKCIÓJA KLASSZIKUS DINAMIKA Klasszkus magok mozognak egy elre elkészített potencálfelületen. Potencálfelület
RészletesebbenElemi szelekciós elmélet
Elem szelekcós elmélet Meszéna Géza 018. május 8. 1. Exponencáls növekedés, szelekcó és regulácó Állandó körülmények között egy populácó létszáma exponencálsan változk, hsz úgy a születések, mnt a halálozások
Részletesebben8. Programozási tételek felsoroló típusokra
8. Programozás tételek felsoroló típusokra Ha egy adatot elem értékek csoportja reprezentál, akkor az adat feldolgozása ezen értékek feldolgozásából áll. Az lyen adat típusának lényeges jellemzője, hogy
RészletesebbenVIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag. Mátrix rangja
VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag 2019. március 21. Mátrix rangja 1. Számítsuk ki az alábbi mátrixok rangját! (d) 1 1 2 2 4 5 1 1 1 1 1 1 1 1 2 1 2 1 1 0 1 1 2 1 0 1 1 1 1 2 3 1 3
RészletesebbenKísérlettervezési alapfogalmak:
Kísérlettervezés alapfogalmak: Tényező, faktor (factor) független változó, ható tényező (kezelés, gyógyszer, takarmány, genotípus, élőhely, stb.) amnek hatását a kísérletben vzsgáln vagy összehasonlítan
RészletesebbenVektorok, mátrixok, lineáris egyenletrendszerek
a Matematika mérnököknek I. című tárgyhoz Vektorok, mátrixok, lineáris egyenletrendszerek Vektorok A rendezett valós számpárokat kétdimenziós valós vektoroknak nevezzük. Jelölésükre latin kisbetűket használunk.
RészletesebbenLineáris regresszió. Statisztika I., 4. alkalom
Lneárs regresszó Statsztka I., 4. alkalom Lneárs regresszó Ha két folytonos változó lneárs kapcsolatban van egymással, akkor az egyk segítségével elıre jelezhetjük a másk értékét. Szükségünk van a függı
RészletesebbenEM-ALGORITMUS HIÁNYOS ADATRENDSZEREKRE
Süvítenek napjank, a forró sortüzek valamt mnden nap elmulasztunk. Robotolunk lélekszakadva, jóttevőn, s valamt mnden tettben elmulasztunk... (Vác Mhály: Valam nncs sehol) EM-ALGORITMUS HIÁNYOS ADATRENDSZEREKRE
RészletesebbenMűszaki folyamatok közgazdasági elemzése. Kevert stratégiák és evolúciós játékok
Műszak folyamatok közgazdaság elemzése Kevert stratégák és evolúcós átékok Fogalmak: Példa: 1 szta stratéga Vegyes stratéga Ha m tszta stratéga létezk és a 1 m annak valószínűsége hogy az - edk átékos
Részletesebben10. Alakzatok és minták detektálása
0. Alakzatok és mnták detektálása Kató Zoltán Képfeldolgozás és Számítógépes Grafka tanszék SZTE http://www.nf.u-szeged.hu/~kato/teachng/ 2 Hough transzformácó Éldetektálás során csak élpontok halmazát
RészletesebbenVadas Norbert Robotkarok problémája
Eötvös Loránd Tudományegyetem Természettudomány Kar Vadas Norbert Robotkarok problémája matematka BSc szakdolgozat alkalmazott matematkus szakrány Témavezetõ: Szeghy Dávd Geometra Tanszék Budapest, 2013
Részletesebben3. Évközi ellenőrzés módja: 2 zárhelyi dolgozat íratása. 4. A tárgy előírt külső szakmai gyakorlatai: -
Tantárgy neve Halmazok és függvények Tantárgy kódja MTB00 Meghrdetés féléve Kredtpont Összóraszám (elm+gyak + Számonkérés módja G Előfeltétel (tantárgy kód - Tantárgyfelelős neve Rozgony Tbor Tantárgyfelelős
RészletesebbenLaboratóriumi kontrollkártya használata Tananyag. Készítette: Muránszky Géza vegyészmérnök Oktató: Lőrinc Anna minőségirányítási előadó
Laboratórum kontrollkártya használata Tananyag Készítette: Muránszky Géza vegyészmérnök Oktató: Lőrnc Anna mnőségrányítás előadó Tartalom. Bevezetés... 3. A kontroll kártyák típusa... 4 3. A statsztka
RészletesebbenTanult nem paraméteres próbák, és hogy milyen probléma megoldására szolgálnak.
8. GYAKORLAT STATISZTIKAI PRÓBÁK ISMÉTLÉS: Tanult nem paraméteres próbák, és hogy mlyen probléma megoldására szolgálnak. Név Illeszkedésvzsgálat Χ próbával Illeszkedésvzsgálat grafkus úton Gauss papírral
RészletesebbenPeriodikus figyelésű készletezési modell megoldása általános feltételek mellett
Tanulmánytár Ellátás/elosztás logsztka BME OMIKK LOGISZTIKA 9. k. 4. sz. 2004. júlus augusztus. p. 47 52. Tanulmánytár Ellátás/elosztás logsztka Perodkus fgyelésű készletezés modell megoldása általános
RészletesebbenSzimmetriák, pontcsoportok, Bravais-rácsok
Szmmetrák, pontcsoportok, Bravas-rácsok 3D krstály: olyan anyag, mely rendelkezk 3 olyan nem koplanárs vektorral (rácsvektorral), melyekkel eltolva a krstályt, önmagát kapjuk. Legyenek az elem rácsvektorok
RészletesebbenVektorterek. =a gyakorlatokon megoldásra ajánlott
Vektorterek =a gyakorlatokon megoldásra ajánlott 40. Alteret alkotnak-e a valós R 5 vektortérben a megadott részhalmazok? Ha igen, akkor hány dimenziósak? (a) L = { (x 1, x 2, x 3, x 4, x 5 ) x 1 = x 5,
RészletesebbenMatematika (mesterképzés)
Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,
RészletesebbenElosztott rendszerek játékelméleti elemzése: tervezés és öszönzés. Toka László
adat Távközlés és Médanformatka Tanszék Budapest Műszak és Gazdaságtudomány Egyetem Eurecom Telecom Pars Elosztott rendszerek játékelmélet elemzése: tervezés és öszönzés Toka László Tézsfüzet Témavezetők:
RészletesebbenKvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla
Kvadratikus alakok és euklideszi terek (előadásvázlat, 0. október 5.) Maróti Miklós, Kátai-Urbán Kamilla Az előadáshoz ajánlott jegyzet: Szabó László: Bevezetés a lineáris algebrába, Polygon Kiadó, Szeged,
RészletesebbenIMPRESSA C5 Használati útmutató
IMPRESSA C5 Használat útmutató Kávé Prof Kft. 1112 Budapest, Budaörs út 153. Tel.: 06-1-248-0095 kaveprof@freemal.hu A TÜV SÜD független német mnôségvzsgáló ntézet Az IMPRESSA kézkönyvének és a hozzá tartozó
Részletesebben3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás
3D - geometra modellezés, alakzatrekonstrukcó, nyomtatás 17. 3D Szegmentálás http://cg.t.bme.hu/portal/node/312 https://www.vk.bme.hu/kepzes/targyak/viiiav54 Dr. Várady Tamás, Dr. Salv Péter BME, Vllamosmérnök
RészletesebbenTrigonometria Megoldások. 1) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( )
Trigonometria Megoldások Trigonometria - megoldások ) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( ) akkor a háromszög egyenlő szárú vagy derékszögű!
RészletesebbenADATREDUKCIÓ I. Középértékek
ADATREDUKCIÓ I. Középértékek Adatredukcó 1. M a középérték: azonos fajta számszerű adatok közös jellemzője. 2. Követelmények: a) Számított középérték: közbenső helyet foglaljanak el, azaz mn középérték
RészletesebbenGépi tanulás a gyakorlatban SVM
Gépi tanulás a gyakorlatban SVM Klasszifikáció Feladat: előre meghatározott csoportok elkülönítése egymástól Osztályokat elkülönítő felület Osztályokhoz rendelt döntési függvények Klasszifikáció Feladat:
RészletesebbenA neurális hálózatok alapjai
A neuráls hálózatok alapja (A Neuráls hálózatok és mszak alkalmazásak cím könyv (ld. források) alapján) 1. Bológa alapok A bológa alapok megsmerése azért fontos, mert nagyon sok egyed neuráls struktúra,
RészletesebbenADATREDUKCIÓ I. Középértékek
ADATREDUKCIÓ I. Középértékek Adatredukcó 1. M a középérték: azonos fajta számszerű adatok közös jellemzője. 2. Követelmények: a) Számított középérték: közbenső helyet foglaljanak el, azaz x mn középérték
Részletesebben3515, Miskolc-Egyetemváros
Anyagmérnök udományok, 37. kötet, 1. szám (01), pp. 49 56. A-FE-SI ÖVÖZERENDSZER AUMÍNIUMAN GAZDAG SARKÁNAK FEDOGOZÁSA ESPHAD-MÓDSZERRE ESIMAION OF HE A-RIH ORNER OF HE A-FE-SI AOY SYSEM Y ESPHAD MEHOD
RészletesebbenElektrokémia 03. Cellareakció potenciálja, elektródreakció potenciálja, Nernst-egyenlet. Láng Győző
lektrokéma 03. Cellareakcó potencálja, elektródreakcó potencálja, Nernst-egyenlet Láng Győző Kéma Intézet, Fzka Kéma Tanszék ötvös Loránd Tudományegyetem Budapest Cellareakcó Közvetlenül nem mérhető (
Részletesebben3D-s számítógépes geometria
3D-s számítógépes geometra 11. 3D szegmentálás http://cg.t.bme.hu/portal/node/31 https://www.vk.bme.hu/kepzes/targyak/viiiav01 Dr. Várady Tamás BME, Vllamosmérnök és Informatka Kar Irányítástechnka és
RészletesebbenStatisztika feladatok
Statsztka ok Informatka Tudományok Doktor Iskola Bzonyítandó, hogy: azaz 1 Tekntsük az alább statsztkákat: Igazoljuk, hogy torzítatlan statsztkák! Melyk a leghatásosabb közöttük? (Ez az együttes eloszlásfüggvényük.)
RészletesebbenSorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján
Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján Számsorozatok, vektorsorozatok konvergenciája Def.: Számsorozatok értelmezése:
RészletesebbenSzárítás során kialakuló hővezetés számítása Excel VBA makróval
Szárítás során kalakuló hővezetés számítása Excel VBA makróval Rajkó Róbert 1 Eszes Ferenc 2 Szabó Gábor 1 1 Szeged Tudományegyetem, Szeged Élelmszerpar Főskola Kar Élelmszerpar Műveletek és Környezettechnka
RészletesebbenTrigonometria Megoldások. 1) Oldja meg a következő egyenletet a valós számok halmazán! (12 pont) Megoldás:
Trigonometria Megoldások ) Oldja meg a következő egyenletet a valós számok halmazán! cos + cos = sin ( pont) sin cos + = + = ( ) cos cos cos (+ pont) cos + cos = 0 A másodfokú egyenlet megoldóképletével
RészletesebbenAlgoritmusok és adatszerkezetek gyakorlat 09 Rendezések
Algortmusok és adatszerkezetek gyakorlat 09 Rendezések Néhány órával ezelőtt megsmerkedtünk már a Merge Sort rendező algortmussal. A Merge Sort-ról tuduk, hogy a legrosszabb eset dőgénye O(n log n). Tetszőleges
Részletesebbendifferenciálegyenletek
Állandó együtthatójú lineáris homogén differenciálegyenletek L[y] = y (n) + a 1y (n 1) + + a ny = 0 a i R (1) a valós, állandó együtthatójú lineáris homogén n-ed rendű differenciálegyenlet Megoldását y
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
RészletesebbenMatematikai geodéziai számítások 10.
Matematikai geodéziai számítások 10. Hibaellipszis, talpponti görbe és közepes ponthiba Dr. Bácsatyai, László Matematikai geodéziai számítások 10.: Hibaellipszis, talpponti görbe és Dr. Bácsatyai, László
RészletesebbenKvantum-tömörítés II.
LOGO Kvantum-tömörítés II. Gyöngyös László BME Vllamosmérnök és Informatka Kar A kvantumcsatorna kapactása Kommunkácó kvantumbtekkel Klasszkus btek előnye Könnyű kezelhetőség Stabl kommunkácó Dszkrét értékek
RészletesebbenFFT. Második nekifutás. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék október 2.
TARTALOMJEGYZÉK Polinomok konvolúviója A DFT és a maradékos osztás Gyűrűk támogatás nélkül Második nekifutás Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék 2015. október 2. TARTALOMJEGYZÉK Polinomok
Részletesebben