Elektrokémia 03. Cellareakció potenciálja, elektródreakció potenciálja, Nernst-egyenlet. Láng Győző
|
|
- Lóránd Fábián
- 6 évvel ezelőtt
- Látták:
Átírás
1 lektrokéma 03. Cellareakcó potencálja, elektródreakcó potencálja, Nernst-egyenlet Láng Győző Kéma Intézet, Fzka Kéma Tanszék ötvös Loránd Tudományegyetem Budapest
2 Cellareakcó Közvetlenül nem mérhető ( termodnamka ) mennységek - cellareakcó potencálja ( cell ) - elektródreakcó potencálja ( r )
3 A cellareakcó Cellareakcó A galváncellában lejátszódó bruttó (eredő) kéma reakcót hívjuk cellareakcónak. A cellareakcót a általános egyenlettel írhatjuk fel, amelyben A a reakcóban résztvevő -dk anyagfajta jele (kéma képlete), az adott anyagfajta sztöchometra száma, α a fázsok szernt, pedg az elektrokéma reakcóban részt vevő kndulás anyagok és termékek szernt összegzést jelöl. k = α α 0 A α k
4 Cellareakcó Az, hogy az általános (és kétségkívül önkényesen felírt) egyenlettel megadott kéma reakcó az adott összetétel vszonyok mellett a valóságban melyk rányba s megy végbe, erősen függhet a körülményektől (pl. hőmérséklet, nyomás, stb.).
5 Cellareakcó Az általánosság megőrzése érdekében a galváncellában áramtermeléskor végbemenő reakcó (tehát a cellareakcó) egyenletét a celladagramnak megfelelően írjuk fel, mégpedg úgy, hogy az egyenletet balról jobbra olvasva azt a folyamatot írja le, amely a poztív elektromosság balról jobbra haladásának felel meg a celladagrammal reprezentált cellában (lletve, am ezzel egyenértékű, az elektronok balról-jobbra haladásának felel meg egy olyan elektronvezetőben, amvel az elektródokat esetleg csak gondolatban összekötjük).
6 Cellareakcó z az ún. konvenconáls cellareakcó. Megjegyzendő, hogy ez az eljárás lényegében azzal a munkahpotézssel egyenértékű, hogy a celladagramban feltüntetett jobb oldal elektródban redukcó zajlk.
7 Cellareakcó
8 Cellareakcó Zn e = Zn Cu e = Cu Danell-cella Cellareakcó:???
9 Cellareakcó
10 Cellareakcó Zn e = Zn Cu e = Cu Danell-cella Cellareakcó: Zn + Cu 2+ = Zn 2+ + Cu
11 A cellareakcó potencálja ( cell ) Cellareakcó A cellareakcóra felírt egyenletben feltüntetett anyagmennységek reakcója során z F mennységű töltés átmenetére kerül sor (z a cellareakcó töltésszáma). Az eközben végzett elektromos munka az áthaladt töltés és az elektródok között feszültség szorzataként defnálható. Az aktuáls egyenlettel megadott cellareakcóhoz rendelhető maxmáls munkát a reakcó szabadentalpa változása adja meg, tehát a galváncellához rendelhető elektromos munka s legfeljebb ekkora lehet: G = r cell
12 Cellareakcó A fent egyenletben a bal oldalon szerepel a cellareakcó szabadentalpa-változása, a jobb oldalon pedg az elektrokéma cella által végzett elektromos munka. A negatív előjel a termodnamkában használatos előjelkonvencó értelmében adódk (a rendszer által a környezeten végzett munka negatív). zzel az egyenlettel defnáljuk a cellareakcó potencálját. = r G cell cell a defnícóból következően ntenzív termodnamka mennység.
13 Cellareakcó Megjegyzések: 1.) Bár a cellareakcó egyenlete a korábban tárgyalt szabályok alapján többféle módon s megadható, és r G valamnt z értéke függ a cellareakcó egyenletének felírásától, míg a cellareakcó potencálja az r G cell = egyenlet alapján nylvánvalóan független a cellareakcó egyenletének alakjától.
14 Cellareakcó Megjegyzések: 2.) Az egyenletet megfelelő módon kfejtve a cellareakcó potencálját a következő egyenlettel s megadhatjuk: cell = o ln a = o ln a ahol a a cellareakcóban résztvevő -dk komponens pedg a cellareakcó standardpoten- relatív aktvtása, cálja. o
15 lektródreakcó Az elektródreakcó potencálja ( r vagy ε r ) Defnícó szernt egy olyan galváncellában végbemenő cellareakcó potencálja, amelynek celladagramjában a bal oldal elektród a standard-hdrogénelektród, a jobb oldal pedg a vzsgált elektród. (A standard-hdrogénelektród elektródreakcó potencálja a konvencó szernt nulla.) A defnícók alapján tehát nylvánvalóan cell = r, jobb r,bal
16 lektródreakcó A vzsgált elektródon lejátszódó elektródreakcó a következő általános reakcóegyenlettel írható le: A hdrogénelektród elektródreakcója: 1 H O e = H2 + H2O 2 A vzsgált elektródból és a standard hdrogénelektródból álló cella cellareakcója: z 2 H + 0 = ze A k ( ) + + = + 2 g z H2O z H3O A k
17 lektródreakcó A Nernst egyenlet Az elektródreakcó potencálja ( r ) az alább egyenlettel adható meg: ahol r o r = o r ln az elektródreakcó standardpotencálja (elterjedt, meglehetősen félreérthető elnevezéssel: standard elektródpotencál) azaz a molekulárs hdrogén szolvatált protonná történő oxdácóját magában foglaló cellareakcó standardpotencáljának az értéke a az -dk elektroaktív (az elektródreakcóban részt vevő) komponens relatív aktvtása, a sztöchometra száma. a = o r ln a
18 lektródreakcó Az elektródreakcó potencálja ( r ) felírható az elektródreakcó standardpotencálja ( ) helyett az ún. formáls standard elektródpotencállal vagy formálpotencállal o, ( ) s. A kapott összefüggésben a relatív aktvtások r helyett azonban valamlyen összetétel változót használunk, amelyre alsó ndexben utaln kell. Például a c anyagmennység-koncentrácót ( molartás, a koncentrácó standardértéke c = 1 mol dm ) 3 használva: r = o c z az összefüggés az, amt általában Nernst-egyenletnek neveznek. ln r o ( ) o, = ( c ) c c ln c c,
19 lektródreakcó (A Nernst-féle egyenlethez pl. az alább módon juthatunk el: mvel a relatív aktvtás formálsan az egyenlettel adható meg, ahol az -dk komponens aktvtás tényezője, ezért = o r o = = o γ c r ln a r ln c ln γ c ln c = stb.) (A különféle (redukcó rányában felírt) elektródreakcók standardpotencáljanak értékét táblázatokban szokták közöln.) mlékezzünk rá, hogy az elektródreakcókat mndg a redukcó rányában kell felírn! o, c = c ln c
20 lektródreakcó Pl. egy olyan fémelektród esetében, ahol az elektródreakcó egyenlete Me z + + ze - = Me az elektródreakcó potencáljára vonatkozó összefüggés az o z+ = z+ + ln a z+ r, Me Me r,me Me Me alakot ölt, hszen z+ = 1. Me gy olyan elektród esetében, ahol az elektródreakcó - z A + ze = A az elektródreakcó potencálját leíró egyenlet o z = z ln a z r, A/A r,a/a A alakú lesz, hszen 1. z = A
21 Cellareakcó Az előzőek alapján nylvánvaló, hogy a cellareakcó potencálja felírható a celladagramban jobb oldalon feltüntetett elektród elektródreakcó potencáljának és a celladagramban bal oldalon feltüntetett elektród elektródreakcó potencáljának különbségeként. Azaz cell = r, jobb r,bal Amennyben Akkor: Illetve: MF MF cell = r, jobb r,bal
22 Termodnamka paraméterek meghatározása Galváncella alkalmazása termodnamka paraméterek meghatározásához gy reakcó termodnamka adatat meghatározhatjuk elektrokéma úton, ha a reakcóból egy reverzblsen működő galváncellát állítunk össze. Legyen az általunk vzsgált cellában lejátszódó cellareakcóreakcó: C H 4(OH) 2 + 2Ag = C6H 4O + 2H + A fent egyenletet az alább módon s felírhatjuk: C W H 4 (OH) 2 + 2Ag C 6H 4O + 2H + Itt a két nyíl azt jelent, hogy a reakcó mndkét rányba lejátszódhat (nem egyensúlyról van szó)! 2Ag 2Ag
23 lektrokéma - redoxelektródok Knhdronelektród (Inert fém, pl. Pt merül knhdront tartalmazó elektroltoldatba.) Knhdron: Néhány csepp éteres p-benzoknon-oldatot adunk 1 cm 3 éteres hdroknon-oldathoz. Az elektródreakcó: C = H 4 O 2 + 2H + 2e C 6 H OH 4 ( ) 2
24 Termodnamka paraméterek meghatározása A fent reakcó termodnamka paraméterenek meghatározásához használható galváncella celladagramja: A reakcóegyenletnek megfelelően az elektródreakcók: - az ezüstelektródra: - a knhdronelektródra: Ag + + e - = C = Ag H 4 O 2 + 2H + 2e C 6 H OH 4 ( ) 2
25 Termodnamka paraméterek meghatározása Az elektrokéma rendszerek termodnamka jellegű kísérletekben történő alkalmazásának nagy előnye, hogy kéma reakcók energetkájával kapcsolatos ntenzív mennység mérhető meg közvetlenül, a rendszer adott állapotára jellemzően, és a reakcó tényleges végbemenetele nélkül, azaz gyakorlatlag a ξ = állandó feltétel mellett. vonatkozásban tehát dfferencáls mennységet mérünk, amt a körülmények pl. koncentrácók, megfelelő változtatásával a rendszer tetszőleges állapotára meg tudnánk adn. z tesz az elektromotoros erő hőmérsékletfüggésének mérésén alapuló módszert a termodnamka vzsgálatok egyk legfontosabb eszközévé.
26 Termodnamka paraméterek meghatározása Ismétlés: A galváncella megadása és az elektromotoros erő ( MF ) előjele A cellareakcó egyenletét a celladagramnak megfelelően kell felírn, mégpedg úgy, hogy ha az egyenletet balról jobbra olvassuk, akkor azt a folyamatot írja le, amely a poztív elektromosság balról jobbra haladásának felel meg a celladagrammal reprezentált cellában (ld. feljebb). Értelemszerűen a dffúzós potencállal korrgált MF értéke (amely megegyezk cell -lel) poztív lesz, ha az így megadott reakcóegyenlet balról jobbra olvasva az önként végbemenő folyamatot írja le, és negatív, ha a cellában éppen az ellenkező rányú folyamat játszódk le önként.
27 A fent megállapítás közvetlenül adódk a Termodnamka paraméterek meghatározása egyenletből, hszen a spontán lejátszódó folyamatra, és így cell > 0 G r cell, lletve az ellentétes rányban lejátszódó reakcóra G, és így < cell 0. r > 0 = r G < 0
28 Termodnamka paraméterek meghatározása A cellareakcó potencálja és a reakcóhő A Gbbs-Helmholtz egyenlet kapcsolatot teremt a cellareakcó potencálja és a folyamat reakcóhője között: rg rg = rh T rs = rh + T T p = cell ahol: r H a reakcó entalpa változása, azaz a reakcóhő; r S a reakcó entrópa változása; T a rendszer hőmérséklete. A reakcóentrópa változása: r S = rg T p = T cell p T MF p
29 Termodnamka paraméterek meghatározása r H -t kfejezve: r H = MF + T T MF p ahol MF az elektromotoros erő hőmérséklet T p koeffcense, azaz az MF -függvény hőmérséklet szernt derváltja (meredeksége).
30 Termodnamka paraméterek meghatározása A cellareakcó potencálja és az egyensúly állandó A cellareakcó szabadentalpa változása a reaktánsok (a reakcó komponensenek) kéma potencáljával kfejezve: µ r G = µ = µ + µ + = µ ln a az -edk komponens standard kéma potencálja, a pedg a relatív aktvtása. ln a
31 Termodnamka paraméterek meghatározása A cellareakcó potencálja: cell = 1 µ ln a A cellareakcó standardpotencálja: 1 G r = µ = = ln K a K a a cellareakcó egyensúly állandója rg = ln K a
32 A cellareakcó potencálja: azaz cell = cell = ln a Termodnamka paraméterek meghatározása T T Ha cell MF, lletve cell MF, a cellareakcó standard szabadentalpa változása a standard hőmérsékleten: r r G G = = ln cell = rg Megállapodás szernt a standard állapothoz tartozó hőmérséklet: T = 298,15 K (25,00 º C). T MF a = ln a ln a ln a ln a
33
34
Elektrokémia 03. (Biologia BSc )
lektokéma 03. (Bologa BSc ) Cellaeakcó potencálja, elektódeakcó potencálja, Nenst-egyenlet Láng Győző Kéma Intézet, Fzka Kéma Tanszék ötvös Loánd Tudományegyetem Budapest Cellaeakcó Közvetlenül nem méhető
Alapvető elektrokémiai definíciók
Alapvető elektrokéma defnícók Az elektrokéma cella Elektródnak nevezünk egy onvezető fázssal (másodfajú vezető, pl. egy elektroltoldat, elektroltolvadék) érntkező elektronvezetőt (elsőfajú vezető, pl.
Elektrokémia 02. (Biologia BSc )
Elektokéma 02. (Bologa BSc ) Elektokéma cella, Kapocsfeszültség, Elektódpotencál, Elektomotoos eő Láng Győző Kéma Intézet, Fzka Kéma Tanszék Eötvös Loánd Tudományegyetem Budapest Temodnamka paaméteek TERMODINAMIKAI
ELEKTROKÉMIA GALVÁNCELLÁK ELEKTRÓDOK
LKTOKÉMIA GALVÁNCLLÁK LKTÓDOK GALVÁNCLLÁK - olyan rendszere, amelyeben éma folyamat (vagy oncentrácó egyenlítdés) eletromos áramot termelhet vagy áramforrásból rajtu áramot átbocsátva éma folyamat játszódhat
VÁLASZOK A FIZKÉM I ALAPKÉRDÉSEKRE, KERESZTÉVFOLYAM 2006
ÁLASZOK A FIZKÉM I ALAPKÉRDÉSEKRE, KERESZÉFOLYAM 6. Az elszgetelt rendszer határfelületén át nem áramlk sem energa, sem anyag. A zárt rendszer határfelületén energa léhet át, anyag nem. A nytott rendszer
13 Elektrokémia. Elektrokémia Dia 1 /52
13 Elektrokémia 13-1 Elektródpotenciálok mérése 13-2 Standard elektródpotenciálok 13-3 E cella, ΔG és K eq 13-4 E cella koncentráció függése 13-5 Elemek: áramtermelés kémiai reakciókkal 13-6 Korrózió:
Általános Kémia, 2008 tavasz
9 Elektrokémia 9-1 Elektródpotenciálok mérése 9-1 Elektródpotenciálok mérése 9-2 Standard elektródpotenciálok 9-3 E cell, ΔG, és K eq 9-4 E cell koncentráció függése 9-5 Elemek: áramtermelés kémiai reakciókkal
SZÁMOLÁSI FELADATOK. 2. Mekkora egy klíma teljesítménytényező maximális értéke, ha a szobában 20 C-ot akarunk elérni és kint 35 C van?
SZÁMOLÁSI FELADATOK 1. Egy fehérje kcsapásához tartozó standard reakcóentalpa 512 kj/mol és standard reakcóentrópa 1,60 kj/k/mol. Határozza meg, hogy mlyen hőmérséklettartományban játszódk le önként a
7 Elektrokémia. 7-1 Elektródpotenciálok mérése
7 Elektrokémia 7-1 Elektródpotenciálok mérése 7-2 Standard elektródpotenciálok 7-3 E cell, ΔG, és K eq 7-4 E cell koncentráció függése 7-5 Elemek: áramtermelés kémiai reakciókkal 7-6 Korrózió: nem kívánt
Elektrokémia Kiegészítés a praktikumhoz Elektrokémiai cella, Kapocsfeszültség, Elektródpotenciál, Elektromotoros erı.
Elektrokémia 2012. Kiegészítés a praktikumhoz Elektrokémiai cella, Kapocsfeszültség, Elektródpotenciál, Elektromotoros erı Láng Gyızı Kémiai Intézet, Fizikai Kémiai Tanszék Eötvös Loránd Tudományegyetem
HIBAJEGYZÉK az Alapvető fizikai kémiai mérések, és a kísérleti adatok feldolgozása
HIBAJEGYZÉK az Alapvető fzka kéma mérések, és a kísérlet adatk feldlgzása címü jegyzethez 2008-070 Általáns hba, hgy a ktevőben lévő negatív (-) előjelek mndenhnnan eltűntek a nymtatás srán!!! 2. Fejezet
Redox reakciók. azok a reakciók, melyekben valamely atom oxidációs száma megváltozik.
Redox reakciók azok a reakciók, melyekben valamely atom oxidációs száma megváltozik. Az oxidációs szám megadja, hogy egy atomnak mennyi lenne a töltése, ha gondolatban a kötő elektronpárokat teljes mértékben
Elektrokémia 02. Elektrokémiai cella, Kapocsfeszültség, Elektródpotenciál, Elektromotoros erő. Láng Győző
Eletroéma 02. Eletroéma cella, Kapocsfeszültség, Eletródpotencál, Eletromotoros erő Láng Győző Kéma Intézet, Fza Kéma Tanszé Eötvös Loránd Tudományegyetem Budapest Termodnama paramétere TERMODINAMIKAI
ELEKTROKÉMIA. - elektrolitokban: ionok irányított mozgása. Elektrolízis: elektromos áram által előidézett kémiai átalakulás
Elekrtokémia 1 ELEKTROKÉMIA Elektromos áram: - fémekben: elektronok áramlása - elektrolitokban: ionok irányított mozgása Elektrolízis: elektromos áram által előidézett kémiai átalakulás Galvánelem: elektromos
EA. Elektrokémia alap mérés: elektromotoros erő és kapocsfeszültség mérése a Daniell cellában, az EMF koncentráció függése
EA. Elektrokémia alap mérés: elektromotoros erő és kapocsfeszültség mérése a Daniell cellában, az EMF koncentráció függése Előkészítő előadás 2018.02.19. Alapfogalmak Elektrokémiai cella: olyan rendszer,
KLASSZIKUS TERMODINAMIKA
Klasszkus termodnamka KLASSZIKUS ERMODINAMIKA Póta György: Modern fzka kéma (Dgtáls ankönyvtár, 2013), 1.1 fejezet P. W. Atkns: Fzka kéma I. (ankönyvkadó, Budapest, 2002) Amkor először tanulod, egyáltalán
Fizikai kémia 2 Reakciókinetika házi feladatok 2016 ősz
Fizikai kémia 2 Reakciókinetika házi feladatok 2016 ősz A házi feladatok beadhatóak vagy papír alapon (ez a preferált), vagy e-mail formájában is az rkinhazi@gmail.com címre. E-mail esetén ügyeljetek a
ELEKTROKÉMIA. - elektrolitokban: ionok irányított mozgása. Elektrolízis: elektromos áram által előidézett kémiai átalakulás
ELEKTROKÉMIA 1 ELEKTROKÉMIA Elektromos áram: - fémekben: elektronok áramlása - elektrolitokban: ionok irányított mozgása Elektrolízis: elektromos áram által előidézett kémiai átalakulás Galvánelem: elektromos
Orvosi Fizika 13. Bari Ferenc egyetemi tanár SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet
Orvosi Fizika 13. Elektromosságtan és mágnességtan az életfolyamatokban 2. Bari Ferenc egyetemi tanár SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Szeged, 2011. december 5. Egyenáram Vezető
Kémiai alapismeretek 7.-8. hét
Kémiai alapismeretek 7.-8. hét Horváth Attila Pécsi Tudományegyetem, Természettudományi Kar, Kémia Intézet, Szervetlen Kémiai Tanszék 2012. október 16.-október 19. 1/12 2012/2013 I. félév, Horváth Attila
Elektrokémia 05. Elektródreakciók kinetikája. Láng Győző. Kémiai Intézet, Fizikai Kémiai Tanszék Eötvös Loránd Tudományegyetem Budapest
Eletroém 5. Eletródreó netá Láng Győző Kém Intézet, Fz Kém Tnszé Eötvös Loránd Tudományegyetem Budpest Átlépés polrzáó ( z ) ( e z e ) ( e) S W G v,,, G v,,, z ϕ αzf G G, ( ) ϕ zf α G G 1, ϕ αzf G
Elektrokémia 05. Elektródreakciók kinetikája. Láng Győző. Kémiai Intézet, Fizikai Kémiai Tanszék Eötvös Loránd Tudományegyetem
Eletroém 5. Eletródreó netá Láng Győző Kém Intézet, Fz Kém Tnszé Eötvös Loránd Tudományegyetem Budpest Átlépés polrzáó ( z ) ( e z e ) ( e) S W ,, G G v,, v, z, G G, αzf F ϕ, G G 1 ( α ) zf ϕ zf,,
A Ga-Bi OLVADÉK TERMODINAMIKAI OPTIMALIZÁLÁSA
A Ga-B OLVADÉK TRMODINAMIKAI OPTIMALIZÁLÁSA Végh Ádám, Mekler Csaba, Dr. Kaptay György, Mskolc gyetem, Khelyezett Nanotechnológa tanszék, Mskolc-3, gyetemváros, Hungary Bay Zoltán Közhasznú Nonproft kft.,
ELTE II. Fizikus, 2005/2006 I. félév KISÉRLETI FIZIKA Hıtan 15. (XII.14) Irreverzibilis termodinamika Diffúzió
λ x ELTE II. Fzkus, 2005/2006 I. félév KISÉRLETI FIZIKA Hıtan 15. (XII.14) Irreverzbls termodnamka Dffúzó Az átlagos szabad úthossz (λ) és az átlagos ütközés dı (τ): λ = < v> τ A N = n (A x); A σ σ π (2r)
Kémiai alapismeretek 11. hét
Kémiai alapismeretek 11. hét Horváth Attila Pécsi Tudományegyetem, Természettudományi Kar, Kémia Intézet, Szervetlen Kémiai Tanszék 2011. május 3. 1/8 2009/2010 II. félév, Horváth Attila c Elektród: Fémes
4 2 lapultsági együttható =
Leíró statsztka Egy kísérlet végeztével általában tetemes mennységű adat szokott összegyűln. Állandó probléma, hogy mt s kezdjünk - lletve mt tudunk kezden az adatokkal. A statsztka ebben segít mnket.
Elektrokémia B01. Mi a ph? Láng Győző. Kémiai Intézet, Fizikai Kémiai Tanszék Eötvös Loránd Tudományegyetem Budapest
Elektrokémia B01 Mi a ph? Láng Győző Kémiai Intézet, Fizikai Kémiai Tanszék Eötvös Loránd Tudományegyetem Budapest Mi a ph? 1:48:51 Természetesen mindenki tudja, hogy mi az a ph, hiszen tanulta az iskolában...
SEMMELWEIS EGYETEM. Biofizikai és Sugárbiológiai Intézet, Nanokémiai Kutatócsoport
SEMMELWEIS EGYETEM Bofzka és Sugárbológa Intézet, Nanokéma Kutatócsoport TERMODINAMIKA egyensúlyok és transzportjelenségek legáltalánosabb tudománya Zríny Mklós egyetem tanár, az MTA levelező tagja mkloszrny@gmal.com
Elegyek. Fizikai kémia előadások 5. Turányi Tamás ELTE Kémiai Intézet. Elegyedés
Elegyek Fzka kéma előadások 5. Turány Tamás ELTE Kéma Intézet Elegyedés DEF elegyek: makroszkokusan homogén, többkomonensű rendszerek. Nemreaktív elegyben kéma reakcó nncs, de szerkezet változás lehet!
Az entrópia statisztikus értelmezése
Az entrópa statsztkus értelmezése A tapasztalat azt mutatja hogy annak ellenére hogy egy gáz molekulá egyed mozgást végeznek vselkedésükben mégs szabályszerűségek vannak. Statsztka jellegű vselkedés szabályok
Minimumkérdések KÉMIA I tárgyból /I. elsőéves BSc fizikus hallgatók számára
Mnmumkérdések KÉMIA I tárgyból 2007-2008/I elsőéves BSc fzkus hallgatók számára 1 A mól fogalma és jelentése 2 A különböző koncentrácó egységek, a különböző egységben adott koncentrácók egymásba történő
A modell alapfeltevései:
Általános és szervetlen kéma Laborelőkészítő előadás V. (008. október 09.) Gázhalmazállapot: tökéletes gázok, gáztörvények - A tökéletes gázok knetkus elmélete - Ideáls gázokkal kapcsolatos számítás feladatok
KÉMIAI TERMODINAMIKA. (Grofcsik András előadásvázlata alapján)
KÉMIAI TERMODINAMIKA (Grofcsk András előadásvázlata alaján) 1 A termodnamka rendszer fogalma, tíusa és jellemzése Rendszernek nevezzük a vlágnak azt a kézelt vagy valós határfelülettel elkülönített részét,
Elektromos áram. telep a) b)
TÓTH : lektromos áram/1 (kbővített óravázlat) 1 lektromos áram Ha elektromos töltések rendezett mozgással egyk helyről a máskra átmennek, elektromos áramról beszélünk lektromos áram folyt pl egy korább
Bevezetés a kémiai termodinamikába
A Sprnger kadónál megjelenő könyv nem végleges magyar változata (Csak oktatás célú magánhasználatra!) Bevezetés a kéma termodnamkába írta: Kesze Ernő Eötvös Loránd udományegyetem Budapest, 007 Ez az oldal
Alapmőveletek koncentrált erıkkel
Alapmőveletek koncentrált erıkkel /a. példa Az.7. ábrán feltüntetett, a,5 [m], b, [m] és c,7 [m] oldalú hasábot a bejelölt erık terhelk. A berajzolt koordnátarendszer fgyelembevételével írjuk fel komponens-alakban
10. Transzportfolyamatok folytonos közegben. dt dx. = λ. j Q. x l. termodinamika. mechanika. Onsager. jóslás: F a v x(t) magyarázat: x(t) v a F
10. Transzportfolyamatok folytonos közegben Erőtörvény dff-egyenlet: Mérleg mechanka Newton jóslás: F a v x(t) magyarázat: x(t) v a F pl. rugó: mat. nga: F = m & x m & x = D x x m & x mg l energa-, mpulzus
Az egyensúly. Általános Kémia: Az egyensúly Slide 1 of 27
Az egyensúly 6'-1 6'-2 6'-3 6'-4 6'-5 Dinamikus egyensúly Az egyensúlyi állandó Az egyensúlyi állandókkal kapcsolatos összefüggések Az egyensúlyi állandó számértékének jelentősége A reakció hányados, Q:
Általános kémia képletgyűjtemény. Atomszerkezet Tömegszám (A) A = Z + N Rendszám (Z) Neutronok száma (N) Mólok száma (n)
Általános kémia képletgyűjtemény (Vizsgára megkövetelt egyenletek a szimbólumok értelmezésével, illetve az egyenletek megfelelő alkalmazása is követelmény) Atomszerkezet Tömegszám (A) A = Z + N Rendszám
,...,q 3N és 3N impulzuskoordinátával: p 1,
Louvlle tétele Egy tetszőleges klasszkus mechanka rendszer állapotát mnden t dőpllanatban megadja a kanónkus koordnáták összessége. Legyen a rendszerünk N anyag pontot tartalmazó. Ilyen esetben a rendszer
1. feladat Összesen: 8 pont. 2. feladat Összesen: 11 pont. 3. feladat Összesen: 7 pont. 4. feladat Összesen: 14 pont
1. feladat Összesen: 8 pont 150 gramm vízmentes nátrium-karbonátból 30 dm 3 standard nyomású, és 25 C hőmérsékletű szén-dioxid gáz fejlődött 1800 cm 3 sósav hatására. A) Írja fel a lejátszódó folyamat
Eredeti Veszprémi T. (digitálisan Csonka G) jegyzet: X. fejezet
2011/2012 tvsi félév 7. ór Elektródpotenciálok, Stndrd elektródpotenciál foglm Egyserű fémelektródok, oxelektródok (pl. Sn 2+ /Sn 4+ ) ph-függő redoxelektródok (pl. Mn 2+ /MnO 4, Cr 3+ /Cr 2 O 7 2 ) Másodfjú
Fizika labor zh szept. 29.
Fzka laor zh 6. szept. 9.. Mar nén évek óta a sark pékségen vesz magának 8 dkg-os rozskenyeret. Hazaérve mndg lemér, hány dkg-os kenyeret kapott aznap, és statsztkát készít a kenyerek tömegének eloszlásáról.
Reakció kinetika és katalízis
Reakció kinetika és katalízis 1. előadás: Alapelvek, a kinetikai eredmények analízise Felezési idők 1/22 2/22 : A koncentráció ( ) időbeli változása, jele: mol M v, mértékegysége: dm 3. s s Legyen 5H 2
Redox reakciók. azok a reakciók, melyekben valamely atom oxidációs száma megváltozik.
Redox reakciók azok a reakciók, melyekben valamely atom oxidációs száma megváltozik. Az oxidációs szám megadja, hogy egy atomnak mennyi lenne a töltése, ha gondolatban a kötő elektronpárokat teljes mértékben
Országos Középiskolai Tanulmányi Verseny 2009/2010. Kémia I. kategória II. forduló A feladatok megoldása
Oktatási Hivatal I. FELADATSOR Országos Középiskolai Tanulmányi Verseny 2009/2010. Kémia I. kategória II. forduló A feladatok megoldása 1. B 6. E 11. A 16. E 2. A 7. D 12. A 17. C 3. B 8. A 13. A 18. C
VARIANCIAANALÍZIS (szóráselemzés, ANOVA)
VARIANCIAANAÍZIS (szóráselemzés, ANOVA) Varancaanalízs. Varancaanalízs (szóráselemzés, ANOVA) Adott: egy vagy több tetszőleges skálájú független változó és egy legalább ntervallum skálájú függő változó.
Egy negyedrendű rekurzív sorozatcsaládról
Egy negyedrendű rekurzív sorozatcsaládról Pethő Attla Emlékül Kss Péternek, a rekurzív sorozatok fáradhatatlan kutatójának. 1. Bevezetés Legyenek a, b Z és {1, 1} olyanok, hogy a 2 4b 2) 0, b 2 és ha 1,
Kémiai átalakulások. A kémiai reakciók körülményei. A rendszer energiaviszonyai
Kémiai átalakulások 9. hét A kémiai reakció: kötések felbomlása, új kötések kialakulása - az atomok vegyértékelektronszerkezetében történik változás egyirányú (irreverzibilis) vagy megfordítható (reverzibilis)
Elektrokémia 04. Cellareakció potenciálja, elektródreakció potenciálja, termodinamikai paraméterek meghatározása példa. Láng Győző
Elektokémi 04. Cellekció potenciálj, elektódekció potenciálj, temodinmiki pméteek meghtáozás péld Láng Győző Kémii Intézet, Fiziki Kémii Tnszék Eötvös Loánd Tudományegyetem Budpest Az elmélet lklmzás konkét
Általános esetben az atomok (vagy molekulák) nem függetlenek, közöttük erős
I. BEVEZETÉS A STATISZTIKUS MÓDSZEREKBE Ebben a fejezetben konkrét példán vzsgáljuk meg, hogy mlyen jellegzetes tulajdonsága vannak a makroszkopkus testeknek statsztkus fzka szempontból. A megoldás során
Spontaneitás, entrópia
Spontaneitás, entrópia 11-1 Spontán és nem spontán folyamat 11-2 Entrópia 11-3 Az entrópia kiszámítása 11-4 Spontán folyamat: a termodinamika második főtétele 11-5 Standard szabadentalpia változás, ΔG
2.2.36. AZ IONKONCENTRÁCIÓ POTENCIOMETRIÁS MEGHATÁROZÁSA IONSZELEKTÍV ELEKTRÓDOK ALKALMAZÁSÁVAL
01/2008:20236 javított 8.3 2.2.36. AZ IONKONCENRÁCIÓ POENCIOMERIÁ MEGHAÁROZÁA IONZELEKÍ ELEKRÓDOK ALKALMAZÁÁAL Az onszeletív eletród potencálja (E) és a megfelelő on atvtásána (a ) logartmusa özött deáls
Elektrokémiai fémleválasztás. Alapok: elektródok és csoportosításuk
Elektrkéma fémleválasztás Alapk: elektródk és csprtsításuk Péter László Elektrkéma fémleválasztás Elektródk és csprtsításuk - 1 Elektrkéma reakcó, elektród Mely reakcókat nevezzük elektrkéma reakcóknak?
Kémiai reakciók sebessége
Kémiai reakciók sebessége reakciósebesség (v) = koncentrációváltozás változáshoz szükséges idő A változás nem egyenletes!!!!!!!!!!!!!!!!!! v= ± dc dt a A + b B cc + dd. Melyik reagens koncentrációváltozását
A TERMODINAMIKA MIKROSZKOPIKUS ÉRTELMEZÉSE: A STATISZTIKUS TERMODINAMIKA ALAPJAI
A TERMODINAMIKA MIKROSZKOPIKUS ÉRTELMEZÉSE: A STATISZTIKUS TERMODINAMIKA ALAPJAI BEVEZETÉS Alkotórészek: molekulárs modell + statsztka Mért kell a statsztka? Mert 0 23 nagyságrend mkroszkopkus változója
Megjegyzések (észrevételek) a szabad energia és a szabad entalpia fogalmához
Dr. Pósa Mihály Megjegyzések (észrevételek) a szabad energia és a szabad entalpia fogalmához 1. Bevezetés Shillady Don professzor az Amerikai Kémiai Szövetség egyik tanácskozásán felhívta a figyelmet a
Eredeti Veszprémi T. (digitálisan Csonka G) jegyzet: X. és XI. fejezet
2012/2013 tavasz félév 11. óra Oldatok vezetőképessége Vezetőképesség, elektromos ellenállás, fajlagos mennységek, cellaállandó Erős elektroltok fajlagos ellenállása és vezetőképessége Komplexképződés
5. Laboratóriumi gyakorlat
5. Laboratóriumi gyakorlat HETEROGÉN KÉMIAI REAKCIÓ SEBESSÉGÉNEK VIZSGÁLATA A CO 2 -nak vízben történő oldódása és az azt követő egyensúlyra vezető kémiai reakció az alábbi reakcióegyenlettel írható le:
Az egyensúly. Általános Kémia: Az egyensúly Slide 1 of 27
Az egyensúly 10-1 Dinamikus egyensúly 10-2 Az egyensúlyi állandó 10-3 Az egyensúlyi állandókkal kapcsolatos összefüggések 10-4 Az egyensúlyi állandó számértékének jelentősége 10-5 A reakció hányados, Q:
6. Termodinamikai egyensúlyok és a folyamatok iránya
6. ermodinamikai egyensúlyok és a folyamatok iránya A természetben végbemenő folyamatok kizárólagos termodinamikai hajtóereje az entróia növekedése. Minden makroszkoikusan észlelhető folyamatban a rendszer
Az elektromos kölcsönhatás
TÓTH.: lektrosztatka/ (kbővített óravázlat) z elektromos kölcsönhatás Rég tapasztalat, hogy megdörzsölt testek különös erőket tudnak kfejten. Így pl. megdörzsölt műanyagok (fésű), megdörzsölt üveg- vagy
Spontaneitás, entrópia
Spontaneitás, entrópia 6-1 Spontán folyamat 6-2 Entrópia 6-3 Az entrópia kiszámítása 6-4 Spontán folyamat: a termodinamika második főtétele 6-5 Standard szabadentalpia változás, ΔG 6-6 Szabadentalpia változás
TARTALOM. 8. Elegyek és oldatok 2
TARTALOM 8. Elegyek és oldatok 8.. A kéma otencál 3 8.. A fázsegyensúlyok feltétele 8 8.3. A Gbbs-féle fázsszabály 0 8.4. Az elegykéződésre jellemző mennységek 3 8.5. Parcáls molárs mennységek 7 8.6. A
Elektrokémiai gyakorlatok
Elektrokémiai gyakorlatok Az elektromos áram hatására bekövetkezı kémiai változásokkal, valamint a kémiai energia elektromos energiává alakításának folyamataival, törvényszerőségeivel foglalkozik. A változást
Elektrokémiai preparátum
Elektrokémiai preparátum A laboratóriumi gyakorlat során elvégzendő feladat: Nátrium-hipoklorit oldat előállítása elektrokémiai úton; az oldat hipoklorit tartalmának meghatározása jodometriával. Daniell-elem
Ni 2+ Reakciósebesség mol. A mérés sorszáma
1. feladat Összesen 10 pont Egy kén-dioxidot és kén-trioxidot tartalmazó gázelegyben a kén és oxigén tömegaránya 1,0:1,4. A) Számítsa ki a gázelegy térfogatszázalékos összetételét! B) Számítsa ki 1,0 mol
Alkalmazás a makrókanónikus sokaságra: A fotongáz
Alkalmazás a makrókanónikus sokaságra: A fotongáz A fotonok az elektromágneses sugárzás hordozó részecskéi. Spinkvantumszámuk S=, tehát kvantumstatisztikai szempontból bozonok. Fotonoknak habár a spinkvantumszámuk,
Termokémia, termodinamika
Termokémia, termodinamika Szalai István ELTE Kémiai Intézet 1/46 Termodinamika A termodinamika a természetben végbemenő folyamatok energetikai leírásával foglalkozik.,,van egy tény ha úgy tetszik törvény,
Sók oldékonysági szorzatának és oldáshőjének meghatározása vezetés méréssel
Sók oldékonysági szorzatának és oldáshőjének meghatározása vezetés méréssel 1. Bevezetés Az elektromos ellenállás anyagi tulajdonság, melyen -definíció szerint- az anyagon áthaladó 1 amper intenzitású
Egyenletek, egyenlőtlenségek VII.
Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós
rendszer: a világ általunk vizsgált, valamilyen fallal (részben) elhatárolt része környezet: a világ rendszert körülvevő része
I. A munka ogalma, térogat és egyéb (hasznos) munka. II. A hő ogalma. III. A belső energa denícója és molekulárs értelmezése. I. A termodnamka első őtételének néhány megogalmazása.. Az entalpa ogalma,
Méréselmélet: 5. előadás,
5. Modellllesztés (folyt.) Méréselmélet: 5. előadás, 03.03.3. Út az adaptív elárásokhoz: (85) és (88) alapán: W P, ( ( P). Ez utóbb mndkét oldalát megszorozva az mátrxszal: W W ( ( n ). (9) Feltételezve,
SEMMELWEIS EGYETEM. Biofizikai és Sugárbiológiai Intézet, Nanokémiai Kutatócsoport. TERMODINAMIKA az egyensúlyok és folyamatok tudománya
SEMMELWEIS EGYETEM Bofzka és Sugárbológa Intézet, Nanokéma Kutatócsoport TERMODINAMIKA az egyensúlyok és folyamatok tudománya Zríny Mklós egyetem tanár, az MTA levelező tagja mkloszrny@gmal.com U = Q+
KOLLOIDKÉMIA: NANORENDSZEREK ÉS HATÁRFELÜLETEK. egyetemi jegyzet
KOLLOIDKÉMIA: NANORENDSZEREK ÉS HATÁRFELÜLETEK egyetem jegyzet Glány Tbor ELTE Kollodkéma és Kollodtechnológa Tanszék Budapest, 2005 A kollodkéma tárgya A kollodkéma tárgyának meghatározásához nduljunk
Termodinamikai bevezető
Termodinamikai bevezető Alapfogalmak Termodinamikai rendszer: Az univerzumnak az a részhalmaza, amit egy termodinamikai vizsgálat során vizsgálunk. Termodinamikai környezet: Az univerzumnak a rendszeren
Anyagvizsgálati módszerek Elektroanalitika. Anyagvizsgálati módszerek
Anyagvizsgálati módszerek Elektroanalitika Anyagvizsgálati módszerek Pannon Egyetem Mérnöki Kar Anyagvizsgálati módszerek Optikai módszerek 1/ 18 Potenciometria Potenciometria olyan analitikai eljárások
2. Laboratóriumi gyakorlat A TERMISZTOR. 1. A gyakorlat célja. 2. Elméleti bevezető
. Laboratóriumi gyakorlat A EMISZO. A gyakorlat célja A termisztorok működésének bemutatása, valamint főbb paramétereik meghatározása. Az ellenállás-hőmérséklet = f és feszültség-áram U = f ( I ) jelleggörbék
BUDAPESTI MŰ SZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR VASÚTI JÁRMŰVEK ÉS JÁRMŰRENDSZERANALÍZIS TANSZÉK
BUDAPESTI MŰ SZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR VASÚTI JÁRMŰVEK ÉS JÁRMŰRENDSZERANALÍZIS TANSZÉK MÉRNÖKI MATAMATIKA Segédlet a Bessel-függvények témaköréhez a Közlekedésmérnök
3515, Miskolc-Egyetemváros
Anyagmérnök udományok, 37. kötet, 1. szám (01), pp. 49 56. A-FE-SI ÖVÖZERENDSZER AUMÍNIUMAN GAZDAG SARKÁNAK FEDOGOZÁSA ESPHAD-MÓDSZERRE ESIMAION OF HE A-RIH ORNER OF HE A-FE-SI AOY SYSEM Y ESPHAD MEHOD
3. Az Sn-Pb ötvözetek termikus analízise, fázisdiagram megszerkesztése. Előkészítő előadás
3. Az Sn-Pb ötvözetek termikus analízise, fázisdiagram megszerkesztése. Előkészítő előadás 2018.02.05. A gyakorlat célja Ismerkedés a Fizikai Kémia II. laboratóriumi gyakorlatok légkörével A jegyzőkönyv
Általános kémia gyakorlat vegyészmérnököknek. 2015/2016. őszi félév
Általános kémia gyakorlat vegyészmérnököknek 2015/2016. őszi félév Zárthelyik A zárthelyik időpontja az kari zh-időpont: 17 00 19 00. A zárthelyik időtartama 90 perc. Mindkét zárthelyin legalább 50%-ot
10. Transzportfolyamatok folytonos közegben
10. Transzportfolyamatok folytonos közegben erőtörvény: mechanka Newton dff-egyenlet: pl. rugó: mat. nga: állapot -> jóslás: F a v x(t) jelenség -> magyarázat: x(t) v a F F = m & x m & x = -D x x m & x
q=h(termékek) H(Kiindulási anyagok) (állandó p-n) q=u(termékek) U(Kiindulási anyagok) (állandó V-n)
ERMOKÉMIA A vzsgált általános folyaatok és teodnaka jellezésük agyjuk egy pllanata az egysze D- endszeeket, s tekntsük azokat a változásokat, elyeket kísé entalpa- (ll. bels enega-) változásokkal á koább
Általános kémia gyakorlat biomérnököknek
Általános kémia gyakorlat biomérnököknek Zárthelyi követelmények A zárthelyik időtartama 90 perc. Mindkét zárthelyin legalább 50%-ot kell teljesíteni az elégséges jegyért. Akinek nincs meg az 50%-os eredménye,
VIII. ELEKTROMOS ÁRAM FOLYADÉKOKBAN ÉS GÁZOKBAN
VIII. ELEKTROMOS ÁRAM FOLYADÉKOKBAN ÉS GÁZOKBAN Bevezetés: Folyadékok - elsősorban savak, sók, bázsok vzes oldata - áramvezetésének gen fontos gyakorlat alkalmazása vannak. Leggyakrabban az elektronkus
6 Ionszelektív elektródok. elektródokat kiterjedten alkalmazzák a klinikai gyakorlatban: az automata analizátorokban
6. Szelektivitási együttható meghatározása 6.1. Bevezetés Az ionszelektív elektródok olyan potenciometriás érzékelők, melyek valamely ion aktivitásának többé-kevésbé szelektív meghatározását teszik lehetővé.
A 27/2012. (VIII. 27.) NGM rendelet (29/2016. (VIII. 26.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.
A 27/2012. (VIII. 27.) NGM rendelet (29/2016. (VIII. 26.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés azonosítószáma és megnevezése 54 524 03 Vegyész technikus Tájékoztató
63/2004. (VII. 26.) ESzCsM rendelet
63/2004. (VII. 26.) ESzCsM rendelet a 0 Hz-300 GHz között frekvencatartományú elektromos, mágneses és elektromágneses terek lakosságra vonatkozó egészségügy határértékeről Az egészségügyről szóló 1997.
2012/2013 tavaszi félév 8. óra
2012/2013 tavasz félév 8. óra Híg oldatok törvénye Fagyáspontcsökkenés és forráspont-emelkedés, Ozmózsnyomás Molárs tömeg meghatározása kollgatív tulajdonságok segítségével Erős elektroltok kollgatív tulajdonsága
Általános és szervetlen kémia Laborelıkészítı elıadás VI
Általános és szervetlen kémia Laborelıkészítı elıadás VI Redoxiegyenletek rendezésének általános lépései Példák fémoldódási egyenletek rendezésére Halogénvegyületek reakciói A gyakorlaton vizsgált redoxireakciók
FIZIKA II. Egyenáram. Dr. Seres István
Dr. Seres István Áramerősség, Ohm törvény Áramerősség: I Q t Ohm törvény: U I Egyenfeszültség állandó áram?! fft.szie.hu 2 Seres.Istvan@gek.szie.hu Áramerősség, Ohm törvény Egyenfeszültség U állandó Elektromos
A standardpotenciál meghatározása a cink példáján. A galváncella működése elektrolizáló cellaként Elektródreakciók standard- és formálpotenciálja
Általános és szervetlen kémia Laborelőkészítő előadás VII-VIII. (október 17.) Az elektródok típusai A standardpotenciál meghatározása a cink példáján Számítási példák galvánelemekre Koncentrációs elemek
Áramforrások. Másodlagos cella: Használat előtt fel kell tölteni. Használat előtt van a rendszer egyensúlyban. Újratölthető.
Áramforrások Elsődleges cella: áramot termel kémiai anyagokból, melyek a cellába vannak bezárva. Ha a reakció elérte az egyensúlyt, kimerül. Nem tölthető. Másodlagos cella: Használat előtt fel kell tölteni.
Kémiai átalakulások. A kémiai reakciók körülményei. A rendszer energiaviszonyai
Kémiai átalakulások 9. hét A kémiai reakció: kötések felbomlása, új kötések kialakulása - az atomok vegyértékelektronszerkezetében történik változás egyirányú (irreverzibilis) vagy megfordítható (reverzibilis)
Országos Középiskolai Tanulmányi Verseny 2010/2011. tanév Kémia II. kategória 2. forduló Megoldások
ktatási Hivatal rszágos Középiskolai Tanulmányi Verseny 2010/2011. tanév Kémia II. kategória 2. forduló Megoldások I. FELADATSR 1. C 6. C 11. E 16. C 2. D 7. B 12. E 17. C 3. B 8. C 13. D 18. C 4. D 9.
FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Fizika középszint 1712 ÉRETTSÉGI VIZSGA 2017. május 22. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA A dolgozatokat az útmutató utasításai szerint, jól
Q 1 D Q 2 (D x) 2 (1.1)
. Gyakorlat 4B-9 Két pontszerű töltés az x tengelyen a következőképpen helyezkedik el: egy 3 µc töltés az origóban, és egy + µc töltés az x =, 5 m koordinátájú pontban van. Keressük meg azt a helyet, ahol
ELEKTROANALITIKA (ELEKTROKÉMIAI ANALÍZIS)
ELEKTROANALITIKA (ELEKTROKÉMIAI ANALÍZIS) Olyan analitikai eljárások gyűjtőneve, amelyek során elektromos áramot alkalmaznak (Römpp) Az analitikai információ megszerzéséhez vizsgáljuk vagy az oldatok fázishatárain
VEGYÉSZ ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Vegyész ismeretek emelt szint 1712 ÉRETTSÉGI VIZSGA 2019. május 15. VEGYÉSZ ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Útmutató a vizsgázók teljesítményének