13 Elektrokémia. Elektrokémia Dia 1 /52
|
|
- Zita Csonka
- 6 évvel ezelőtt
- Látták:
Átírás
1 13 Elektrokémia 13-1 Elektródpotenciálok mérése 13-2 Standard elektródpotenciálok 13-3 E cella, ΔG és K eq 13-4 E cella koncentráció függése 13-5 Elemek: áramtermelés kémiai reakciókkal 13-6 Korrózió: nem kívánt elem 13-7 Elektrolízis: nem spontán reakciók előidézése 13-8 Elektrolízis ipari alkalmazásai Fókusz membránpotenciálok Elektrokémia Dia 1 /52
2 13-1 Elektródpotenciálok mérése Cu(s) + 2Ag + (aq) Cu(s) + Zn 2+ (aq) Cu 2+ (aq) + 2 Ag(s) Nincs reakció Elektrokémia Dia 2 /52
3 Elektródreakciók, elektródok Anód (ox) Katód (red) Elektrokémia Dia 3 /52
4 Galvánelem Elektrokémia Dia 4 /52
5 Terminológia Elektromotoros erő, E cella. A cella feszültsége (lásd a következő dián). Cella diagram. A galvánelem komponenseinek szimbolikus ábrázolása: Anód (anode) (oxidáció helye) bal oldalon. Katód (cathode) (redukció helye) jobb oldalon. Fázishatár jele:. Fél cellák közötti határ jele (rendszerint só-híd):. Elektrokémia Dia 5 /52
6 Terminológia Zn(s) Zn 2+ (aq) Cu 2+ (aq) Cu(s) E cella = V Elektrokémia Dia 6 /52
7 Zn(s) Zn 2+ (aq) Cu 2+ (aq) Cu(s) E cella = V Elektrokémia Dia 7 /52
8 Terminológia Galvánelem (cella). Spontán kémiai reakció, ami feszültség különbséget teremt. Elektrolizáló cella. Nem spontán kémiai változás külső feszültség hatására. Redoxi pár, M/M n+ Két összetartozó, különböző ionizációs állapotú anyag. elektronszám változás: n e -. Elektrokémia Dia 8 /52
9 13-2 Standard elektródpotenciálok Az elektródok közötti potenciálkülönbség nagyon pontosan mérhető. Az elektródok potenciálja nehezen mérhető. Önkényes nulla potenciált választanak. Standard Hidrogén Elektród (SHE) Elektrokémia Dia 9 /52
10 Standard Hidrogén Elektród (SHE) 2 H + (a = 1) + 2 e - H 2 (g, 1 bar) E = 0 V Pt H 2 (g, 1 bar) H + (aq, a = 1) Szimbolikus jelöléssel. Elektrokémia Dia 10 /52
11 Standard elektród potenciál, E E -t nemzetközi egyezmény definiálja. A redukcióra való hajlamot jelzi egy kiválasztott elektród esetében. Minden ion aktivitása: a = 1 (közelítőleg 1 M). Minden gáz nyomása 1 bar (közelítőleg 1 atm). Ha nem jelöljük a fémet, akkor inert nem reagáló fémet használunk (pl. Pt). Elektrokémia Dia 11 /52
12 Redox pár Cu 2+ (1M) + 2 e - Cu(s) E Cu 2+ /Cu =? Pt H 2 (g, 1 bar) H + (a = 1) Cu 2+ (1 M) Cu(s) E cella = 0,340 V anód katód Standard cella potenciál: a két standard elektród potenciáljának különbsége. E cella = E katód - E anód Elektrokémia Dia 12 /52
13 Standard Cella Potenciál Pt H 2 (g, 1 bar) H + (a = 1) Cu 2+ (1 M) Cu(s) E cella = 0,340 V E cella = E katód - E anód E cella = E Cu 2+ /Cu - E H + /H2 0,340 V = E Cu 2+ /Cu - 0 V E Cu 2+ /Cu = +0,340 V H 2 (g, 1 atm) + Cu 2+ (1 M) H + (1 M) + Cu(s) E cella = 0,340 V Elektrokémia Dia 13 /52
14 Standard redukciós potenciál mérése anód katód katód anód Elektrokémia Dia 14 /52
15 Standard Reduction Potentials Elektrokémia Dia 15 /52
16 13-3 E cella, ΔG és K eq A cellák elektromos munkát végeznek. Elektromos töltés mozog: w max hasznos = w elekromos = -nfe Faraday konstans, F = C mol -1 ΔG = -nfe ΔG = -nfe Elektrokémia Dia 16 /52
17 Spontán változás ΔG < 0 spontán változás. Ezért E cella > 0 mert ΔG cella = -nfe cella E cella > 0 A reakció a felírásnak megfelelő irányú. E cella = 0 A reakció egyensúlyban van. E cella < 0 A reakció a felírással ellenkező irányú. Elektrokémia Dia 17 /52
18 Fémek oldódása savakban M(s) M 2+ (aq) + 2 e - E = -E M 2+ /M 2 H + (aq) + 2 e - H 2 (g) E H + /H2 = 0 V 2 H + (aq) + M(s) H 2 (g) + M 2+ (aq) E cella = E H + /H 2 - E M 2+ /M = -E M 2+ /M Ha E M 2+ /M < 0, E cella > 0. Ezért ΔG < 0. A negatív standard elektródpotenciálú fémek hidrogén fejlődés közben oldódnak. Elektrokémia Dia 18 /52
19 Az E cella és K eq viszonya ΔG = -RT ln K eq = -nfe cella E cella = RT ln Keq nf Elektrokémia Dia 19 /52
20 Összefoglalás Egyensúlyi összetétel mérése Elektrokémia Dia 20 /52
21 log Q 13-4 E cella mint az aktivitás függvénye Zn(s) Zn 2+ (aq) Cu 2+ (aq) Cu(s) E -4 1, , , , , , , , ,985 A Nernst egyenlet: E cella = 1,103 V ΔG = ΔG +RT ln Q -nfe cella = -nfe cella +RT ln Q E cella = E cella - RT nf ln Q Váltsuk át log 10 re és számítsuk ki az állandókat: Q E cella = E cella - a a Zn Cu 2 2 Zn Cu 2 2 0,0592 V log Q n Elektrokémia Dia 21 /52
22 Példa 13-8 Határozzuk meg az alábbi galváncella feszültségét E cella : Pt Fe 2+ (0,10 M),Fe 3+ (0,20 M) Ag + (1,0 M) Ag(s) Elektrokémia Dia 22 /52
23 Példa ,0592 V E cella = E cella - n log Q 0,0592 V [Fe E cella = E cella - log 3+ ] n [Fe 2+ ] [Ag + ] E cella = 0,029 V 0,018 V = 0,011 V Pt Fe 2+ (0,10 M),Fe 3+ (0,20 M) Ag + (1,0 M) Ag(s) Fe 2+ (aq) + Ag + (aq) Fe 3+ (aq) + Ag (s) Elektrokémia Dia 23 /52
24 Koncentrációs elemek Két fél-cella azonos elektródokból, de különböző koncentrációkkal. Pt H 2 (1 bar) H + (x M) H + (1,0 M) H 2 (1 bar) Pt(s) 2 H + (1 M) + 2 e - H 2 (g, 1 atm) H 2 (g, 1 atm) 2 H + (x M) + 2 e - 2 H + (1 M) 2 H + (x M) Elektrokémia Dia 24 /52
25 Koncentrációs elemek E cella = E cella - 0,0592 V n log Q 2 H + (1 M) 2 H + (x M) E cella = E cella - 0,0592 V x log 2 n 1 2 0,0592 V x E cella = 0 - log E cella = - 0,0592 V log x ph mérő E cella = 0,0592 ph [V] H 2 fejlődés Stabil H 2 O ph Elektrokémia Dia 25 /52
26 Oldhatósági szorzat meghatározása Ag Ag + (telített AgI) Ag + (0,10 M) Ag(s) Ag + (0,100 M) + e - Ag(s) Ag(s) Ag + (telített) + e - Ag + (0,100 M) Ag + (telített M) Elektrokémia Dia 26 /52
27 Példa Oldhatósági szorzat meghatározása Galván elem (Voltaic Cell) segítségével. AgI: használjuk az előző dia adatait (az aktivitásokat közelítsük a koncentrációkkal). AgI(s) Ag + (aq) + I - (aq) Ag + (0,100 M) Ag + (telített M) 0,0592 V E cella = E cella - log Q = n 0,0592 V E cella - log n [Ag + ] telített AgI [Ag + ] 0,10 M Ag+ Elektrokémia Dia 27 /52
28 Példa ,0592 V E cella = E cella - n Legyen [Ag + ] telített AgI = x : log [Ag + ] telített AgI [Ag + ] 0,10 M AgI 0,0592 V x E cella = E cella - log n 0,100 0,0592 V 0,417 = 0 - (log x log 0,100) 1 0,417 log x = log 0,100 - = -1 7,044 = -8,044 0,0592 x = 10-8,044 = 9, K sp = x 2 = 8, Elektrokémia Dia 28 /52
29 13-5 Elemek: áramtermelés kémiai reakciókkal Elsődleges cella (elemek). A reakció megfordíthatatlan. Másodlagos cella (akkumulátor). A reakció megfordítható (töltés). Tüzelőanyag cellák. Az áthaladó anyag kémiai energiáját alakítja feszültséggé. Elektrokémia Dia 29 /52
30 A Leclanché (Száraz) Elem Szigetelés Grafit rúd (katód) MnO 2 és szén fekete paszta érintkezik a katóddal NH 4 Cl/ZnCl 2 paszta (elektrolit) Cink fém burkolat (anód) Elektrokémia Dia 30 /52
31 Száraz elem Oxidáció: Redukció: Sav-bázis reakció: Zn(s) Zn 2+ (aq) + 2 e - 2 MnO 2 (s) + H 2 O(l) + 2 e - Mn 2 O 3 (s) + 2 OH - NH OH - NH 3 (g) + H 2 O(l) Csapadékképződés: NH 3 + Zn 2+ (aq) + Cl - [Zn(NH 3 ) 2 ]Cl 2 (s) Elektrokémia Dia 31 /52
32 Alkáli szárazelem Redukció: 2 MnO 2 (s) + H 2 O(l) + 2 e - Mn 2 O 3 (s) + 2 OH - Oxidáció (2 lépés): Zn(s) Zn 2+ (aq) + 2 e - Zn 2+ (aq) + 2 OH - Zn (OH) 2 (s) Zn (s) + 2 OH - Zn (OH) 2 (s) + 2 e - Elektrokémia Dia 32 /52
33 Ólom akkumulátor A leggyakoribb másodlagos elem Elektrokémia Dia 33 /52
34 Ólom akkumulátor Redukció: PbO 2(s) + 3 H + (aq) + HSO - 4 (aq) + 2 e - PbSO 4(s) + 2 H 2 O (l) Oxidáció: Pb (s) + HSO - 4 (aq) PbSO 4(s) + H + (aq) + 2 e - PbO 2(s) + Pb (s) + 2 H + (aq) + 2 HSO 4 - (aq) 2 PbSO 4(s) + 2 H 2 O (l) E cella = E PbO 2/PbSO4 - E PbSO4/Pb = 1,74 V (-0,28 V) = 2,02 V Elektrokémia Dia 34 /52
35 Ezüst cink elem: gombelem Zn(s),ZnO(s) KOH(telitett) Ag 2 O(s),Ag(s) Zn(s) + Ag 2 O(s) ZnO(s) + 2 Ag(s) E cella = 1,8 V Elektrokémia Dia 35 /52
36 Nickel-Cadmium elem Cd(s) + 2 NiO(OH)(s) + 2 H 2 O(l) 2 Ni(OH) 2 (s) + Cd(OH) 2 (s) Elektrokémia Dia 36 /52
37 Tüzelőanyag cella O 2 (g) + 2 H 2 O(l) + 4 e - 4 OH - (aq) 2{H 2 (g) + 2 OH - (aq) 2 H 2 O(l) + 2 e - } 2H 2 (g) + O 2 (g) 2 H 2 O(l) E cella = E O 2/OH - - E H2O/H2 = 0,401 V (-0,828 V) = 1,229 V = ΔG / ΔH = 0,83 Elektrokémia Dia 37 /52
38 Levegő elemek 4 Al(s) + 3 O 2 (g) + 6 H 2 O(l) + 4 OH - 4 [Al(OH) 4 ](aq) Elektrokémia Dia 38 /52
39 13-6 Korrózió: káros spontán folyamat ph=14 (egységnyi aktivitású OH - ): O 2 (g) + 2 H 2 O(l) + 4 e - 4 OH - (aq) 2 Fe 2+ (aq) + 4 e - 2 Fe(s) E O 2/OH - = 0,401 V E Fe/Fe 2+ = -0,440 V 2 Fe(s) + O 2 (g) + 2 H 2 O(l) 2 Fe 2+ (aq) + 4 OH - (aq) ph (erősen savas közegben): E cella = 0,841 V O 2 (g) + 4 H + (aq) + 4 e - 4 H 2 O (aq) E O 2/OH - = 1,229 V Elektrokémia Dia 39 /52
40 Korrózió Elektrokémia Dia 40 /52
41 Korrózió védelem Elektrokémia Dia 41 /52
42 Korrózió védelem Elektrokémia Dia 42 /52
43 13-7 Elektrolízis: nem spontán reakciók előidézése Galván Cella: Zn(s) + Cu 2+ (aq) Zn 2+ (aq) + Cu(s) E = 1,103 V Elektrolizáló Cella: Zn 2+ (aq) + Cu(s) Zn(s) + Cu 2+ (aq) E = -1,103 V Elektrokémia Dia 43 /52
44 Komplikációk Túlfeszültség. Versengő reakciók. Nem standard állapotok. Az elektródok természete. Elektrokémia Dia 44 /52
45 Kvantitatív vonatkozások 1 mol e - = C Töltés (C) = áramerősség (C/s) idő (s) n e - = I t F Elektrokémia Dia 45 /52
46 13-8 Ipari elektrolízis Elektrokémia Dia 46 /52
47 Electroplating Elektrokémia Dia 47 /52
48 Klór alkáli eljárás Elektrokémia Dia 48 /52
49 Fokusz: Membrán potenciálok Elektrokémia Dia 49 /52
50 Nernst Potenciál, Δ Elektrokémia Dia 50 /52
Általános Kémia, 2008 tavasz
9 Elektrokémia 9-1 Elektródpotenciálok mérése 9-1 Elektródpotenciálok mérése 9-2 Standard elektródpotenciálok 9-3 E cell, ΔG, és K eq 9-4 E cell koncentráció függése 9-5 Elemek: áramtermelés kémiai reakciókkal
7 Elektrokémia. 7-1 Elektródpotenciálok mérése
7 Elektrokémia 7-1 Elektródpotenciálok mérése 7-2 Standard elektródpotenciálok 7-3 E cell, ΔG, és K eq 7-4 E cell koncentráció függése 7-5 Elemek: áramtermelés kémiai reakciókkal 7-6 Korrózió: nem kívánt
Áramforrások. Másodlagos cella: Használat előtt fel kell tölteni. Használat előtt van a rendszer egyensúlyban. Újratölthető.
Áramforrások Elsődleges cella: áramot termel kémiai anyagokból, melyek a cellába vannak bezárva. Ha a reakció elérte az egyensúlyt, kimerül. Nem tölthető. Másodlagos cella: Használat előtt fel kell tölteni.
Kémiai alapismeretek 7.-8. hét
Kémiai alapismeretek 7.-8. hét Horváth Attila Pécsi Tudományegyetem, Természettudományi Kar, Kémia Intézet, Szervetlen Kémiai Tanszék 2012. október 16.-október 19. 1/12 2012/2013 I. félév, Horváth Attila
ELEKTROKÉMIA. - elektrolitokban: ionok irányított mozgása. Elektrolízis: elektromos áram által előidézett kémiai átalakulás
Elekrtokémia 1 ELEKTROKÉMIA Elektromos áram: - fémekben: elektronok áramlása - elektrolitokban: ionok irányított mozgása Elektrolízis: elektromos áram által előidézett kémiai átalakulás Galvánelem: elektromos
Kémiai alapismeretek 11. hét
Kémiai alapismeretek 11. hét Horváth Attila Pécsi Tudományegyetem, Természettudományi Kar, Kémia Intézet, Szervetlen Kémiai Tanszék 2011. május 3. 1/8 2009/2010 II. félév, Horváth Attila c Elektród: Fémes
Redox reakciók. azok a reakciók, melyekben valamely atom oxidációs száma megváltozik.
Redox reakciók azok a reakciók, melyekben valamely atom oxidációs száma megváltozik. Az oxidációs szám megadja, hogy egy atomnak mennyi lenne a töltése, ha gondolatban a kötő elektronpárokat teljes mértékben
ELEKTROKÉMIA. - elektrolitokban: ionok irányított mozgása. Elektrolízis: elektromos áram által előidézett kémiai átalakulás
ELEKTROKÉMIA 1 ELEKTROKÉMIA Elektromos áram: - fémekben: elektronok áramlása - elektrolitokban: ionok irányított mozgása Elektrolízis: elektromos áram által előidézett kémiai átalakulás Galvánelem: elektromos
Áramforrások. Másodlagos cella: Használat előtt fel kell tölteni. Használat előtt van a rendszer egyensúlyban. Újratölthető.
Áramforrások Elsődleges cella: áramot termel kémiai anyagokból, melyek a cellába vannak bezárva. Ha a reakció elérte az egyensúlyt, kimerül. Nem tölthető. Másodlagos cella: Használat előtt fel kell tölteni.
Redox reakciók. azok a reakciók, melyekben valamely atom oxidációs száma megváltozik.
Redox reakciók azok a reakciók, melyekben valamely atom oxidációs száma megváltozik. Az oxidációs szám megadja, hogy egy atomnak mennyi lenne a töltése, ha gondolatban a kötő elektronpárokat teljes mértékben
Jellemző redoxi reakciók:
Kémia a elektronátmenettel járó reakciók, melynek során egyidejű elektron leadás és felvétel történik. Oxidáció - elektron leadás - oxidációs sám nő Redukció - elektron felvétel - oxidációs sám csökken
Redoxi reakciók Elektrokémiai alapok Műszaki kémia, Anyagtan I. 12-13. előadás
Redoxi reakciók Elektrokémiai alapok Műszaki kémia, Anyagtan I. 12-13. előadás Dolgosné dr. Kovács Anita egy.doc. PTE MIK Környezetmérnöki Tanszék Redoxi reakciók Például: 2Mg + O 2 = 2MgO Részfolyamatok:
Anyagvizsgálati módszerek Elektroanalitika. Anyagvizsgálati módszerek
Anyagvizsgálati módszerek Elektroanalitika Anyagvizsgálati módszerek Pannon Egyetem Mérnöki Kar Anyagvizsgálati módszerek Optikai módszerek 1/ 18 Potenciometria Potenciometria olyan analitikai eljárások
Elektronátadás és elektronátvétel
Általános és szervetlen kémia 11. hét Elızı héten elsajátítottuk, hogy a közös elektronpár létrehozásával járó reakciók csoportjában milyen jellemzıi vannak sav-bázis és komplexképzı reakcióknak Mai témakörök
A standardpotenciál meghatározása a cink példáján. A galváncella működése elektrolizáló cellaként Elektródreakciók standard- és formálpotenciálja
Általános és szervetlen kémia Laborelőkészítő előadás VII-VIII. (október 17.) Az elektródok típusai A standardpotenciál meghatározása a cink példáján Számítási példák galvánelemekre Koncentrációs elemek
Orvosi Fizika 13. Bari Ferenc egyetemi tanár SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet
Orvosi Fizika 13. Elektromosságtan és mágnességtan az életfolyamatokban 2. Bari Ferenc egyetemi tanár SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Szeged, 2011. december 5. Egyenáram Vezető
Elektrokémia Kiegészítés a praktikumhoz Elektrokémiai cella, Kapocsfeszültség, Elektródpotenciál, Elektromotoros erı.
Elektrokémia 2012. Kiegészítés a praktikumhoz Elektrokémiai cella, Kapocsfeszültség, Elektródpotenciál, Elektromotoros erı Láng Gyızı Kémiai Intézet, Fizikai Kémiai Tanszék Eötvös Loránd Tudományegyetem
Általános és szervetlen kémia Laborelıkészítı elıadás VI
Általános és szervetlen kémia Laborelıkészítı elıadás VI Redoxiegyenletek rendezésének általános lépései Példák fémoldódási egyenletek rendezésére Halogénvegyületek reakciói A gyakorlaton vizsgált redoxireakciók
Kémiai reakciók Protolitikus reakciók: egyensúlyi állandók
Kémiai reakciók Protolitikus reakciók: egyensúlyi állandók Disszociációs egyensúlyi állandók: sav illetve bázis HNO 3 NO 3 - + H + NH 4 OH NH 4 + + OH - K s = [NO 3- ][H + ] [HNO 3 ] K b = [NH 4+ ][OH
Eredeti Veszprémi T. (digitálisan Csonka G) jegyzet: X. fejezet
2011/2012 tvsi félév 7. ór Elektródpotenciálok, Stndrd elektródpotenciál foglm Egyserű fémelektródok, oxelektródok (pl. Sn 2+ /Sn 4+ ) ph-függő redoxelektródok (pl. Mn 2+ /MnO 4, Cr 3+ /Cr 2 O 7 2 ) Másodfjú
Kémiai energia - elektromos energia
Általános és szervetlen kémia 12. hét Elızı héten elsajátítottuk, hogy a redoxi reakciók lejátszódásának milyen feltételei vannak a galvánelemek hogyan mőködnek Mai témakörök az elektrolízis és alkalmazása
1. feladat Összesen: 8 pont. 2. feladat Összesen: 11 pont. 3. feladat Összesen: 7 pont. 4. feladat Összesen: 14 pont
1. feladat Összesen: 8 pont 150 gramm vízmentes nátrium-karbonátból 30 dm 3 standard nyomású, és 25 C hőmérsékletű szén-dioxid gáz fejlődött 1800 cm 3 sósav hatására. A) Írja fel a lejátszódó folyamat
9. évfolyam II. félév 2. dolgozat B csoport. a. Arrheneus szerint bázisok azok a vegyületek, amelyek... b. Arrheneus szerint a sók...
9. évfolyam II. félév 2. dolgozat B csoport 1. Egészítsd ki az alábbi mondatokat! a. Arrheneus szerint bázisok azok a vegyületek, amelyek... b. Arrheneus szerint a sók.... c. Az erős savak vízben........
Elektro-analitikai számítási feladatok 1. Potenciometria
Elektro-analitikai számítási feladatok 1. Potenciometria 1. Vas-só részlegesen oxidált oldatába Pt elektródot merítettünk. Ennek az elektródnak a potenciálját egy telített kalomel elektródhoz képest mérjük
EA. Elektrokémia alap mérés: elektromotoros erő és kapocsfeszültség mérése a Daniell cellában, az EMF koncentráció függése
EA. Elektrokémia alap mérés: elektromotoros erő és kapocsfeszültség mérése a Daniell cellában, az EMF koncentráció függése Előkészítő előadás 2018.02.19. Alapfogalmak Elektrokémiai cella: olyan rendszer,
A 27/2012. (VIII. 27.) NGM rendelet (29/2016. (VIII. 26.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.
A 27/2012. (VIII. 27.) NGM rendelet (29/2016. (VIII. 26.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés azonosítószáma és megnevezése 54 524 03 Vegyész technikus Tájékoztató
Dr. JUVANCZ ZOLTÁN Óbudai Egyetem Dr. FENYVESI ÉVA CycloLab Kft
Dr. JUVANCZ ZOLTÁN Óbudai Egyetem Dr. FENYVESI ÉVA CycloLab Kft Környezetvédelemben felhasznált elektroanalitikai módszerek csoportosítása Potenciometria (ph, Li +, F - ) Voltametria (oldott oxigén) Coulometria
Spontaneitás, entrópia
Spontaneitás, entrópia 6-1 Spontán folyamat 6-2 Entrópia 6-3 Az entrópia kiszámítása 6-4 Spontán folyamat: a termodinamika második főtétele 6-5 Standard szabadentalpia változás, ΔG 6-6 Szabadentalpia változás
AZ ELEKTROKÉMIA VÁLOGATOTT ALKALMAZÁSI TERÜLETEI
AZ ELEKTROKÉMIA VÁLOGATOTT ALKALMAZÁSI TERÜLETEI Elektrokémiai áramforrások Csoportosításuk: - primer elemek: nem tölthetk újra - szekunder elemek: újabb kisütési-feltöltési ciklus lehetséges - tüzelanyag
Kémia fogorvostan hallgatóknak Munkafüzet 10. hét
Kémia fogorvostan hallgatóknak Munkafüzet 10. hét Elektrokémiai kísérletek (144-153. oldal) Írták: Agócs Attila, Berente Zoltán, Gulyás Gergely, Jakus Péter, Lóránd Tamás, Nagy Veronika, Radó-Turcsi Erika,
7. előadás 12-09-16 1
7. előadás 12-09-16 1 12-10-05 Általános kémia 2011/2012. I. fé ph = - lg[h3o+] 2 12-10-13 Általános kémia 2011/2012. I. fé 3 1./ Só: gyenge sav/erős bázis 12-10-13 Általános kémia 2011/2012. I. fé 4 2./
Spontaneitás, entrópia
Spontaneitás, entrópia 11-1 Spontán és nem spontán folyamat 11-2 Entrópia 11-3 Az entrópia kiszámítása 11-4 Spontán folyamat: a termodinamika második főtétele 11-5 Standard szabadentalpia változás, ΔG
Országos Középiskolai Tanulmányi Verseny 2009/2010. Kémia I. kategória II. forduló A feladatok megoldása
Oktatási Hivatal I. FELADATSOR Országos Középiskolai Tanulmányi Verseny 2009/2010. Kémia I. kategória II. forduló A feladatok megoldása 1. B 6. E 11. A 16. E 2. A 7. D 12. A 17. C 3. B 8. A 13. A 18. C
HETEROGÉN EGYENSÚLYI ELEKTROKÉMIA: ELEKTRÓDOK ÉS GALVÁNELEMEK
HETEROGÉN EGYENSÚLYI ELEKTROKÉMIA: ELEKTRÓDOK ÉS GALVÁNELEMEK I. Az elektrokémia áttekintése (ismét ). II. Galvánelemek/galváncellák és elektródok termodinamikája. A. Galvánelem vs. elektrolizáló cella
K. Az elektródpotenciál mérése L. Az elektródpotenciálok skálája M. Az elektródok fajtái N. Összegzés
HETEROGÉN EGYENSÚLYI ELEKTROKÉMIA: ELEKTRÓDOK ÉS GALVÁNELEMEK I. Az elektrokémia áttekintése (ismét ). II. Galvánelemek/galváncellák és elektródok termodinamikája. A. Galvánelem vs. elektrolizáló cella
HOMOGÉN EGYENSÚLYI ELEKTROKÉMIA: ELEKTROLITOK TERMODINAMIKÁJA
HOMOGÉN EGYENSÚLYI ELEKTROKÉMIA: ELEKTROLITOK TERMODINAMIKÁJA I. Az elektrokémia áttekintése. II. Elektrolitok termodinamikája. A. Elektrolitok jellemzése B. Ionok termodinamikai képződési függvényei C.
SZERVETLEN KÉMIAI REAKCIÓEGYENLETEK
SZERVETLEN KÉMIAI REAKCIÓEGYENLETEK Budapesti Reáltanoda Fontos! Sok reakcióegyenlet több témakörhöz is hozzátartozik. Zárójel jelzi a reakciót, ami más témakörnél található meg. REAKCIÓK FÉMEKKEL fém
Általános kémia képletgyűjtemény. Atomszerkezet Tömegszám (A) A = Z + N Rendszám (Z) Neutronok száma (N) Mólok száma (n)
Általános kémia képletgyűjtemény (Vizsgára megkövetelt egyenletek a szimbólumok értelmezésével, illetve az egyenletek megfelelő alkalmazása is követelmény) Atomszerkezet Tömegszám (A) A = Z + N Rendszám
Általános kémia gyakorlat vegyészmérnököknek. 2015/2016. őszi félév
Általános kémia gyakorlat vegyészmérnököknek 2015/2016. őszi félév Zárthelyik A zárthelyik időpontja az kari zh-időpont: 17 00 19 00. A zárthelyik időtartama 90 perc. Mindkét zárthelyin legalább 50%-ot
Általános kémia gyakorlat biomérnököknek
Általános kémia gyakorlat biomérnököknek Zárthelyi követelmények A zárthelyik időtartama 90 perc. Mindkét zárthelyin legalább 50%-ot kell teljesíteni az elégséges jegyért. Akinek nincs meg az 50%-os eredménye,
O k t a t á si Hivatal
O k t a t á si Hivatal 0/0. tanévi Országos Középiskolai Tanulmányi Verseny Kémia II. kategória. forduló I. FELADATSOR Megoldások. A helyes válasz(ok) betűjele: B, D, E. A legnagyobb elektromotoros erejű
Redoxireakciók. Egy anyag csak akkor oxidálódhat, ha a leadott elektronokat egyidejűleg egy másik anyag felveszi
Redoxireakciók Redoxireakció: elektronátadási folyamat Oxidáció: oxigénnel való reakció a szén elégetése, rozsdásodás (a fémek oxidációja) alkohol -> aldehid -> karbonsav elektronleadás (oxidációs szám
Elektrokémiai gyakorlatok
Elektrokémiai gyakorlatok Az elektromos áram hatására bekövetkezı kémiai változásokkal, valamint a kémiai energia elektromos energiává alakításának folyamataival, törvényszerőségeivel foglalkozik. A változást
Elektrokémia a kémiai rendszerek és az elektromos áram kölcsönhatása
6. előadás Elektrokémia a kémiai rendszerek és az elektromos áram kölcsönhatása A kémiai rendszerek egy része vezeti az elektromosságot, a kémiai reakciók jelentős hányadára hatással vannak az elektromos
Közlekedésmérnöki Kar Műszaki kémia labor. 3. Korrózió. FÉMEK KORRÓZIÓJA Dr.Bajnóczy Gábor
Közlekedésmérnöki Kar Műszaki kémia labor 3. Korrózió FÉMEK KORRÓZIÓJA Dr.Bajnóczy Gábor A természetben a legtöbb fém valamely vegyületeként fordul elő. Ezek oxidok, szulfidok, karbonátok vagy más komplex
7. Kémia egyenletek rendezése, sztöchiometria
7. Kémia egyenletek rendezése, sztöchiometria A kémiai egyenletírás szabályai (ajánlott irodalom: Villányi Attila: Ötösöm lesz kémiából, Példatár) 1.tömegmegmaradás, elemek átalakíthatatlansága az egyenlet
Összesen: 20 pont. 1,120 mol gázelegy anyagmennyisége: 0,560 mol H 2 és 0,560 mol Cl 2 tömege: 1,120 g 39,76 g (2)
I. FELADATSOR (KÖZÖS) 1. B 6. C 11. D 16. A 2. B 7. E 12. C 17. E 3. A 8. A 13. D 18. C 4. E 9. A 14. B 19. B 5. B (E is) 10. C 15. C 20. D 20 pont II. FELADATSOR 1. feladat (közös) 1,120 mol gázelegy
KORRÓZIÓS ÁRAM MÉRÉSE FÉM KORRÓZIÓSEBESSÉGÉNEK MEGHATÁROZÁSA KORRÓZIÓS ÁRAM MÉRÉSE ALAPJÁN
7. Laboratóriumi gyakorlat KORRÓZIÓS ÁRAM MÉRÉS FÉM KORRÓZIÓSBSSÉGÉNK MGHATÁROZÁSA KORRÓZIÓS ÁRAM MÉRÉS ALAPJÁN Ha egy fémet oldatba merítünk a fém és az oldat fázishatárán olyan folyamatok indulnak meg,
Elektrokémia. Elektrokémia. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011
Elektrokémia Michael Faraday (1791-1867 ) Walther ermann Nernst (1864-1941) A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 1 Az elektromos áram Elektromos áram: Töltéssel rendelkező
Voltammetriás görbe: a munkaleketród potenciáljának (E) függvényében ábrázoljuk a körben folyó áram erősségét
AMPEROMETRIA (VOLTAMMETRIA) a mérendő oldatba merülő (munka-) elektródra feszültséget kapcsolva, a rendszerben folyó áramot mérjük és ebből nyerünk analitikai információt Voltammetriás görbe: a munkaleketród
Minőségi kémiai analízis
Minőségi kémiai analízis Szalai István ELTE Kémiai Intézet 2016 Szalai István (ELTE Kémiai Intézet) Minőségi kémiai analízis 2016 1 / 32 Lewis-Pearson elmélet Bázisok Kemény Lágy Határestek H 2 O, OH,
2012/2013 tavaszi félév 10. óra
2012/2013 tvszi félév 10. ór Glvánelemek, Elektromotoros erő számítás Cellfolymtok felírás, rendezése, ruttó folymt foglm Koncentrációs elemek Elektrokémii egyensúlyok Redoxrekciók irányánk megállpítás
Általános kémia gyakorlat biomérnököknek
Általános kémia gyakorlat biomérnököknek Zárthelyi követelmények A zárthelyik időtartama 90 perc. Mindkét zárthelyin legalább 50%-ot kell teljesíteni az elégséges jegyért. Akinek nincs meg az 50%-os eredménye,
2011/2012 tavaszi félév 3. óra
2011/2012 tavaszi félév 3. óra Redoxegyenletek rendezése (diszproporció, szinproporció, stb.); Sztöchiometria Vegyületek sztöchiometriai együtthatóinak meghatározása elemösszetétel alapján Adott rendezendő
Az elektrokémia áttekintése
1 Az elektrokémia áttekintése 2 Elektródfolyamatok kinetikája (heterogén dinamikus elektrokémia) Homogén Heterogén Egyensúlyi elektrokémia (árammentes rendszerek) Elektrolitoldatok termodinamikája: elektrolitos
VIII. ELEKTROMOS ÁRAM FOLYADÉKOKBAN ÉS GÁZOKBAN
VIII. ELEKTROMOS ÁRAM FOLYADÉKOKBAN ÉS GÁZOKBAN Bevezetés: Folyadékok - elsősorban savak, sók, bázsok vzes oldata - áramvezetésének gen fontos gyakorlat alkalmazása vannak. Leggyakrabban az elektronkus
Az elektrokémia áttekintése
Az elektrokémia áttekintése 1 Homogén Heterogén Egyensúlyi elektrokémia (árammentes rendszerek) Elektrolitoldatok termodinamikája: elektrolitos disszociáció ionok termodinamikája és aktivitása Galvánelemek/galváncellák
Tartalmi követelmények kémia tantárgyból az érettségin K Ö Z É P S Z I N T
1. Általános kémia Atomok és a belőlük származtatható ionok Molekulák és összetett ionok Halmazok A kémiai reakciók A kémiai reakciók jelölése Termokémia Reakciókinetika Kémiai egyensúly Reakciótípusok
Sók oldékonysági szorzatának és oldáshőjének meghatározása vezetés méréssel
Sók oldékonysági szorzatának és oldáshőjének meghatározása vezetés méréssel 1. Bevezetés Az elektromos ellenállás anyagi tulajdonság, melyen -definíció szerint- az anyagon áthaladó 1 amper intenzitású
Voltammetriás görbe: a munkaleketród potenciáljának (E) függvényében ábrázoljuk a körben folyó áram erősségét
AMPEROMETRIA (VOLTAMMETRIA) a mérendő oldatba merülő (munka-) elektródra feszültséget kapcsolva, a rendszerben folyó áramot mérjük és ebből nyerünk analitikai információt Voltammetriás görbe: a munkaleketród
Elektrokémia 03. Cellareakció potenciálja, elektródreakció potenciálja, Nernst-egyenlet. Láng Győző
lektrokéma 03. Cellareakcó potencálja, elektródreakcó potencálja, Nernst-egyenlet Láng Győző Kéma Intézet, Fzka Kéma Tanszék ötvös Loránd Tudományegyetem Budapest Cellareakcó Közvetlenül nem mérhető (
KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 1997
1. oldal KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 1997 JAVÍTÁSI ÚTMUTATÓ I. A HIDROGÉN, A HIDRIDEK 1s 1, EN=2,1; izotópok:,, deutérium,, trícium. Kétatomos molekula, H 2, apoláris. Szobahőmérsékleten
Elektromos áram. Vezetési jelenségek
Elektromos áram. Vezetési jelenségek Emlékeztető Elektromos áram: töltéshordozók egyirányú áramlása Áramkör részei: áramforrás, vezető, fogyasztó Áramköri jelek Emlékeztető Elektromos áram hatásai: Kémiai
Redoxireakciók. Egy anyag csak akkor oxidálódhat, ha a leadott elektronokat egyidejűleg egy másik anyag felveszi
Redoxireakciók Redoxireakció: elektronátadási folyamat Oxidáció: oxigénnel való reakció a szén elégetése, rozsdásodás (a fémek oxidációja) alkohol -> aldehid -> karbonsav elektronleadás (oxidációs szám
AZ EGYENÁRAM HATÁSAI
AZ EGYENÁRAM HATÁSAI 1) HŐHATÁS Az elektromos áram hatására a zseblámpa világít, mert izzószála felmelegszik, izzásba jön. Oka: az áramló elektronok kölcsönhatásba kerülnek a vezető helyhez kötött részecskéivel,
6 Ionszelektív elektródok. elektródokat kiterjedten alkalmazzák a klinikai gyakorlatban: az automata analizátorokban
6. Szelektivitási együttható meghatározása 6.1. Bevezetés Az ionszelektív elektródok olyan potenciometriás érzékelők, melyek valamely ion aktivitásának többé-kevésbé szelektív meghatározását teszik lehetővé.
ismerd meg! A galvánelemekrõl II. rész
annyi pusztulás után. A mérnöki munkában a legfõbb szempont a megoldás, ez az elsõ lépés, a mellékszempontok feledésbe mennek. A második világháború alatt Magyarországon nehéz problémák adódtak a telefonberendezések
Elektrokémia B01. Mi a ph? Láng Győző. Kémiai Intézet, Fizikai Kémiai Tanszék Eötvös Loránd Tudományegyetem Budapest
Elektrokémia B01 Mi a ph? Láng Győző Kémiai Intézet, Fizikai Kémiai Tanszék Eötvös Loránd Tudományegyetem Budapest Mi a ph? 1:48:51 Természetesen mindenki tudja, hogy mi az a ph, hiszen tanulta az iskolában...
FÉMEK KORRÓZIÓJA Dr.Bajnóczy Gábor
FÉMEK KORRÓZIÓJA Dr.Bajnóczy Gábor A természetben a legtöbb fém valamely vegyületeként fordul elő. Ezek oxidok, szulfidok, karbonátok vagy más komplex vegyületek. Az, hogy a fémek legtöbbje csak vegyületek
Az egyensúly. Általános Kémia: Az egyensúly Slide 1 of 27
Az egyensúly 6'-1 6'-2 6'-3 6'-4 6'-5 Dinamikus egyensúly Az egyensúlyi állandó Az egyensúlyi állandókkal kapcsolatos összefüggések Az egyensúlyi állandó számértékének jelentősége A reakció hányados, Q:
Ni 2+ Reakciósebesség mol. A mérés sorszáma
1. feladat Összesen 10 pont Egy kén-dioxidot és kén-trioxidot tartalmazó gázelegyben a kén és oxigén tömegaránya 1,0:1,4. A) Számítsa ki a gázelegy térfogatszázalékos összetételét! B) Számítsa ki 1,0 mol
Az egyensúly. Általános Kémia: Az egyensúly Slide 1 of 27
Az egyensúly 10-1 Dinamikus egyensúly 10-2 Az egyensúlyi állandó 10-3 Az egyensúlyi állandókkal kapcsolatos összefüggések 10-4 Az egyensúlyi állandó számértékének jelentősége 10-5 A reakció hányados, Q:
Kémia emelt szintű érettségi írásbeli vizsga ELEMZÉS (BARANYA) ÉS AJÁNLÁS KÉSZÍTETTE: NAGY MÁRIA
Kémia emelt szintű érettségi írásbeli vizsga ELEMZÉS (BARANYA) ÉS AJÁNLÁS KÉSZÍTETTE: NAGY MÁRIA Idei gyorsjelentés http://eduline.hu/erettsegi_felveteli/2 015/7/16/Az_elmult_7_ev_legrosszab b_eredmenye_szulet_azozlb
Javítókulcs (Kémia emelt szintű feladatsor)
Javítókulcs (Kémia emelt szintű feladatsor) I. feladat 1. A katalizátorok a kémiai reakciót gyorsítják azáltal, hogy az aktiválási energiát csökkentik, a reakció végén változatlanul megmaradnak. 2. Biológiai
Leclanché-típusú elemek (cink + mangándioxid (barnakő))
Példák Leclanché-típusú elemek (cink + mangándioxid (barnakő)) a) Klasszikus szén-cink elem Celladiagram: Primer elemek ( ) Zn(s) ZnCl 2 (aq), NH 4 Cl(aq) MnO 2 (s) C(s) (+) Cellareakció: c(zncl 2 ), c(nh
Megújuló energiaforrások
Megújuló energiaforrások Energiatárolási módok Marcsa Dániel Széchenyi István Egyetem Automatizálási Tanszék 2015 tavaszi szemeszter Energiatárolók 1) Akkumulátorok: ólom-savas 2) Akkumulátorok: lítium-ion
Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei
Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Gazdálkodási modul Gazdaságtudományi ismeretek I. Közgazdasá Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI
ELEKTROKÉMIA GALVÁNCELLÁK ELEKTRÓDOK
LKTOKÉMIA GALVÁNCLLÁK LKTÓDOK GALVÁNCLLÁK - olyan rendszere, amelyeben éma folyamat (vagy oncentrácó egyenlítdés) eletromos áramot termelhet vagy áramforrásból rajtu áramot átbocsátva éma folyamat játszódhat
Kiss László Láng Győző ELEKTROKÉMIA
Kiss László Láng Győző ELEKTROKÉMIA A könyv megjelenését támogatta a Magyar Tudományos Akadémia Kémiai Tudományok Osztálya Dr. Kiss László, Dr. Láng Gőző, 2011 ISBN 978 963 331 148 6 A könyv és adathordozó
Szalai István. ELTE Kémiai Intézet
ELTE Kémiai Intézet 2016 Kationok (I-III.) I. ph 2-es kémhatású oldatukból színes szulfidjuk kénhidrogénnel leválasztható, és a csapadék bázikus reagensekben nem oldható. II. ph 2-es kémhatású oldatukból
Elektrokémia kommunikációs dosszié ELEKTROKÉMIA. ANYAGMÉRNÖK NAPPALI MSc KÉPZÉS, SZABADON VÁLASZTHATÓ TÁRGY TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ
ELEKTROKÉMIA ANYAGMÉRNÖK NAPPALI MSc KÉPZÉS, SZABADON VÁLASZTHATÓ TÁRGY TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ MISKOLCI EGYETEM MŰSZAKI ANYAGTUDOMÁNYI KAR KÉMIAI INTÉZET Miskolc, 2014. Tartalom jegyzék 1. Tantárgyleírás,
Gyakorló feladatok. Egyenletrendezés az oxidációs számok segítségével
Gyakorló feladatok Egyenletrendezés az oxidációs számok segítségével 1. Határozzuk meg az alábbi anyagokban a nitrogén oxidációs számát! a/ NH 3 b/ NO c/ N 2 d/ NO 2 e/ NH 4 f/ N 2O 3 g/ N 2O 4 h/ HNO
Dr. JUVANCZ ZOLTÁN Óbudai Egyetem Dr. FENYVESI ÉVA CycloLab Kft
Dr. JUVANCZ ZOLTÁN Óbudai Egyetem Dr. FENYVESI ÉVA CycloLab Kft Klasszikus analitikai módszerek Csapadékképzéses reakciók: Gravimetria (SZOE, víztartalom), csapadékos titrálások (szulfát, klorid) Sav-bázis
1. feladat Összesen: 10 pont. 2. feladat Összesen: 14 pont
1. feladat Összesen: 10 pont Az AsH 3 hevítés hatására arzénre és hidrogénre bomlik. Hány dm 3 18 ºC hőmérsékletű és 1,01 10 5 Pa nyomású AsH 3 -ből nyerhetünk 10 dm 3 40 ºC hőmérsékletű és 2,02 10 5 Pa
Szívelektrofiziológiai alapjelenségek. Dr. Tóth András 2018
Szívelektrofiziológiai alapjelenségek 1. Dr. Tóth András 2018 Témák Membrántranszport folyamatok Donnan egyensúly Nyugalmi potenciál 1 Transzmembrán transzport A membrántranszport-folyamatok típusai J:
Oldódás, mint egyensúly
Oldódás, mint egyensúly Szilárd (A) anyag oldódása: K = [A] oldott [A] szilárd állandó K [A] szilárd = [A] oldott S = telített oldat conc. Folyadék oldódása: analóg módon Gázok oldódása: [gáz] oldott =
Kémiai egyensúlyok [CH 3 COOC 2 H 5 ].[H 2 O] [CH3 COOH].[C 2 H 5 OH] K = k1/ k2 = K: egyensúlyi állandó. Tömeghatás törvénye
Kémiai egyensúlyok CH 3 COOH + C 2 H 5 OH CH 3 COOC 2 H 5 + H 2 O v 1 = k 1 [CH 3 COOH].[C 2 H 5 OH] v 2 = k 2 [CH 3 COOC 2 H 5 ]. [H 2 O] Egyensúlyban: v 1 = v 2 azaz k 1 [CH 3 COOH].[C 2 H 5 OH] = k
Elektrokémia. A nemesfém elemek és egymással képzett vegyületeik
Elektrokémia Redoxireakciók: Minden olyan reakciót, amelyben elektron leadás és elektronfelvétel történik, redoxi reakciónak nevezünk. Az elektronleadás és -felvétel egyidejűleg játszódik le. Oxidálószer
ELEKTROANALITIKA (ELEKTROKÉMIAI ANALÍZIS)
ELEKTROANALITIKA (ELEKTROKÉMIAI ANALÍZIS) Olyan analitikai eljárások gyűjtőneve, amelyek során elektromos áramot alkalmaznak (Römpp) Az analitikai információ megszerzéséhez vizsgáljuk vagy az oldatok fázishatárain
4. változat. 2. Jelöld meg azt a részecskét, amely megőrzi az anyag összes kémiai tulajdonságait! A molekula; Б atom; В gyök; Г ion.
4. változat z 1-től 16-ig terjedő feladatokban négy válaszlehetőség van, amelyek közül csak egy helyes. Válaszd ki a helyes választ és jelöld be a válaszlapon! 1. Melyik sor fejezi be helyesen az állítást:
Kinetika. Általános Kémia, kinetika Dia: 1 /53
Kinetika 15-1 A reakciók sebessége 15-2 Reakciósebesség mérése 15-3 A koncentráció hatása: a sebességtörvény 15-4 Nulladrendű reakció 15-5 Elsőrendű reakció 15-6 Másodrendű reakció 15-7 A reakció kinetika
Periódusosság. Általános Kémia, Periódikus tulajdonságok. Slide 1 of 35
Periódusosság 3-1 Az elemek csoportosítása: a periódusos táblázat 3-2 Fémek, nemfémek és ionjaik 3-3 Az atomok és ionok mérete 3-4 Ionizációs energia 3-5 Elektron affinitás 3-6 Mágneses 3-7 Az elemek periodikus
Szent-Györgyi Albert kémiavetélkedő
9. osztály Kedves Versenyző! A jobb felső sarokban található mezőbe a verseny lebonyolításáért felelős személy írja be a kódot a feladatlap minden oldalára a verseny végén. A feladatokat lehetőleg a feladatlapon
Elektrokémia laboratóriumi gyakorlat
Elektrokémia laboratóriumi gyakorlat Elméleti háttér A Nernst-egyenlet A kémiai reakció által végzett maximális hasznos munka egyenlő a szabadentalpia változásával. Állandó nyomáson és hőmérsékleten a
Egyenáram. Áramkörök jellemzése Fogyasztók és áramforrások kapcsolása Az áramvezetés típusai
Egyenáram Áramkörök jellemzése Fogyasztók és áramforrások kapcsolása Az áramvezetés típusai Elektromos áram Az elektromos töltéshordozók meghatározott irányú rendezett mozgását elektromos áramnak nevezzük.
T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 8. osztály. A versenyző jeligéje:... Megye:...
T I T - M T T Hevesy György Kémiaverseny A megyei forduló feladatlapja 8. osztály A versenyző jeligéje:... Megye:... Elért pontszám: 1. feladat:... pont 2. feladat:... pont 3. feladat:... pont 4. feladat:...
5. Laboratóriumi gyakorlat
5. Laboratóriumi gyakorlat HETEROGÉN KÉMIAI REAKCIÓ SEBESSÉGÉNEK VIZSGÁLATA A CO 2 -nak vízben történő oldódása és az azt követő egyensúlyra vezető kémiai reakció az alábbi reakcióegyenlettel írható le:
I. Az elektrokémia áttekintése. II. Elektrolitok termodinamikája. A. Elektrolitok jellemzése. A. Elektrolitok jellemzése
HOMOGÉN EGYENSÚLYI ELEKTROKÉMIA: ELEKTROLITOK TERMODINAMIKÁJA I. Az elektrokémia áttekintése. B. Ionok termodinamikai képződési függvényei C. Ionok aktivitása oldatokban, Debye Hückelelmélet. 2 I. Az elektrokémia
Indikátorok. brómtimolkék
Indikátorok brómtimolkék A vöröskáposzta kivonat, mint indikátor Antociánok 12 40 mg/100 g ph Bodzában, ribizliben is! A szupersavak Szupersav: a kénsavnál erősebb sav Hammett savassági függvény: a savak
1. mintatétel. A) Elektrolízis vizes oldatokban
1. mintatétel A) Elektrolízis vizes oldatokban Értelmezze az egyes elektródokon bekövetkező kémiai változásokat az alábbi oldatok, grafit elektródok között végzett elektrolízise esetén: réz(ii)-szulfát-