Kvantum-tömörítés II.
|
|
- Tibor Takács
- 8 évvel ezelőtt
- Látták:
Átírás
1 LOGO Kvantum-tömörítés II. Gyöngyös László BME Vllamosmérnök és Informatka Kar
2 A kvantumcsatorna kapactása
3 Kommunkácó kvantumbtekkel Klasszkus btek előnye Könnyű kezelhetőség Stabl kommunkácó Dszkrét értékek A klasszkus btek és a kvantumbtek jelentősen különböznek, azonban bzonyos feltételek teljesülése esetén felcserélhetőek Alapvető fontosságú kérdések: Kvantumrendszereket hogyan alkalmazhatjuk klasszkus btek helyett? Hogyan változk a kvantumbtekben tárolható nformácó mértéke a klasszkus btekhez képest?
4 Kvantumállapotok alkalmazása r = { j ; p } Forrás: tszta kvantumállapotok Tömörítés: Neumann-entrópa (kvantumbt/szmbólum)
5 Kvantumállapotok alkalmazása r = { j ; p } 2 Forrás: tszta kvantumállapotok Tömörítés: Neumann-entrópa (kvantumbt/szmbólum)
6 Az Forrás : Átvtel görbe ; p, ahol : tszta kvantumállapot, p állapot : az állapot előfordulás valószínűsége. tömörítése a felhasznált klasszkus btek függvényében:,, n : klasszkus nformácó = ortogonáls kvantumállapotok Kvantumcsatorna átvtel kapactása: S Neumann-entrópa Kvantum klasszkus átvtel görbe: r = { j ; p } Optmalzácós görbe: * * R=0 bt/jel esetén: Q 0 S R H( p) bt/jel esetén: Q H( p) 0. * Q R R R * Q S mn.
7 Optmáls átvtel görbe megkonstruálása
8 Kvantumcsatorna leírása A I I n ; p állapotok Neumann-entrópája: S S p, S ahol Tr log. :=,, p : p p. n, p I I, ahol
9 Kvantumcsatorna leírása : tszta kvantumállapotok: F F, : és kevert állapotok azonossága Tr,. 2 Ha tszta állapot, akkor: F, Tr. Tovább jelölések: B n d : d-dmenzós, n állapotú Hlbert-tér n : a belül kevert állapotok halmaza. n d d n
10 Vak kódolás A vak tömörítés tulajdonsága n hosszúságú blokkra, R kvantumbt/jel és - mnőségre: Kódolás (CPTP-leképezés) : E : B Dekódolás Az nr n (CPTP-leképezés) : D : B B. átlagos mnőség: n n n d d nr d Az forrás tömörítése során alkalmazott R kvantumbt/jel kmenetelű tömörítés eljárást vak tömörítésnek nevezzük, ha mnden, 0 és megfelelően nagy n esetén létezk olyan séma, amellyel az I p D E R+ kvantumbt/jel tömörítés legalább - mnőséggel végrehajtható. B d. I I n n I I
11 Látható kódolás A " látható tömörítés" tulajdonsága n hosszúságú blokkra, R kvantumbt/jel és - mnőségre: Kódolás ( tetszőleges): E : B n n d B nr d nr n Dekódolás (CPTP-leképezés) : D n : Bd Bd. Kvantum forráskódolás : Az tszta kvantumállapotokból álló forrás akkor és csak akkor tömöríthető bármlyen tömörítés eljárással kvantumbt/jel arányban, ha S. Vak és látható kódolás: Vak-kódolás: gyengébb, klasszkus értékek nem alkalmazhatóak, bemeneten kvantumállapotok Látható kódolás : klasszkus tárolás megvalósítható
12 Kvantumállapotok tárolása kvantumbtekben r = { j ; p } n 2 Forrás: tszta kvantumállapotok Tömörítés: Neumann-entrópa (kvantumbt/szmbólum)
13 Kvantumállapotok tárolása kvantumbtekben r = { j ; p } I 2 n p I I p p 2 2 n p n r Ä n = { j ; } I pi n Az állapotot n mellett tárolhatjuk jelenként R kv antumbtben, amennyben R S( ).
14 Kódolás a kvantumkrptográfában 4 3 Publkus csatorna 2 Kvantumcsatorna ;/ 4
15 Kódolás a kvantumkrptográfában sn 0 cos 2 cos 0 sn 0 Adott I= 2,,n vagy k 2 k b emenetre : S p, ;, ; ;/ 4 és H
16 Kódolás a kvantumkrptográfában 4 3 ;/ 4 2 H P Z Z 2 ( cos ) 0.6 kvantumbt/ jel P bt/jel Z S S H 2 ( cos ).
17 Kódolás a kvantumkrptográfában 4 3 ;/ 4 2 H P Z Z 2 ( cos ) 0.6 kvantumbt/ jel P bt/jel Z H 2 ( cos ) Q*.
18 Neumann-entrópák kapcsolata AB Bob dő U S( A: B) : S( A) S( B) S( AB) S( A': B) S( A: B) S( A': B)
19 Klasszkus btek felhasználása I 2 n Publkus csatorna: nxr bt Kvantumcsatorna: nxq kvantumbt
20 A kommunkácó általánosított modellje I 2 n Publkus csatorna: nxr bt Kvantumcsatorna: nxq kvantumbt
21 Ortogonáls állapotok: Látható tömörítés,,,, I I 2 n 2 n I 2 Publkus csatorna: nxr bt n Kvantumcsatorna: nxq kvantumbt I
22 Átvtel függvény S( ) ; p * Q 0 H p ) S( ) R (
23 Nem-ortogonáls állapotok vzsgálata 0; p /2, 2 Kvantum 0 ; p /2 A Schumacher-korlát értelmében: Q * RR S max Klasszkus max : 0, S. : H 0.5,0
24 Három kvantumbt 2 0 ; p /3, 2, ; 0; p /3, 3 0 ; p /3. 2 Partconálás :, Kvantum max max : 0, S Klasszkus : H /3,/3,/3,0 Schumacher-kor lát : R H / 3.
25 Alkalmazás: Kvantumkrptográfa, H ( cos : 2 tt a Q* R és a felső korlát azonos. egyetlen klasszkus btet használunk. ) Ekkor / 8 H 2 ( cos ) Q*.
26 Hbrd kódolás E( I) p( j I) j j j B I, j C Regszterek: Állapot címke Kvantum Klasszkus ABC A B I I, j I, j p I I p( j I) j j C,2,3,4 j P Z HI ( : j) SA ( : C) nr
27 Hbrd kódolás Regszterek: Állapot címke Kvantum Klasszkus ABC A B I I, j I, j p I I p( j I) j j C Teljes rendszer: j I, j; qi ( j) j q ( ) S( A: B C) nq j j S( A: B C) S( AC) S( BC) S( ABC) S( C)
28 Az alsó korlát már adódk C j I B j I A I ABC j j I j p I I p,, ) ( A n n A A A I 2 2 n k k A k CA A B A S C B A S 2 ) : ( ) : ( Az ndex regszter felbontásával: Láncszabály: ( : ) nf ( : ) :"kényszer állapotok" S A B C n S A B C
29 Tökéletes állapotkódolás ; p B E() p( j ) j j Másolat Nncs tömörítés j C M (, R) nf S( A: B C): S( A: C) p( ) R Klasszkus csatornára optmalzálva * Állítás : Q ( R) M (, R)
30 Optmáls átvtel kódolás megkonstruálása
31 Optmáls átvtel kódolás A Legyen p p( j ) j j. Ekkor az állapot maxmáls tömöríthetősége: SA ( : C) bt/jel + SA ( : B C) kvantumbt/jel. B j C Tétel : Q * ( R) M(, R)
32 Hogyan tömöríthetünk? A két állapot legyen:, 2 p 2 I p( j ) : 2 p p -p -p 2 J
33 Hogyan tömöríthetünk? A p p( j ) A B-regszterben tszta kvantumállapotok találhatóak B j j j C SA ( : B C) q( ) qs( ) j j j j j j A Neumann entrópák átlaga, a klasszkus C regszter tartalmára alapozottan Adott I= 2 n. Alce előállítja J=j j 2 j n állapotot, a p(j I)=p(j )p(j 2 2 ) p(j n n ) összefüggés fgyelmbevételével. A felosztásban a,2,,n blokkokban ugyanazon a j értékek lesznek. Alce a különálló blokkokat a Schumacher kódolással tömörít. Probléma: Alce hogyan közölje a J állapotokat Bobbal?
34 Shannon-tétel felhasználása I Zajos csatorna E r (I) Zajmentes csatorna p(j ) nh( : j) bt J m megosztott véletlen bt D r (E r (I)) D r ( E r ( I)); J ( I) m 2
35 Véletlenszerűség mplementálása A dekódolás mnősége a megosztott btek függvényében: I p I I m 2 I, r I r Így létezne kell olyan r 0 nak, amelyre: I p I I I, r I Továbbmenve, O(log n) megosztott véletlen bttel mnden tpkus l bemenet sztrng esetén megvalósítható a magas mnőségű kódolás és dekódolás folyamat! 0
36 Ismétlés 0; p /2, 2 Kvantum 0 ; p /2 2 2 p A Schumacher-korlát értelmében: RR S * Q. max Klasszkus max 2 : 0, S : H 0.5,0
37 Az optmáls protokoll Adott R, találjunk olyan p értéket, amellyel megvalósítható a bsc modell 2 p p -p -p Bnárs Szmmetrkus Csatorna - R kapactással. 2 Alce az I sorozat hányos változatát küld Bobnak. Bob ekkor úgy látja, mntha a sorozat már n zajos csatornán keresztülhaladt volna.
38 Egyetlen kvantumbt küldése A görbe sehol sem ér el az Q=0 tengelyt Ennek következtében egy kvantumbt nformácótartalma sem adható meg véges mennységű klasszkus Rmax nformácóval
39 Egy kvantumbt hány klasszkus bttel írható le? Továbbra sem adhatjuk meg pontosan, a bemenetek bzonytalansága következtében! Megoldás: Csökkentsük le a bemenet bzonytalanság mértékét! Tpkus sorozatok
40 Tpkus sorozatok
41 Tpkus üzenetek Általános mnőség követelmény: å I p j j j > -e I I I I j j j = j I 2 n Változó forrásra: ji j I ji > -e mnden I-re j j j = j I 2 n
42 Tpkus üzenetek Egy adott valószínűséghez tpkusan előforduló bemenetek rendelhetőek I 2222 Az I üzenet tpkus a következő valószínűségek mellett: p 8 2 p2 4 2 Bzonyos üzeneteket megjelenését így előzetesen kzárhatjuk, a valószínűségek alapján pedg megjósolhatjuk a tpkus bemenetek halmazát
43 Tpkus üzenetek Ha az előforduló üzenetek lehetséges számára teljesül, hogy ( N( I), N(2 I),, N(m I) ) (n+) m akkor Alce O(log n) bten elküld üzenetét, majd tömörít. A tömörítés feltétele: p = n N ( I).
44 Tpkus üzenetek Legyen a bemenet kvantumállapotok halmaza, és legyen P a felett értelmezett valószínűségeloszlások halmaza. Ekkor az eloszlás felső határa : Q ({ j p } R) * ( R ) sup M ;,. = pîp
45 Egyetlen kvantumbt küldése A görbe sehol sem ér el az Q=0 tengelyt Ennek következtében egy kvantumbt nformácótartalma sem adható meg véges mennységű klasszkus Rmax nformácóval
46 Összefonódott állapotok alkalmazása 0 0 bemérése Alcenek csak a mérés kmenetelét kell közölne Bobbal, amelyhez átlagosan elegendő bt/jel. Az összefonódottság kalakítása és megosztása azonban többletkommunkácóval jár.
47 Mennyre hatékony? Szupersűrűségű tömörítés: EPR megosztása + epr-kvantumbt küldése Teleportácó: epr-kvantumbt + 2 klasszkus bt Elvleg: epr-kvantumbt + klasszkus bt elég Átvtel függvény alapján: R klasszkus bt Q*(R) kvantumbt Q*(R) epr-kvantumbt + Q*(R) klasszkus bt R klasszkus bt * * * E R Q R, ha R R Q R ( ') ( ) ' ( )
48 Átvtel függvény összefonódott állapotok esetén Összefonódott állapot: ; p AB AB S p B * E B ps ( ) B R H p
49 LOGO Köszönöm a fgyelmet! Gyöngyös László BME Vllamosmérnök és Informatka Kar
Kvantumkriptográfia II.
LOGO Kvantumkriptográfia II. Gyöngyösi László BME Villamosmérnöki és Informatikai Kar Titkos kommunikáció modellje k 1 k 2 k n k 1 k 2 k n A titkos kommunikáció során Alice és Bob szeretne egymással üzeneteket
Kvantum-hibajavítás I.
LOGO Kvantum-hibajavítás I. Gyöngyösi László BME Villamosmérnöki és Informatikai Kar Ismétléses kódolás Klasszikus hibajavítás Klasszikus modell: BSC (binary symmetric channel) Hibavalószínűség: p p 0.5
Kvantum-kommunikáció komplexitása I.
LOGO Kvantum-kommunikáció komplexitása I. Gyöngyösi László BME Villamosmérnöki és Informatikai Kar Klasszikus információ n kvantumbitben Hány klasszikus bitnyi információ nyerhető ki n kvantumbitből? Egy
Kvantumcsatorna tulajdonságai
LOGO Kvantumcsatorna tulajdonságai Gyöngyösi László BME Villamosmérnöki és Informatikai Kar Informáci cióelméleti leti alapok összefoglalásasa Valószínűségszámítási alapok Egy A és egy B esemény szorzatán
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Informatikai Rendszerek Alapjai
Informatikai Rendszerek Alapjai Dr. Kutor László A redundancia fogalma és mérése Minimális redundanciájú kódok 1. http://uni-obuda.hu/users/kutor/ IRA 2014 könyvtár Óbudai Egyetem, NIK Dr. Kutor László
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
5. Forráskódolás és hibavédő kódolás
5 Forráskódolás és hbavédő kódolás 51 Példa: forráskódolás Egy (szmbólumonként kódolt) forrás legtömörebb bnárs kódjában a kódszavak hossza rendre 2,3,3,3,3,4,4,4,5,5 a) Lehet-e ez a kód egyértelműen megfejthető
A kvantum-kommunikáció leírása sűrűségmátrix segítségével
LOGO A kvantum-kommunikáció leírása sűrűségmátrix segítségével Gyöngyösi László BME Villamosmérnöki és Informatikai Kar Hogyan tekinthetünk a sűrűségmátrixokra? Zaos kvantumrendszerek kvantumállapotra
A sokaság/minta eloszlásának jellemzése
3. előadás A sokaság/mnta eloszlásának jellemzése tpkus értékek meghatározása; az adatok különbözőségének vzsgálata, a sokaság/mnta eloszlásgörbéjének elemzése. Eloszlásjellemzők Középértékek helyzet (Me,
d(f(x), f(y)) q d(x, y), ahol 0 q < 1.
Fxponttétel Már a hétköznap életben s gyakran tapasztaltuk, hogy két pont között a távolságot nem feltétlenül a " kettő között egyenes szakasz hossza" adja Pl két település között a távolságot közlekedés
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 207. tavasz. Diszkrét matematika 2.C szakirány 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 207.
A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex
A sorozat fogalma Definíció. A természetes számok N halmazán értelmezett függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet a valós számok halmaza, valós számsorozatról beszélünk, mígha az
2013.11.25. H=0 H=1. Legyen m pozitív egészre {a 1, a 2,, a m } különböző üzenetek halmaza. Ha az a i üzenetet k i -szer fordul elő az adásban,
Legyen m pozitív egészre {a 1, a 2,, a m } különböző üzenetek halmaza. Ha az a i üzenetet k i -szer fordul elő az adásban, akkor a i (gyakorisága) = k i a i relatív gyakorisága: A jel információtartalma:
Analízis előadás és gyakorlat vázlat
Analízis előadás és gyakorlat vázlat Készült a PTE TTK GI szakos hallgatóinak Király Balázs 2010-11. I. Félév 2 1. fejezet Számhalmazok és tulajdonságaik 1.1. Nevezetes számhalmazok ➀ a) jelölése: N b)
ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!
ORVOSI STATISZTIKA Az orvos statsztka helye Élettan Anatóma Kéma Lehet kérdés?? Statsztka! Az orvos döntéseket hoz! Mkor jó egy döntés? Mennyre helyes egy döntés? Mekkora a tévedés lehetősége? Példa: test
Relációk. Vázlat. Példák direkt szorzatra
8.. 7. elácók elácó matematka fogalma zükséges fogalom: drekt szorzat Halmazok Descartes drekt szorzata: Legenek D D D n adott doman halmazok. D D D n : = { d d d n d k D k k n } A drekt szorzat tehát
Vázlat. Relációk. Példák direkt szorzatra
7..9. Vázlat elácók a. elácó fogalma b. Tulajdonsága: refleív szmmetrkus/antszmmetrkus tranztív c. Ekvvalenca relácók rzleges/parcáls rrendez relácók felsmere d. elácók reprezentálása elácó matematka fogalma
Algoritmusok és adatszerkezetek I. 10. előadás
Algortmusok és adatszerkezetek I. 10. előadás Dnamkus programozás Feladat: Adott P 1,P 2, P n pénzjegyekkel kfzethető-e F fornt? Megoldás: Tegyük fel, hogy F P P... P... m! 1 2 m 1 Ekkor F P P P P......,
Környezetvédelmi analitika
Az anyag a TÁMOP-4...A/- /--89 téma keretében készült a Pannon Egyetemen. Környezetmérnök Tudástár Sorozat szerkesztő: Dr. Domokos Endre XXXIV. kötet Környezetvédelm analtka Rezgés spektroszkópa Blles
3. előadás. Programozás-elmélet. A változó fogalma Kiterjesztések A feladat kiterjesztése A program kiterjesztése Kiterjesztési tételek Példa
A változó fogalma Definíció Legyen A = A 1 A 2... A n állapottér. A pr Ai projekciós függvényeket változóknak nevezzük: : A A i pr Ai (a) = a i ( a = (a 1, a 2,..., a n ) A). A változók jelölése: v i =
Az Informatika Elméleti Alapjai
Az Informatika Elméleti Alapjai dr. Kutor László Minimális redundanciájú kódok Statisztika alapú tömörítő algoritmusok http://mobil.nik.bmf.hu/tantargyak/iea.html Felhasználónév: iea Jelszó: IEA07 BMF
A kvantum-információelmélet alapjai
Eötvös Loránd Tudományegyetem Matematka Intézet Seres István András A kvantum-nformácóelmélet alapja BSc szakdolgozat Témavezet : dr. Frenkel Péter ELTE Algebra és Számelmélet Tanszék 2014. Budapest Köszönetnylvánítás
KOMBINATORIKA ELŐADÁS osztatlan matematika tanár hallgatók számára. Szita formula
KOMBINATORIKA ELŐADÁS osztatlan matematka tanár hallgatók számára Szta formula Előadó: Hajnal Péter 2015. 1. Bevezető példák 1. Feladat. Hány olyan sorbaállítása van a a, b, c, d, e} halmaznak, amelyben
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 4-6. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
(Diszkrét idejű Markov-láncok állapotainak
(Diszkrét idejű Markov-láncok állapotainak osztályozása) March 21, 2019 Markov-láncok A Markov-láncok anaĺızise főként a folyamat lehetséges realizációi valószínűségeinek kiszámolásával foglalkozik. Ezekben
Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján
Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján Számsorozatok, vektorsorozatok konvergenciája Def.: Számsorozatok értelmezése:
Kvantum-hibajavítás II.
LOGO Kvantum-hibajavítás II. Gyöngyösi László BME Villamosmérnöki és Informatikai Kar A Shor-kódolás QECC Quantum Error Correction Coding A Shor-féle kódolás segítségével egyidejűleg mindkét típusú hiba
Neumann János és a kvantum bitek. Petz Dénes
Neumann János és a kvantum bitek Petz Dénes A téma Neumann János (érdekes történetek) Valószinűség, információ, mátrixok, kvantumelmélet, kvantum-információ,... (sok új és nehéz matematikai fogalom) Neumann
A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.
Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ
Bevezetés az informatikába
Bevezetés az informatikába 6. előadás Dr. Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék Matematikus BSc - I. félév / 2008 / Budapest Dr.
Nagyságrendek. Kiegészítő anyag az Algoritmuselmélet tárgyhoz. Friedl Katalin BME SZIT február 1.
Nagyságrendek Kiegészítő anyag az Algoritmuselmélet tárgyhoz (a Rónyai Ivanyos Szabó: Algoritmusok könyv mellé) Friedl Katalin BME SZIT friedl@cs.bme.hu 018. február 1. Az O, Ω, Θ jelölések Az algoritmusok
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Logaritmus
Logaritmus DEFINÍCIÓ: (Logaritmus) Ha egy pozitív valós számot adott, - től különböző pozitív alapú hatvány alakban írunk fel, akkor ennek a hatványnak a kitevőjét logaritmusnak nevezzük. Bármely pozitív
Bevezetés a matematikába (2009. ősz) 1. röpdolgozat
Bevezetés a matematikába (2009. ősz) 1. röpdolgozat 1. feladat. Fogalmazza meg a következő ítélet kontrapozícióját: Ha a sorozat csökkenő és alulról korlátos, akkor konvergens. 2. feladat. Vezessük be
Kvantum összefonódás és erősen korrelált rendszerek
Kvantum összefonódás és erősen korrelált rendszerek MaFiHe TDK és Szakdolgozat Hét Szalay Szilárd MTA Wigner Fizikai Kutatóközpont, Szilárdtest Fizikai és Optikai Intézet, Erősen Korrelált Rendszerek Lendület
A továbbiakban Y = {0, 1}, azaz minden szóhoz egy bináris sorozatot rendelünk
1. Kódelmélet Legyen X = {x 1,..., x n } egy véges, nemüres halmaz. X-et ábécének, elemeit betűknek hívjuk. Az X elemeiből képzett v = y 1... y m sorozatokat X feletti szavaknak nevezzük; egy szó hosszán
Az Informatika Elméleti Alapjai
Az Informatika Elméleti Alapjai dr. Kutor László Az üzenet információ-tartalma, redundanciája Minimális redundanciájú kódok http://mobil.nik.bmf.hu/tantárgyak/iea.html Felhasználónév: iea Jelszó: IEA07
1. Alapfogalmak Algoritmus Számítási probléma Specifikáció Algoritmusok futási ideje
1. Alapfogalmak 1.1. Algoritmus Az algoritmus olyan elemi műveletekből kompozíciós szabályok szerint felépített összetett művelet, amelyet megadott feltételt teljesítő bemeneti adatra végrehajtva, a megkívánt
LOGO. Kvantum-tömörítés. Gyöngyösi László BME Villamosmérnöki és Informatikai Kar
LOGO Kvatum-tömörítés Gyögyösi László BME Villamosméröki és Iformatikai Kar Iformációelméleti alaok összefoglalása A kódolási eljárás Az iformáció átadás hűsége és gazdaságossága a kódolástól függ Az iformáció
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 6. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Valóban feltörhetetlen? A kvantumkriptográfia biztonsági analízise
Valóban feltörhetetlen? A kvantumkriptográfia biztonsági analízise Gyöngyösi László gyongyosi@hit.bme.hu Hacktivity 2008 Budai Fonó Zeneház, 2008. szeptember 21. Tartalom Motiváció A kvantuminformatikáról
A valós számok halmaza
VA 1 A valós számok halmaza VA 2 A valós számok halmazának axiómarendszere és alapvető tulajdonságai Definíció Az R halmazt a valós számok halmazának nevezzük, ha teljesíti a következő axiómarendszerben
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 7. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
8. Programozási tételek felsoroló típusokra
8. Programozás tételek felsoroló típusokra Ha egy adatot elem értékek csoportja reprezentál, akkor az adat feldolgozása ezen értékek feldolgozásából áll. Az lyen adat típusának lényeges jellemzője, hogy
Összefonódottság detektálása tanúoperátorokkal
Összefonódottság detektálása tanúoperátorokkal Tóth Géza Max-Plank-Intitute für Quantenoptik, Garching, Németország Budapest, 2005. október 4. Motiváció Miért érdekes a kvantum-informatika? Alapvető problémák
Hibajavító kódok május 31. Hibajavító kódok 1. 1
Hibajavító kódok 2007. május 31. Hibajavító kódok 1. 1 Témavázlat Hibajavító kódolás Blokk-kódok o Hamming-távolság, Hamming-súly o csoportkód o S n -beli u középpontú t sugarú gömb o hibajelzı képesség
Adja meg, hogy ebben az esetben mely handshake üzenetek kerülnek átvitelre, és vázlatosan adja meg azok tartalmát! (8p)
Adatbiztonság a gazdaságinformatikában PZH 2013. december 9. 1. Tekintsük a következő rejtjelező kódolást: nyílt üzenetek halmaza {a,b}, kulcsok halmaza {K1,K2,K3,K4,K5}, rejtett üzenetek halmaza {1,2,3,4,5}.
Az entrópia statisztikus értelmezése
Az entrópa statsztkus értelmezése A tapasztalat azt mutatja hogy annak ellenére hogy egy gáz molekulá egyed mozgást végeznek vselkedésükben mégs szabályszerűségek vannak. Statsztka jellegű vselkedés szabályok
Algoritmusok és adatszerkezetek gyakorlat 09 Rendezések
Algortmusok és adatszerkezetek gyakorlat 09 Rendezések Néhány órával ezelőtt megsmerkedtünk már a Merge Sort rendező algortmussal. A Merge Sort-ról tuduk, hogy a legrosszabb eset dőgénye O(n log n). Tetszőleges
minden x D esetén, akkor x 0 -at a függvény maximumhelyének mondjuk, f(x 0 )-at pedig az (abszolút) maximumértékének.
Függvények határértéke és folytonossága Egy f: D R R függvényt korlátosnak nevezünk, ha a függvényértékek halmaza korlátos. Ha f(x) f(x 0 ) teljesül minden x D esetén, akkor x 0 -at a függvény maximumhelyének
Az Informatika Elméleti Alapjai
Az Informatika Elméleti Alapjai dr. Kutor László Az üzenet információ-tartalma és redundanciája Tömörítő algoritmusok elemzése http://mobil.nik.bmf.hu/tantárgyak/iea.html Felhasználónév: iea Jelszó: IEA07
Valószínűségi változók. Várható érték és szórás
Matematikai statisztika gyakorlat Valószínűségi változók. Várható érték és szórás Valószínűségi változók 2016. március 7-11. 1 / 13 Valószínűségi változók Legyen a (Ω, A, P) valószínűségi mező. Egy X :
1. előadás: Halmazelmélet, számfogalom, teljes
1. előadás: Halmazelmélet, számfogalom, teljes indukció Szabó Szilárd Halmazok Halmaz: alapfogalom, bizonyos elemek (matematikai objektumok) összessége. Egy halmaz akkor adott, ha minden objektumról eldönthető,
Kvantum-informatika és kommunikáció féléves feladatok (2010/2011, tavasz)
Kvantum-informatika és kommunikáció féléves feladatok (2010/2011, tavasz) 1. Ön egy informatikus öregtalálkozón vesz részt, amelyen felkérik, hogy beszéljen az egyik kedvenc területéről. Mutassa be a szakmai
Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: november. I. rész
Pataki János, november Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: november I rész feladat Oldja meg az alábbi egyenleteket: a) log 7 log log log 7 ; b) ( )
Fraktál alapú képtömörítés p. 1/26
Fraktál alapú képtömörítés Bodó Zalán zbodo@cs.ubbcluj.ro BBTE Fraktál alapú képtömörítés p. 1/26 Bevezetés tömörítések veszteségmentes (lossless) - RLE, Huffman, LZW veszteséges (lossy) - kvantálás, fraktál
M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak!
Magyar Ifjúság 6 V SOROZATOK a) Három szám összege 76 E három számot tekinthetjük egy mértani sorozat három egymás után következő elemének vagy pedig egy számtani sorozat első, negyedik és hatodik elemének
DISZKRÉT MATEMATIKA RENDEZETT HALMAZOKKAL KAPCSOLATOS PÉLDÁK. Rendezett halmaz. (a, b) R a R b 1. Reflexív 2. Antiszimmetrikus 3.
Rendezett halmaz R A x A rendezési reláció A-n, ha R Másképpen: (a, b) R a R b 1. Reflexív 2. Antiszimmetrikus 3. Tranzitív arb for (a, b) R. 1. a A ara 2. a,b A (arb bra a = b 3. a,b,c A (arb brc arc
Sorozatok. 5. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Sorozatok p. 1/2
Sorozatok 5. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Sorozatok p. 1/2 A sorozat definíciója Definíció. A természetes számok halmazán értelmezett valós értékű a: N R függvényt
Dekoherencia Markovi Dinamika Diósi Lajos. Elméleti Fizikai Iskola Tihany, augusztus szeptember 3.
Dekoherencia Markovi Dinamika Diósi Lajos Elméleti Fizikai Iskola Tihany, 2010. augusztus 30. - szeptember 3. Tartalomjegyzék 1 Projektív dekoherencia 2 Nyitott rendszer - Lindblad egy. 3 Dekoherencia
A fontosabb definíciók
A legfontosabb definíciókat jelöli. A fontosabb definíciók [Descartes szorzat] Az A és B halmazok Descartes szorzatán az A és B elemeiből képezett összes (a, b) a A, b B rendezett párok halmazát értjük,
1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség.
1. tétel Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. A valószínűségszámítás tárgya: véletlen tömegjelenségek vizsgálata. véletlen: a kísérlet kimenetelét
Mérhetőség, σ-algebrák, Lebesgue Stieltjes-integrál, véletlen változók és eloszlásfüggvényeik
Mérhetőség, σ-algebrák, Lebesgue Stieltjes-integrál, véletlen változók és eloszlásfüggvényeik Az A halmazrendszer σ-algebra az Ω alaphalmazon, ha Ω A; A A A c A; A i A, i N, i N A i A. Az A halmazrendszer
Az Országos Középiskolai Tanulmányi Verseny tanévi második fordulójának feladatmegoldásai. x 2 sin x cos (2x) < 1 x.
Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi második fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Oldja meg a következő egyenlőtlenséget, ha x > 0: x 2 sin
Zárthelyi dolgozat feladatainak megoldása 2003. õsz
Zárthelyi dolgozat feladatainak megoldása 2003. õsz 1. Feladat 1. Milyen egységeket rendelhetünk az egyedi információhoz? Mekkora az átváltás közöttük? Ha 10-es alapú logaritmussal számolunk, a mértékegység
OSZTHATÓSÁG. Osztók és többszörösök : a 3 többszörösei : a 4 többszörösei Ahol mindkét jel megtalálható a 12 többszöröseit találjuk.
Osztók és többszörösök 1783. A megadott számok elsõ tíz többszöröse: 3: 3 6 9 12 15 18 21 24 27 30 4: 4 8 12 16 20 24 28 32 36 40 5: 5 10 15 20 25 30 35 40 45 50 6: 6 12 18 24 30 36 42 48 54 60 1784. :
Az Informatika Elméleti Alapjai
Az Informatika Elméleti Alapjai Dr. Kutor László Az üzenet információ-tartalma és redundanciája Minimális redundanciájú kódok Statisztika alapú tömörítő algoritmusok http://mobil.nik.bmf.hu/tantargyak/iea.html
SHk rövidítéssel fogunk hivatkozni.
Nevezetes függvény-határértékek Az alábbiakban a k sorszámú függvény-határértékek)re az FHk rövidítéssel, a kompozíció határértékéről szóló első, illetve második tételre a KL1, illetve a KL rövidítéssel,
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2016. ősz 1. Diszkrét matematika 2.C szakirány 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2016.
TÉRBELI STATISZTIKAI VIZSGÁLATOK, ÁTLAGOS JELLEMZŐK ÉS TENDENCIÁK MAGYARORSZÁGON. Bihari Zita, OMSZ Éghajlati Elemző Osztály OMSZ
TÉRBELI STATISZTIKAI VIZSGÁLATOK, ÁTLAGOS JELLEMZŐK ÉS TENDENCIÁK MAGYARORSZÁGON Bhar Zta, OMSZ Éghajlat Elemző Osztály OMSZ Áttekntés Térbel vzsgálatok Alkalmazott módszer: MISH Eredmények Tervek A módszer
Nagyordó, Omega, Theta, Kisordó
A növekedés nagyságrendje, számosság Logika és számításelmélet, 6. gyakorlat 2009/10 II. félév Számításelmélet (6. gyakorlat) A növekedés nagyságrendje, számosság 2009/10 II. félév 1 / 1 Nagyordó, Omega,
6. ELŐADÁS DIFFERENCIÁLSZÁMÍTÁS II. DIFFERENCIÁLÁSI SZABÁLYOK. BSc Matematika I. BGRMA1HNND, BGRMA1HNNC
6. ELŐADÁS DIFFERENCIÁLSZÁMÍTÁS II. DIFFERENCIÁLÁSI SZABÁLYOK BSc Matematika I. BGRMAHNND, BGRMAHNNC A következő diákon szereplő állítások mindegyikét az előadáson fogjuk igazolni, és példákkal bőségesen
BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011.
BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011. 1 Mérési hibák súlya és szerepe a mérési eredményben A mérési hibák csoportosítása A hiba rendűsége Mérési bizonytalanság Standard és kiterjesztett
Algoritmuselmélet 12. előadás
Algoritmuselmélet 12. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Április 9. ALGORITMUSELMÉLET 12. ELŐADÁS 1 Turing-gépek
Számítógépes Hálózatok. 5. gyakorlat
Számítógépes Hálózatok 5. gyakorlat Óra eleji kiszh Elérés: https://oktnb6.inf.elte.hu Számítógépes Hálózatok Gyakorlat 2 Gyakorlat tematika Szinkron CDMA Órai / házi feladat Számítógépes Hálózatok Gyakorlat
A multikritériumos elemzés célja, alkalmazási területe, adat-transzformációs eljárások, az osztályozási eljárások lényege
A multkrtérumos elemzés célja, alkalmazás területe, adat-transzformácós eljárások, az osztályozás eljárások lényege Cél: tervváltozatok, objektumok értékelése (helyzetértékelés), döntéshozatal segítése
1/1. Házi feladat. 1. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy
/. Házi feladat. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy mindig igaz. (p (( p) q)) (( p) ( q)). Igazoljuk, hogy minden A, B és C halmazra A \ (B C) = (A \ B) (A \ C) teljesül.
Méréselmélet: 5. előadás,
5. Modellllesztés (folyt.) Méréselmélet: 5. előadás, 03.03.3. Út az adaptív elárásokhoz: (85) és (88) alapán: W P, ( ( P). Ez utóbb mndkét oldalát megszorozva az mátrxszal: W W ( ( n ). (9) Feltételezve,
Információs rendszerek elméleti alapjai. Információelmélet
Információs rendszerek elméleti alapjai Információelmélet Az információ nem növekedés törvénye Adatbázis x (x adatbázis tartalma) Kérdés : y Válasz: a = f(y, x) Mennyi az a információtartalma: 2017. 04.
Módszertani hozzájárulás a Szegénység
Módszertani hozzájárulás a Szegénység Többváltozós Statisztikai Méréséhez MTA doktori értekezés főbb eredményei Hajdu ottó BCE KTK Statisztika Tanszék BME GTK Pénzügyek Tanszék Hajdu Ottó 1 Egyváltozós
MATE-INFO UBB verseny, március 25. MATEMATIKA írásbeli vizsga
BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR MATE-INFO UBB verseny, 218. március 25. MATEMATIKA írásbeli vizsga FONTOS TUDNIVALÓK: 1 A feleletválasztós feladatok,,a rész esetén
Információs rendszerek elméleti alapjai. Információelmélet
Informácós rendszerek elmélet alaja Informácóelmélet Irodalom Irodalomjegyzék. J. Aczél, Z. Daróczy. On Measures of Informaton and Ther Characterzaton. Academc Press, New York. 975.. R. B. Ash. Informaton
Példák ekvivalencia relációra (TÉTELként kell tudni ezeket zárthelyin, vizsgán):
F NIK INÁRIS RLÁIÓK INÁRIS RLÁIÓK (és hasonló mátrxok s tt!) Defnícó: z R bnárs relácó, ha R {( a, b) a, b } nárs relácók lehetséges tuladonsága:. Reflexív ha ( x,.(a). Szmmetrkus ha ( x, y) ( y,.(b).
Az egyenes egyenlete: 2 pont. Az összevont alak: 1 pont. Melyik ábrán látható e függvény grafikonjának egy részlete?
1. Írja fel annak az egyenesnek az egyenletét, amely áthalad az (1; 3) ponton, és egyik normálvektora a (8; 1) vektor! Az egyenes egyenlete: 2. Végezze el a következő műveleteket, és vonja össze az egynemű
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:
Hibajavító kódolás (előadásvázlat, 2012. november 14.) Maróti Miklós
Hibajavító kódolás (előadásvázlat, 2012 november 14) Maróti Miklós Ennek az előadásnak a megértéséhez a következő fogalmakat kell tudni: test, monoid, vektortér, dimenzió, mátrixok Az előadáshoz ajánlott
A 2015/2016. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló MATEMATIKA III. KATEGÓRIA (a speciális tanterv szerint haladó gimnazisták)
A 205/206. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló MATEMATIKA III. KATEGÓRIA a speciális tanterv szerint haladó gimnazisták Javítási-értékelési útmutató. feladat Az {,2,...,n} halmaz
Középszintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: 2005. november. I. rész
Pataki János, 005. november Középszintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: 005. november I. rész. feladat Egy liter 0%-os alkoholhoz / liter 40%-os alkoholt keverünk.
MATEMATIKA ÉRETTSÉGI május 8. EMELT SZINT
MATEMATIKA ÉRETTSÉGI 007. május 8. EMELT SZINT 1) Oldja meg a valós számok halmazán az alábbi egyenletet! x x 4 log 9 10 sin x x 6 I. (11 pont) sin 1 lg1 0 log 9 9 x x 4 Így az 10 10 egyenletet kell megoldani,
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Vektorok II.
Vektorok II. DEFINÍCIÓ: (Vektorok hajlásszöge) Két vektor hajlásszögének azt a φ (0 φ 180 ) szöget nevezzük, amelyet a vektorok egy közös pontból felmért reprezentánsai által meghatározott félegyenesek
Fraktálok. Kontrakciók Affin leképezések. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék. TARTALOMJEGYZÉK Kontrakciók Affin transzformációk
Fraktálok Kontrakciók Affin leképezések Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék TARTALOMJEGYZÉK 1 of 71 A Lipschitz tulajdonság ÁTMÉRŐ, PONT ÉS HALMAZ TÁVOLSÁGA Definíció Az (S, ρ) metrikus tér
Műszaki folyamatok közgazdasági elemzése. Kevert stratégiák és evolúciós játékok
Műszak folyamatok közgazdaság elemzése Kevert stratégák és evolúcós átékok Fogalmak: Példa: 1 szta stratéga Vegyes stratéga Ha m tszta stratéga létezk és a 1 m annak valószínűsége hogy az - edk átékos
Ismételt játékok: véges és végtelenszer. Kovács Norbert SZE GT. Példa. Kiindulás: Cournot-duopólium játék Inverz keresleti görbe: P=150-Q, ahol
9. elõaás Ismételt játékok: véges és végtelenszer történõ smétlés Kovács Norbert SZE GT Az elõaás menete Ismételt játékok Véges sokszor smételt játékok Végtelenszer smételt játékok Péla Knulás: ournot-uopólum
1.Tartalomjegyzék 1. 1.Tartalomjegyzék
1.Tartalomjegyzék 1 1.Tartalomjegyzék 1.Tartalomjegyzék...1.Beezetés... 3.A matematka modell kálasztása...5 4.A ékony lap modell...7 5.Egy más módszer a matematka modell kálasztására...10 6.A felületet
Kriptográfia 0. A biztonság alapja. Számítás-komplexitási kérdések
Kriptográfia 0 Számítás-komplexitási kérdések A biztonság alapja Komplexitás elméleti modellek független, egyenletes eloszlású véletlen változó értéke számítással nem hozható kapcsolatba más információval
Teljes eseményrendszer. Valószínőségszámítás. Példák. Teljes valószínőség tétele. Példa. Bayes tétele
Teljes eseményrendszer Valószínőségszámítás 3. elıadás 2009.09.22. Defnícó. Események A 1, A 2,..., sorozata teljes eseményrendszer, ha egymást páronként kzárják és egyesítésük Ω. Tulajdonság: P A ) +
Matematika alapjai; Feladatok
Matematika alapjai; Feladatok 1. Hét 1. Tekintsük a,, \ műveleteket. Melyek lesznek a.) kommutativok b.) asszociativak c.) disztributívak-e a, műveletek? Melyik melyikre? 2. Fejezzük ki a műveletet a \
3 függvény. Számítsd ki az f 4 f 3 f 3 f 4. egyenlet valós megoldásait! 3 1, 3 és 5 3 1
Érettségi, M, I-es feladatsor, természettudomány.. Számítsd ki a C! összeget! log 4. Határozd meg a. Számítsd ki az egyenlet valós megoldásait! összeg értékét, ha és az 4. Adott az f : 0,, f. Adottak az
f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva
6. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 6.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási
Információs rendszerek elméleti alapjai. Információelmélet
Iformácós redszerek elmélet alaja Iformácóelmélet A forrás kódolása csatora jelekké 6.4.5. Molár Bált Beczúr Adrás NMMMNNMNfffyyxxfNNNNxxMNN verzazazthatóvsszaálímdeveszteségcsaakkorfüggvéykódolásaakódsorozat:eredméyekódolássorozatváltozó:forás