Az Informatika Elméleti Alapjai
|
|
- Róbert Vörös
- 10 évvel ezelőtt
- Látták:
Átírás
1 Az Informatika Elméleti Alapjai dr. Kutor László Az üzenet információ-tartalma és redundanciája Tömörítő algoritmusok elemzése Felhasználónév: iea Jelszó: IEA07 BMF NIK dr. Kutor László IEA 7/1 Az információ mérésére vonatkozó függvény Additivitás: I (X k ) + I (C j )= I (X k, C j ) f 1 (n) + f 1 (m) = f 1 (n * m) f 2 (1/n) + f 2 (1/m) = f 2 (1/n * 1/m) f 3 (p{x k }) + f 3 (p{c j })= f 3 (p{x k *C j } f = log? BMF NIK dr. Kutor László IEA 7/2
2 R. Hartley formula (egyenlő előfordulási valószínűségű) dolgok kiválasztásához kapcsolódó információ mérésére H= k * log n Ahol H = az információ mennyiség egy üzenet (szó) kiválasztásakor n = az üzenet - ABC betűinek száma k = a betűk száma az üzenetben (szóban) Az információ mértékegységei különböző logaritmusok estén: H = k * log 10 n [ Hartley] H = k * log 2 n [ Shannon, bit] H = k * log e n [ Nat ] BMF NIK dr. Kutor László IEA 7/3 Példák az egy elem kiválasztását leíró információ nagyságára I = 1, 2, 3, 4, 5 I(x i ) = log 2 (n), vagy -log 2 (1/n), vagy - log 2 (p(x i )) BMF NIK dr. Kutor László IEA 7/4
3 C. E. Shannon és N.Wiener információ értelmezése Kérdés: Véges számú közleményből véletlenszerűen kiválasztunk ki egyet, és ebből milyen következtetést vonhatunk le az egész közlemény bizonytalanságára? Hány bit szükséges egy üzenet továbbításához?! Legyen: x 1,x 2,x 3,.x i, x n = az egyedi közlemények S = x 1 +x 2 +x 3 + +x i +.. x n (Az összes üzenet) H(S) = a közlemény információ tartalma P{x 1 }, P{x 2 }, P{x 3 }, P{x i }, P{x n } = az üzenetek előfordulási valószínűsége BMF NIK dr. Kutor László IEA 7/5 A Shannon összefüggés magyarázata Ha a kibocsátott üzenetek száma: M, akkor X i előfordulásának száma: g i = M * p(x i ) I M = g 1 *I(x 1 ) + g i *I(x i ) + g n *I(X n ) I(x i ) = az i-ik üzenet információ tartalma = -log 2 p(x i ) I M = - M* p( x i }ó)* log 2 p(x i ) H(S) = - p( x i )* log 2 p(x i )?! BMF NIK dr. Kutor László IEA 7/6
4 Az információ redundanciája 1. Redundancia köznapi értelmezése: terjengősség A redundancia információ elméleti értelmezése: n H S = - p{ x i }* log 2 p{x i } (Shannon) i=1 n H max = - 1/n * log (1/n)= - log (1/n) = log (n) i=1 (Hartley) H relatív = H S H max = az információ-forrás jósága BMF NIK dr. Kutor László IEA 7/7 Az információ redundanciája 2. H S = a hírforrás információ tartalma (entrópiája) H max = a hírforrás maximális információ tartalma H relatív = H S H max = az információ forrás jósága H R S = 1 - S A hírforrás által közölt információ * 100 H hány százaléka felesleges max Példa: H S = H max = 2 Hr = = R S = ( ) * 100 = 15.8 ~ 16% BMF NIK dr. Kutor László IEA 7/8
5 Példa az írott szöveg redundancájára 1 ( a szöveg minden 3 karakteréből 2 elhagyva) A programozók (minden ellenkező híresztelés ellenére) emberek, akik éjnek éjjelén, teljesen alkalmatlan fejlesztőprogramokkal, hibáktól hemzsegő hardverek egymáshoz nem illeszthető konglomerátumán megkísérlik, hogy a feladatra alkalmatlan megbízóik megrendelésére megbízóik egymásnak ellentmondó kívánságait olyan programokká alakítsák át, amelyeket aztán a végén, senki sem fog használni. BMF NIK dr. Kutor László IEA 7/9 Példa az írott szöveg redundancájára 2 ( a szöveg minden 3 karakteréből 1 elhagyva) A programozók (minden ellenkező híresztelés ellenére) emberek, akik éjnek éjjelén, teljesen alkalmatlan fejlesztőprogramokkal, hibáktól hemzsegő hardverek egymáshoz nem illeszthető konglomerátumán megkísérlik, hogy a feladatra alkalmatlan megbízóik megrendelésére megbízóik egymásnak ellentmondó kívánságait olyan programokká alakítsák át, amelyeket aztán a végén, senki sem fog használni. BMF NIK dr. Kutor László IEA 7/10
6 Példa az írott szöveg redundancájára 1 ( a szöveg minden karaktere kiírva) A programozók (minden ellenkező híresztelés ellenére) emberek, akik éjnek éjjelén, teljesen alkalmatlan fejlesztőprogramokkal, hibáktól hemzsegő hardverek egymáshoz nem illeszthető konglomerátumán megkísérlik, hogy a feladatra alkalmatlan megbízóik megrendelésére megbízóik egymásnak ellentmondó kívánságait olyan programokká alakítsák át, amelyeket aztán a végén, senki sem fog használni. BMF NIK dr. Kutor László IEA 7/11 A magyar nyelv betűgyakorisága és információ tartalma szavas újságszöveg alapján Gyakoriság Információ (% ) tartalom (bit) Fülöp Géza Gyakoriság Információ (% ) tartalom (bit) Gyakoriság Információ (% ) tartalom (bit) A 9,35 3,43 Á 3,72 4,77 B 1,72 5,87 C 0,60 7,40 D 1,71 5,90 E 9,71 3,37 É 3,87 4,71 F 0,88 6,87 G 3,55 4,83 H 1,23 6,37 I 4,39 4,53 J 1,21 6,39 K 5,35 4,24 L 6,30 4,00 M 3,92 4,69 N 5,47 4,21 O 4,47 4,50 Ö 2,14 5,57 P 1,04 6,61 R 4,22 4,58 S 6,57 3,94 T 7,87 3,68 U 1,29 6,30 Ü 0,93 6,77 V 1,81 5,81 X 0,01 13,33 Y 2,21 5,52 Z 4,46 4,50 I átlag = 4.44 bit BMF NIK dr. Kutor László IEA 7/12
7 Tömörítő programok hatékonysága A kiinduló fájl típusa:.exe.img.txt A kiinduló fájl mérete: Huffmann LZW Aritmetikai PKZIP ARJ Koschek Vilmos BMF NIK dr. Kutor László IEA 7/13 Az angol nyelv betűgyakorisága Betű Betű Információ [bit] gyakoriság A 8,4966% 3,5570 B 2,0720% 5,5928 C 4,5388% 4,4615 D 3,3844% 4,8850 E 11,1607% 3,1635 F 1,8121% 5,7862 G 2,4705% 5,3391 H 3,0034% 5,0573 I 7,5448% 3,7284 J 0,1965% 8,9913 K 1,1016% 6,5043 L 5,4893% 4,1872 M 3,0129% 5,0527 Betű Betű Információ[bit] gyakoriság N 6,6544% 3,9095 O 7,1635% 3,8032 P 3,1671% 4,9807 Q 0,1961% 8,9942 R 7,5809% 3,7215 S 5,7351% 4,1240 T 6,9509% 3,8467 U 3,6308% 4,7836 V 1,0074% 6,6332 W 1,2899% 6,2766 X 0,2902% 8,4287 Y 1,7779% 5,8137 Z 0,2722% 8,5211 I átlag = 4.22 bit BMF NIK dr. Kutor László IEA 7/14
8 Tömörítő programok tesztje 1. Szövegfájlok méret szerint Kiinduló fájlok mérete: 1.22 MBájt BMF NIK dr. Kutor László IEA 7/15 Tömörítő programok tesztje 2. Szövegfájlok idő szerint Kiinduló fájlok mérete: 1.22 MBájt BMF NIK dr. Kutor László IEA 7/16
9 Tömörítő programok tesztje 3..doc fájlok méret szerint MBájt BMF NIK dr. Kutor László IEA 7/17 Tömörítő programok tesztje 4..doc fájlok idő szerint MBájt BMF NIK dr. Kutor László IEA 7/18
10 Tömörítő programok tesztje 2.. exe fájlok méret szerint 8.47 MBájt BMF NIK dr. Kutor László IEA 7/19 Tömörítő programok tesztje 6.. exe fájlok 8.47 MBájt BMF NIK dr. Kutor László IEA 7/20
11 Tömörítő programok tesztje 7. kép fájlok (.png) méret szerint MBájt BMF NIK dr. Kutor László IEA 7/21 Tömörítő programok tesztje 8. kép fájlok (.png) idő szerint MBájt BMF NIK dr. Kutor László IEA 7/22
12 Tömörítő programok tesztje 9. hang fájlok (.wav) méret szerint MBájt BMF NIK dr. Kutor László IEA 7/23 Tömörítő programok tesztje 10. hang fájlok (.wav) idő szerint MBájt BMF NIK dr. Kutor László IEA 7/24
13 Tömörítő programok tesztje 11. Tömörítvények (.zip) méret szerint 6.61 MBájt BMF NIK dr. Kutor László IEA 7/25 Tömörítő programok tesztje 12. Tömörítvények (.zip) idő szerint 6.61 MBájt BMF NIK dr. Kutor László IEA 7/26
Az Informatika Elméleti Alapjai
Az Informatika Elméleti Alapjai dr. Kutor László Az üzenet információ-tartalma, redundanciája Minimális redundanciájú kódok http://mobil.nik.bmf.hu/tantárgyak/iea.html Felhasználónév: iea Jelszó: IEA07
Az Informatika Elméleti Alapjai
Az Informatika Elméleti Alapjai Dr. Kutor László Az üzenet információ-tartalma és redundanciája Minimális redundanciájú kódok Statisztika alapú tömörítő algoritmusok http://mobil.nik.bmf.hu/tantargyak/iea.html
Informatikai Rendszerek Alapjai
Informatikai Rendszerek Alapjai Dr. Kutor László A redundancia fogalma és mérése Minimális redundanciájú kódok 1. http://uni-obuda.hu/users/kutor/ IRA 2014 könyvtár Óbudai Egyetem, NIK Dr. Kutor László
Az Informatika Elméleti Alapjai
Az Informatika Elméleti Alapjai dr. Kutor László Törtszámok bináris ábrázolása, Az információ értelmezése és mérése http://mobil.nik.bmf.hu/tantargyak/iea.html Felhasználónév: iea Jelszó: IEA07 BMF NIK
Az Informatika Elméleti Alapjai
Az Informatika Elméleti Alapjai dr. Kutor László Minimális redundanciájú kódok Statisztika alapú tömörítő algoritmusok http://mobil.nik.bmf.hu/tantargyak/iea.html Felhasználónév: iea Jelszó: IEA07 BMF
Informatikai Rendszerek Alapjai
Informatikai Rendszerek Alapjai Dr. Kutor László Minimális redundanciájú kódok (2) Szótár alapú tömörítő algoritmusok 2014. ősz Óbudai Egyetem, NIK Dr. Kutor László IRA 8/25/1 Az információ redundanciája
Zárthelyi dolgozat feladatainak megoldása 2003. õsz
Zárthelyi dolgozat feladatainak megoldása 2003. õsz 1. Feladat 1. Milyen egységeket rendelhetünk az egyedi információhoz? Mekkora az átváltás közöttük? Ha 10-es alapú logaritmussal számolunk, a mértékegység
A csatornakódolás elve A hibatűrés záloga: a redundancia
Az Iformatia Elméleti Alapjai dr. Kutor László A csatoraódolás elve A hibatűrés záloga: a redudacia http://mobil.i.bmf.hu/tatargya/iea.html Felhaszálóév: iea Jelszó: IEA07 BMF NIK dr. Kutor László IEA
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Az információelmélet alapjai, biológiai alkalmazások. 1. A logaritmusfüggvény és azonosságai
Az információelmélet alapjai, biológiai alkalmazások 1. A logaritmusfüggvény és azonosságai 2 k = N log 2 N = k Például 2 3 = 8 log 2 8 = 3 10 4 = 10000 log 10 10000 = 4 log 2 2 = 1 log 2 1 = 0 log 2 0
Intelligens Rendszerek Elmélete. Párhuzamos keresés genetikus algoritmusokkal
Intelligens Rendszerek Elmélete Dr. Kutor László Párhuzamos keresés genetikus algoritmusokkal http://mobil.nik.bmf.hu/tantargyak/ire.html login: ire jelszó: IRE0 IRE / A természet általános kereső algoritmusa:
Az informatika részterületei. Az információ. Dr. Bacsó Zsolt
Az informatika részterületei Dr. Bacsó Zsolt Információelmélet, inf. tartalom mérése, inf. mennyiség Információ továbbítás (hírközlés) jel, kódoláselmélet, hírközlőrendszerek, továbbítás sebessége Információ
Az Informatika Elméleti Alapjai
Az Informatika Elméleti Alapjai dr. Kutor László Jelek típusai Átalakítás az analóg és digitális rendszerek között http://mobil.nik.bmf.hu/tantargyak/iea.html Felhasználónév: iea Jelszó: IEA07 IEA 3/1
A továbbiakban Y = {0, 1}, azaz minden szóhoz egy bináris sorozatot rendelünk
1. Kódelmélet Legyen X = {x 1,..., x n } egy véges, nemüres halmaz. X-et ábécének, elemeit betűknek hívjuk. Az X elemeiből képzett v = y 1... y m sorozatokat X feletti szavaknak nevezzük; egy szó hosszán
1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség.
1. tétel Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. A valószínűségszámítás tárgya: véletlen tömegjelenségek vizsgálata. véletlen: a kísérlet kimenetelét
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.15. Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza) alkotja az eseményteret. Esemény: az eseménytér részhalmazai.
BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011.
BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011. 1 Mérési hibák súlya és szerepe a mérési eredményben A mérési hibák csoportosítása A hiba rendűsége Mérési bizonytalanság Standard és kiterjesztett
Az Informatika Elméleti Alapjai
Az Informatika Elméleti Alapjai dr. Kutor László Információ-feldolgozó paradigmák A számolás korai segédeszközei http://mobil.nik.bmf.hu/tantargyak/iea.html Felhasználónév: iea Jelszó: IEA07 IEA2/1 Az
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen
Biomatematika 2 Orvosi biometria
Biomatematika 2 Orvosi biometria 2017.02.13. Populáció és minta jellemző adatai Hibaszámítás Valószínűség 1 Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza)
Az Informatika Elméleti Alapjai. Információ-feldolgozó paradigmák A számolás korai segédeszközei
Az Informatika Elméleti Alapjai dr. Kutor László Információ-feldolgozó paradigmák A számolás korai segédeszközei http://mobil.nik.bmf.hu/tantargyak/iea.html Felhasználónév: iea Jelszó: IEA07 IEA2/1 Az
Intelligens Rendszerek Elmélete. Versengéses és önszervező tanulás neurális hálózatokban
Intelligens Rendszerek Elmélete : dr. Kutor László Versengéses és önszervező tanulás neurális hálózatokban http://mobil.nik.bmf.hu/tantargyak/ire.html Login név: ire jelszó: IRE07 IRE 9/1 Processzor Versengéses
2013.11.25. H=0 H=1. Legyen m pozitív egészre {a 1, a 2,, a m } különböző üzenetek halmaza. Ha az a i üzenetet k i -szer fordul elő az adásban,
Legyen m pozitív egészre {a 1, a 2,, a m } különböző üzenetek halmaza. Ha az a i üzenetet k i -szer fordul elő az adásban, akkor a i (gyakorisága) = k i a i relatív gyakorisága: A jel információtartalma:
Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1
Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában
MI SZÜKSÉGES A KÉRELMEK ELEKTRONIKUS ÚTON TÖRTÉNŐ BENYÚJTÁSÁHOZ?
MI SZÜKSÉGES A KÉRELMEK ELEKTRONIKUS ÚTON TÖRTÉNŐ BENYÚJTÁSÁHOZ? 1. Ügyfélkapus regisztráció 2. ABEV-JAVA Általános Nyomtatványkitöltő Program 3. Regisztráció a hivatali címtárba 4. Elektronikus kérelem
Matematika. J a v í t ó k u l c s. 8. évfolyam. Oktatási Hivatal Közoktatási Mérési Értékelési Osztály 1054 Budapest, Báthory utca 10.
Matematika J a v í t ó k u l c s 8. évfolyam Oktatási Hivatal Közoktatási Mérési Értékelési Osztály 1054 Budapest, Báthory utca 10. IEA, 2011 1/1. feladat 1/2. feladat : B : B Item: M032757 Item: M032721
Felhasználói útmutató
Felhasználói útmutató egyeztetési eljárás kezdeményezéséhez a (volt) biztosítottak részére 2013. január 1-jétől azok a biztosítottak (volt biztosítottak), akik ügyfélkapu regisztrációval rendelkeznek,
Informatika 6. évfolyam
Informatika 6. évfolyam Egészséges, ergonómiai szempontok ismerete. A számítógép és a legszükségesebb perifériák rendeltetésszerű használata. Helyesírás ellenőrzése. Az adat fogalmának megismerése Útvonalkeresők,
VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA
VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA A VALÓSZÍNŰSÉGI SZEMLÉLET ALAPOZÁSA 1-6. OSZTÁLY A biztos, a lehetetlen és a lehet, de nem biztos események megkülünböztetése Valószínűségi játékok, kísérletek események
Szoftver alapfogalmak
Szoftver alapfogalmak Azon a programok algoritmusok, eljárások, és hozzájuk tartozó dokumentációk összessége, melyek a számítógép működéséhez szükségesek. (nem kézzel fogható, szellemi termékek) Algoritmus
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
5. foglalkozás. Húsz találgatás Információelmélet
5. foglalkozás Húsz találgatás Információelmélet Röviden Mennyi információ van egy 1000 oldalas könyvben? Egy 1000 oldalas telefonkönyvben vagy 1000 üres lapon vagy Tolkien A Gyűrűk Ura könyvében van több
Informatika Rendszerek Alapjai
Informatika Rendszerek Alapjai Dr. Kutor László Alapfogalmak Információ-feldolgozó paradigmák Analóg és digitális rendszerek jellemzői Jelek típusai Átalakítás rendszerek között http://uni-obuda.hu/users/kutor/
Kutatásmódszertan és prezentációkészítés
Kutatásmódszertan és prezentációkészítés 10. rész: Az adatelemzés alapjai Szerző: Kmetty Zoltán Lektor: Fokasz Nikosz Tizedik rész Az adatelemzés alapjai Tartalomjegyzék Bevezetés Leíró statisztikák I
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. estis képzés 2017. ősz 1. Diszkrét matematika 1. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
Jel, adat, információ
Kommunikáció Jel, adat, információ Jel: érzékszerveinkkel, műszerekkel felfogható fizikai állapotváltozás (hang, fény, feszültség, stb.) Adat: jelekből (számítástechnikában: számokból) képzett sorozat.
Intelligens Rendszerek Elmélete. Párhuzamos keresés genetikus algoritmusokkal. A genetikus algoritmus működése. Az élet információ tárolói
Intelligens Rendszerek Elmélete dr. Kutor László Párhuzamos keresés genetikus algoritmusokkal http://mobil.nik.bmf.hu/tantargyak/ire.html login: ire jelszó: IRE07 IRE 5/ Természetes és mesterséges genetikus
A display hirdetések hatékonyságmérése
A display hirdetések hatékonyságmérése A kutatás célja A display hirdetések hatékonyságának vizsgálata a hirdetéseket valós környezetben vizsgáljuk kimutatjuk, hogy a kreatív és a megjelenés típusa milyen
Az egyenes egyenlete: 2 pont. Az összevont alak: 1 pont. Melyik ábrán látható e függvény grafikonjának egy részlete?
1. Írja fel annak az egyenesnek az egyenletét, amely áthalad az (1; 3) ponton, és egyik normálvektora a (8; 1) vektor! Az egyenes egyenlete: 2. Végezze el a következő műveleteket, és vonja össze az egynemű
Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.
Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,
Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.
Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,
ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!
ORVOSI STATISZTIKA Az orvos statsztka helye Élettan Anatóma Kéma Lehet kérdés?? Statsztka! Az orvos döntéseket hoz! Mkor jó egy döntés? Mennyre helyes egy döntés? Mekkora a tévedés lehetősége? Példa: test
MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI
MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk
18. modul: STATISZTIKA
MATEMATIK A 9. évfolyam 18. modul: STATISZTIKA KÉSZÍTETTE: LÖVEY ÉVA, GIDÓFALVI ZSUZSA MODULJÁNAK FELHASZNÁLÁSÁVAL Matematika A 9. évfolyam. 18. modul: STATISZTIKA Tanári útmutató 2 A modul célja Időkeret
Mintavétel fogalmai STATISZTIKA, BIOMETRIA. Mintavételi hiba. Statisztikai adatgyűjtés. Nem véletlenen alapuló kiválasztás
STATISZTIKA, BIOMETRIA. Előadás Mintavétel, mintavételi technikák, adatbázis Mintavétel fogalmai A mintavételt meg kell tervezni A sokaság elemei: X, X X N, lehet véges és végtelen Mintaelemek: x, x x
i p i p 0 p 1 p 2... i p i
. vizsga, 06--9, Feladatok és megoldások. (a) Adja meg az diszkrét eloszlás várható értékének a definícióját! i 0... p i p 0 p p... i p i (b) Tegyük fel, hogy a rigófészkekben található tojások X száma
Shannon és Huffman kód konstrukció tetszőleges. véges test felett
1 Shannon és Huffman kód konstrukció tetszőleges véges test felett Mire is jók ezek a kódolások? A szabványos karakterkódolások (pl. UTF-8, ISO-8859 ) általában 8 biten tárolnak egy-egy karaktert. Ha tudjuk,
Algoritmusok és adatszerkezetek 2.
Algoritmusok és adatszerkezetek 2. Varga Balázs gyakorlata alapján Készítette: Nagy Krisztián 11. gyakorlat Huffmann-kód Egy fát építünk alulról felfelé részfák segítségével. A részfa száraira 0 és 1-eseket
Valószínűségi változók. Várható érték és szórás
Matematikai statisztika gyakorlat Valószínűségi változók. Várható érték és szórás Valószínűségi változók 2016. március 7-11. 1 / 13 Valószínűségi változók Legyen a (Ω, A, P) valószínűségi mező. Egy X :
Gyakorló feladatok Alkalmazott Operációkutatás vizsgára. További. 1. Oldja meg grafikusan az alábbi feladatokat mindhárom célfüggvény esetén!
Gyakorló feladatok Alkalmazott Operációkutatás vizsgára. További példák találhatók az fk.sze.hu oldalon a letöltések részben a közlekedési operációkutatásban 1. Oldja meg grafikusan az alábbi feladatokat
Informatikai alapismeretek
Informatikai alapismeretek Informatika tágabb értelemben -> tágabb értelemben az információ keletkezésével, továbbításával, tárolásával és feldolgozásával foglalkozik Informatika szűkebb értelemben-> számítógépes
Az Informatika Elméleti Alapjai
Az Informatika Elméleti Alapjai dr. Kutor László http://mobil.nik.bmf.hu/tantargyak/iea.html Felhasználónév: iea Jelszó: IEA07 IEA 1/1 Követelmények Vizsga követelmény: félévközi jegy Zárthelyi időpontok:
Matematika A3 Valószínűségszámítás, 6. gyakorlat 2013/14. tavaszi félév
Matematika A3 Valószínűségszámítás, 6. gyakorlat 2013/14. tavaszi félév 1. A várható érték és a szórás transzformációja 1. Ha egy valószínűségi változóhoz hozzáadunk ötöt, mínusz ötöt, egy b konstanst,
MI SZÜKSÉGES A KÉRELMEK ELEKTRONIKUS ÚTON TÖRTÉNŐ BENYÚJTÁSÁHOZ ÉS
MI SZÜKSÉGES A KÉRELMEK ELEKTRONIKUS ÚTON TÖRTÉNŐ BENYÚJTÁSÁHOZ ÉS AZ INTERNETES BANKKÁRTYÁS FIZETÉSHEZ? 1. Ügyfélkapus regisztráció 2. ABEV-JAVA Általános Nyomtatványkitöltő Program 3. Regisztráció a
A 2017/2018 tanévi Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai. INFORMATIKA II. (programozás) kategória
Oktatási Hivatal A 2017/2018 tanévi Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai 1. feladat: Repülők (20 pont) INFORMATIKA II. (programozás) kategória Ismerünk városok közötti repülőjáratokat.
Információelmélet. Informatikai rendszerek alapjai. Horváth Árpád. 2015. október 29.
Információelmélet Informatikai rendszerek alapjai Horváth Árpád 205. október 29.. Információelmélet alapfogalmai Információelmélet Egy jelsorozat esetén vizsgáljuk, mennyi információt tartalmaz. Nem érdekel
Biostatisztika VIII. Mátyus László. 19 October
Biostatisztika VIII Mátyus László 19 October 2010 1 Ha σ nem ismert A gyakorlatban ritkán ismerjük σ-t. Ha kiszámítjuk s-t a minta alapján, akkor becsülhetjük σ-t. Ez további bizonytalanságot okoz a becslésben.
Statisztikai következtetések Nemlineáris regresszió Feladatok Vége
[GVMGS11MNC] Gazdaságstatisztika 10. előadás: 9. Regressziószámítás II. Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet A standard lineáris modell
Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás
Matematikai alapok és valószínőségszámítás Valószínőségi eloszlások Binomiális eloszlás Bevezetés A tudományos életben megfigyeléseket teszünk, kísérleteket végzünk. Ezek többféle különbözı eredményre
Valószínűségszámítás és statisztika
Valószínűségszámítás és statisztika Programtervező informatikus szak esti képzés Varga László Valószínűségelméleti és Statisztika Tanszék Matematikai Intézet Természettudományi Kar Eötvös Loránd Tudományegyetem
Információs rendszerek elméleti alapjai. Információelmélet
Információs rendszerek elméleti alapjai Információelmélet Az információ nem növekedés törvénye Adatbázis x (x adatbázis tartalma) Kérdés : y Válasz: a = f(y, x) Mennyi az a információtartalma: 2017. 04.
Új típusú döntési fa építés és annak alkalmazása többtényezős döntés területén
Új típusú döntési fa építés és annak alkalmazása többtényezős döntés területén Dombi József Szegedi Tudományegyetem Bevezetés - ID3 (Iterative Dichotomiser 3) Az ID algoritmusok egy elemhalmaz felhasználásával
TÖMÖRÍTÉS, DARABOLÁS ELSŐ TÉMAKÖR: FÁJLKEZELÉS FÁJLOK BECSOMAGOLÁSA
1 ELSŐ TÉMAKÖR: FÁJLKEZELÉS TÖMÖRÍTÉS, DARABOLÁS Ebben a feladatban a következőket fogjuk gyakorolni: Fájlok becsomagolása, tömörített fájlok kicsomagolása. Nagyméretű fájlok darabolása, fájlegyesítés.
GROVER-algoritmus. Sinkovicz Péter. ELTE, MSc II dec.15.
ELTE, MSc II. 2011.dec.15. Áttekintés Feladat Algoritmus Kvantum keresési algoritmus áttekintése Input: N = 2 n elemű tömb, Ψ 1 = 0 1 kezdőállapot, f x0 (x) orákulum függvény. Output: x 0 keresett elem
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát
Hatékonyság 1. előadás
Hatékonyság 1. előadás Mi a hatékonyság Bevezetés A hatékonyság helye a programkészítés folyamatában: csak HELYES programra Erőforrásigény: a felhasználó és a fejlesztő szempontjából A hatékonyság mérése
Diszkrét matematika I.
Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 11. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Kongruenciák Diszkrét matematika I. középszint 2014.
Minimum követelmények matematika tantárgyból 11. évfolyamon
Minimum követelmények matematika tantárgyból. évfolyamon A hatványozás általánosítása pozitív alap esetén racionális kitevőre. Műveletek hatványokkal. A, a 0 függvény. Az eponenciális függvény. Vizsgálata
Levelezési beállítások
Levelezési beállítások Tartalomjegyzék 1 2 2.1 2.2 2.3 2.4 3 Általános információk...2 Beállítások Windows alatt...2 Thunderbird beállítások...2 Microsoft Outlook 2010 beállítások...6 Androidos beállítások...10
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Felvételi tematika INFORMATIKA
Felvételi tematika INFORMATIKA 2016 FEJEZETEK 1. Természetes számok feldolgozása számjegyenként. 2. Számsorozatok feldolgozása elemenként. Egydimenziós tömbök. 3. Mátrixok feldolgozása elemenként/soronként/oszloponként.
Biomatematika 2 Orvosi biometria
Biomatematika 2 Orvosi biometria 2017.02.05. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)
TestLine - GINOP teszt Minta feladatsor
GINOP képzés szintfelmérő tesztje Mit lehet a HTML-el csinálni 1. 1:10 Könnyű emutatót készíteni Weblapot készíteni Jósolni Szöveget szerkeszteni Melyek tartoznak az operációs rendszer alapvető feladatai
2. Fejezet : Számrendszerek
2. Fejezet : Számrendszerek The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson Wong, Bentley College
Microsoft Excel 2010. Gyakoriság
Microsoft Excel 2010 Gyakoriság Osztályközös gyakorisági tábla Nagy számú mérési adatokat csoportokba (osztályokba) rendezése -> könnyebb áttekintés Osztályokban szereplő adatok száma: osztályokhoz tartozó
Diszkrét matematika 2.
Diszkrét matematika 2. A szakirány 11. előadás Ligeti Péter turul@cs.elte.hu www.cs.elte.hu/ turul Nagy hálózatok Nagy hálózatok jellemzése Internet, kapcsolati hálók, biológiai hálózatok,... globális
Kódolás, hibajavítás. Tervezte és készítette Géczy LászlL. szló 2002
Kódolás, hibajavítás Tervezte és készítette Géczy LászlL szló 2002 Jelkapcsolat A jelkapcsolatban van a jelforrás, amely az üzenő, és a jelérzékelő (vevő, fogadó), amely az értesített. Jelforrás üzenet
1. A kísérlet naiv fogalma. melyek közül a kísérlet minden végrehajtásakor pontosan egy következik be.
IX. ESEMÉNYEK, VALÓSZÍNŰSÉG IX.1. Események, a valószínűség bevezetése 1. A kísérlet naiv fogalma. Kísérlet nek nevezzük egy olyan jelenség előidézését vagy megfigyelését, amelynek kimenetelét az általunk
Próba érettségi feladatsor április 09. I. RÉSZ. 1. Hány fokos az a konkáv szög, amelyiknek koszinusza: 2
Név: osztály: Próba érettségi feladatsor 010 április 09 I RÉSZ Figyelem! A dolgozatot tollal írja; az ábrákat ceruzával is rajzolhatja A megoldást minden esetben a feladat szövege melletti fehér hátterű
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,
A napsugárzás mérések szerepe a napenergia előrejelzésében
A napsugárzás mérések szerepe a napenergia előrejelzésében Nagy Zoltán 1, Dobos Attila 2, Rácz Csaba 2 1 Országos Meteorológiai Szolgálat 2 Debreceni Egyetem Agrártudományi Központ Könnyű, vagy nehéz feladat
Készítette: Bruder Júlia
Készítette: Bruder Júlia nkp.hu Megfigyelés Kísérlet Mérés Feladat: Lakóhely időjárásának megfigyelése 2 hétig: max. hőmérséklet, min. hőmérséklet, szél (nincs, gyenge, erős), csapadék. Az adatokat táblázatba
Mit emelj ki a négyjegyűben?
Mit emelj ki a négyjegyűben? Már többször észrevettem, hogy az érettségi előtt állók, nem tudják használni a négyjegyű függvénytáblázatot. Ez nem az ő hibájuk... sajnos az oktatás nem tér ki erre... ezt
Valószín ségszámítás és statisztika
Valószín ségszámítás és statisztika Informatika BSc, esti tagozat Backhausz Ágnes agnes@math.elte.hu fogadóóra: szerda 10-11 és 13-14, D 3-415 2018/2019. tavaszi félév Bevezetés A valószín ségszámítás
TU 7 NYOMÁSSZABÁLYZÓ ÁLLOMÁSOK ROBBANÁSVESZÉLYES TÉRSÉGÉNEK MEGHATÁROZÁSA ÉS BESOROLÁSA AZ MSZ EN 60079-10:2003 SZABVÁNY SZERINT.
TU 7 NYOMÁSSZABÁLYZÓ ÁLLOMÁSOK ROBBANÁSVESZÉLYES TÉRSÉGÉNEK MEGHATÁROZÁSA ÉS BESOROLÁSA AZ MSZ EN 60079-10:2003 SZABVÁNY SZERINT. Előterjesztette: Jóváhagyta: Doma Géza koordinációs főmérnök Posztós Endre
1. feladat: A decimális kódokat az ASCII kódtábla alapján kódold vissza karakterekké és megkapod a megoldást! Kitől van az idézet?
Projekt feladatai: 1. feladat: A decimális kódokat az ASCII kódtábla alapján kódold vissza karakterekké és megkapod a megoldást! Kitől van az idézet? 65 109 105 32 105 103 97 122 160 110 32 115 122 160
Osztott jáva programok automatikus tesztelése. Matkó Imre BBTE, Kolozsvár Informatika szak, IV. Év 2007 január
Osztott jáva programok automatikus tesztelése Matkó Imre BBTE, Kolozsvár Informatika szak, IV. Év 2007 január Osztott alkalmazások Automatikus tesztelés Tesztelés heurisztikus zaj keltés Tesztelés genetikus
Magyar Nemzeti Bank FELHASZNÁLÓI SEGÉDLET
Magyar Nemzeti Bank ERA Nagyméretű állományok kezelése FELHASZNÁLÓI SEGÉDLET v09. 2018.02.16. Tartalom 1. NAK szolgáltatáshoz történő regisztráció.... 3 2. NAK kliens letöltése... 5 3. Állomány feltöltése
Feladat. Bemenő adatok. Bemenő adatfájlok elvárt formája. Berezvai Dániel 1. beadandó/4. feladat 2012. április 13. Például (bemenet/pelda.
Berezvai Dániel 1. beadandó/4. feladat 2012. április 13. BEDTACI.ELTE Programozás 3ice@3ice.hu 11. csoport Feladat Madarak életének kutatásával foglalkozó szakemberek különböző településen különböző madárfaj
Logika és informatikai alkalmazásai kiskérdések február Mikor mondjuk, hogy az F formula a G-nek részformulája?
,,Alap kiskérdések Logika és informatikai alkalmazásai kiskérdések 2012. február 19. 1. Hogy hívjuk a 0 aritású függvényjeleket? 2. Definiálja a termek halmazát. 3. Definiálja a formulák halmazát. 4. Definiálja,
Készítette: Fegyverneki Sándor. Miskolci Egyetem, 2002.
INFORMÁCIÓELMÉLET Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2002. i TARTALOMJEGYZÉK. Bevezetés 2. Az információmennyiség 6 3. Az I-divergencia 3 3. Információ és bizonytalanság
Algoritmusok Tervezése. 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás
Algoritmusok Tervezése 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás Mi az algoritmus? Lépések sorozata egy feladat elvégzéséhez (legáltalánosabban) Informálisan algoritmusnak nevezünk bármilyen jól definiált
Gazdasági matematika II. vizsgadolgozat megoldása A csoport
Gazdasági matematika II. vizsgadolgozat megoldása A csoport Definiálja az alábbi fogalmakat!. Egy eseménynek egy másik eseményre vonatkozó feltételes valószínűsége. ( pont) Az A esemény feltételes valószínűsége
Informatikai rendszerek alapjai
Iformatikai redszerek alapjai Dr. Kutor László Hiba típusok, meghibásodási görbe A csatorakódolás elve és gyakorlata a hibatűrés feltétele: a redudacia http://ui-obuda.hu/users/kutor/ 2015. ősz Óbudai
Informatikai alapismeretek (Információ-Technológia)
1 Informatikai alapismeretek (Információ-Technológia) 17. rész TÖMÖRÍTÉS, BIZTONSÁG és NETIKETT Készítette: Komárominé Kék Erika 2 Tömörítés Fogalma: Okai: adatvesztés nélküli méretkicsinyítés -ritkán
ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül
A Borel Cantelli lemma és annak általánosítása. A valószínűségszámítás egyik fontos eredménye a Borel Cantelli lemma. Először informálisan ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az
Az önértékelés szerepe a továbbtanulási döntésekben
Közmunka, külföldi munkavállalás és a magyar munkaerőpiac 2014. november 28., Szirák, Hotel Kastély Keller Tamás Az önértékelés szerepe a továbbtanulási döntésekben A munka az OTKA PD-105976-os számú poszt-doktori
Információelmélet Szemináriumi gyakorlatok
Információelmélet Szemináriumi gyakorlatok. feladat. Adott az alábbi diszkrét valószínűségi változó: ( ) a b c d X = Számítsuk ki az entróiáját: H(X ) =?. feladat. Adott az alábbi diszkrét valószínűségi
Intelligens Rendszerek Gyakorlata. Neurális hálózatok I.
: Intelligens Rendszerek Gyakorlata Neurális hálózatok I. dr. Kutor László http://mobil.nik.bmf.hu/tantargyak/ir2.html IRG 3/1 Trend osztályozás Pnndemo.exe IRG 3/2 Hangulat azonosítás Happy.exe IRG 3/3