1. tétel. Valószínűségszámítás vizsga Frissült: január 19. Valószínűségi mező, véletlen tömegjelenség.

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség."

Átírás

1 1. tétel Valószínűségszámítás vizsga Frissült: január 19. Valószínűségi mező, véletlen tömegjelenség. A valószínűségszámítás tárgya: véletlen tömegjelenségek vizsgálata. véletlen: a kísérlet kimenetelét a megvizsgált / rendelkezésre álló adatokból nem tudjuk előre megmondani. tömegjelenség: megfigyelés azonos körülmények között akárhányszor/sokszor megismételhető. Valóság megfigyelése matematikai modell következtetések a valóságra. Eseménytér (Ω), esemény algebrája (F) és a valószínűség (P ) együttese: valószínűségi mező. Elemi esemény, eseménytér, esemény algebra, műveletek események között Definíció. A véletlen kísérlet lehetséges kimenetelei - elemi események. Általában ezeket ω-val (kis omega) jelöljük. Ezek összességét eseménytérnek nevezzük és Ω-val (nagy omega) jelöljük. Definíció. Ω bizonyos részhalmazait eseményeknek nevezzük. Ezek kísérletek kimenetelével kapcsolatos kijelentéseknek felelnek meg. Általában betűkkel jelöljük:a, B, C. Azt mondjuk, hogy egy A esemény bekövetkezik, ha a kísérlet kimenetele ω A. Megjegyzés. Folytonos esetben általában csak olyan részhalmazt tekintünk eseménytérnek, amiknek értelmezhető a hossza/területe. Műveletek események között A + B: A vagy B bekövetkezik, legalább az egyik bekövetkezik - A B unió. A B A B metszet. A- tagadás komplementer A B A bekövetkezik de B nem A \ B 1

2 ezekhez a műveletekhez érvényesek a szokásos halmazelméleti tulajdonságok, állítások, azonosságok. Pl. 1. De Morgan: A + B = A B A B = A + B A = A A + A = Ω (A + B) C = AC + BC Egymást kizáró események, teljes eseményrendszer Definíció. A és B egymást kizáró események, ha (egyszerre nem következhetnek be.) A B = Példa. A = {2, 4, 6}-párosok, B = {5}-ötös egymást kizáró események Definíció. A 1, A 2,...A n (végtelen esemény is lehet) események teljes eseményrendszert alkotnak, ha 1. Páronként egymást kizáróak: A i A j = i j 2. Valamelyik biztosan bekövetkezik közülük uniói a biztos esemény: vagy n A i = Ω n A i = Ω Azaz mindig pontosan egy következik be közülük, avagy ezek az Ω egy parkettázását adja. 2

3 Modellalkotás relatív gyakoriság megfigyelésével (a valószínűség tapasztalati származtatása) Valószínűség tapasztalati származtatása Példa. Egy bizonyos fajta izzó több mint 2000 óráig ég. - B esemény. Mi ennek a valószínűsége? aív válasz: Sok izzót megnézünk, megszámoljuk, ebből hányra teljesül hogy több mint 2000 óráig ég, azaz a B esemény. Ezt a számot jelölje: k B, - kedvező esetek gyakorisága. k B, Tapasztalat szerint. relatív gyakoriság, növelésével egyre kevésbé ingadozik, beáll egy számra és ezt a számot hívjuk a B esemény tapasztalati valószínűségének, és P (B)-vel jelöljük. aívan azt írhatjuk, hogy k B, lim + = P (B) - de ez csak egy "naív" jelölés! Mivel k B, véletlen szám, ezért a szokásos analízisbeli definíciója a határértéknek itt nem lesz megfelelő, ezt "bonyolítani" kell: ε > 0, δ > 0 -ra Ñ, hogy > Ñ esetén ( ) k B, P P (B) < ε 1 δ Ez az ún. nagy számok gyenge törvényének speciális esete. Tapasztalati valószínűség / relatív valószínűségre igaz biztos esemény. 0 k B, 1 = 0 P (B) 1 k B, = 1 P (Ω) = 1 3. Ha A és B diszjunktak, azaz A B =, k A+B, = k A, + k B, P (A + B) = P (A) + P (B) A valószínűség matematikai fogalma, a valószínűség axiómái A P valószínűség egy P : F R függvény, azaz A F eseményhez hozzárendel egy P (A) R valós számot, amelyre a következő tulajdonságok teljesülnek: 1. A F eseményre 0 P (A) 1 3

4 2. P (Ω) = 1 3. Tetszőleges A és B egymást kizáró eseményre: A B = A B = P (A + B) = P (A) + P (B) 3 Tetszőleges Megszámlálhatóan végtelen sok, egymást kizáró A 1, A 2,...A n eseményre: ( + ) + P A i = P (A i ) vagy ( + ) P A i = + P (A i ) Az 1, 2, 3, 3 tulajdonságokat együttesen a valószínűség axiómáinak nevezzük. Megjegyzés. Ezek az axiómák nem mondják meg azt, hogy hogyan kell a valószínűséget kiszámítani. Azonban ezekből az alaptulajdonságokból számtalan általános, a valószínűségre vonatkozó tétel levezethető, amelyeket a gyakorlatban lehet használni. Valószínűségi mező (eseménytér, eseményalgebra, valószínűség Definíció. A fenti megadott tulajdonságokkal rendelkező eseménytér (Ω) - esemény algebra (F) - valószínűség (P ) hármast valószínűségi mezőnek nevezzük. A valószínűség néhány tulajdonsága. Szita formula. Klasszikus valószínűségi mező, geometriai valószínűség, példák. Állítás. Például: A valószínűség axiómáiból következnek az alábbi tulajdonságok. 1. P (A) = 1 P (A) 2. Ha A 1, A 2,...A n teljes eseményrendszert alkot, akkor P (A 1 ) + P (A 2 ) +...P (A n ) = 1 3. ha A B (A bekövetkezése maga után vonja B-t) akkor P (A) P (B) 4. P (A B) = P (A) P (AB) 4

5 Szita formula. Ha A és B nem egymást kizáróak, akkor nem feltétlenül igaz a 2. tulajdonság. Ekkor használjuk a szita formulát: 3 eseményre: P (A + B) = P (A) + P (B) P (AB) P (A + B + C) = P (A) + P (B) + P (C) P (AB) P (AC) P (BC) + P (ABC) Klasszikus valószínűségi mező Tegyük fel, hogy Ω < és elemi esemény azonos valószínűségű, azaz Ω = esetén (Ω = (ω 1, ω 2,...ω n )) Ekkor tehát A esemény esetén P (ω 1 ) =... = P (ω n ) = 1 P (A) = A az A szempontjából kedvező esetek száma = Ω az összes eset száma Geometriai valószínűség Definíció. Legyen Ω R n tartomány, (n = 1, 2, 3... terület térfogatát lehet értelmezni, ebből kell pontot kiválasztani.) ω Ω pontok elemi események. (Kísérlet: ω Omega pontot kiválasztok.) Tegyük fel, hogy Ω-nak nincsenek kitüntetett részei, azaz tetszőleges A Ω mérhető halmaz esetén annak az esélye, hogy A-ból választok pontot, P (A) = t(a) t(ω) azaz az A területével/térfogatával arányos. Megjegyzés. Ez azt fejezi ki, hogy egyenletes eloszlás szerint választom a ω Ω pontot az Ω halmazból. Példák Két kocka. Feldobjuk, mi a valószínűsége, hogy a dobott számok összege 7? Megoldás: Ω = (1, 1),..(6, 6) - 36 lehetőség, és A = (1, 6), (2, 5), (6, 1)... P () = 6 36 = 1 6 Céltáblára lövök. P (a tábla felső felét találom el) = P (A) =? P (6 pontos lövésem lesz) = P (B) =? 5

6 A táblát mindig eltalálom, és nincs kitüntetett része a táblának. P (A) = t( ) t( ) = 1 2 P (B) = t( ) t( ) = 32 π 2 2 π 5 2 = 1 π 5 Példa volt még: Karola és Lőrinc randevúznak. mi a val.e hogy találkoznak, mennyit kell várnia valamelyiküknek..., Buffon tű problémája. 6

Az ész természetéhez tartozik, hogy a dolgokat nem mint véletleneket, hanem mint szükségszerűeket szemléli (Spinoza: Etika, II. rész, 44.

Az ész természetéhez tartozik, hogy a dolgokat nem mint véletleneket, hanem mint szükségszerűeket szemléli (Spinoza: Etika, II. rész, 44. Dr. Vincze Szilvia Az ész természetéhez tartozik, hogy a dolgokat nem mint véletleneket, hanem mint szükségszerűeket szemléli (Spinoza: Etika, II. rész, 44. tétel) Környezetünkben sok olyan jelenséget

Részletesebben

Matematika III. 2. Eseményalgebra Prof. Dr. Závoti, József

Matematika III. 2. Eseményalgebra Prof. Dr. Závoti, József Matematika III. 2. Eseményalgebra Prof. Dr. Závoti, József Matematika III. 2. : Eseményalgebra Prof. Dr. Závoti, József Lektor : Bischof, Annamária Ez a modul a TÁMOP - 4.1.2-08/1/A-2009-0027 Tananyagfejlesztéssel

Részletesebben

1. A kísérlet naiv fogalma. melyek közül a kísérlet minden végrehajtásakor pontosan egy következik be.

1. A kísérlet naiv fogalma. melyek közül a kísérlet minden végrehajtásakor pontosan egy következik be. IX. ESEMÉNYEK, VALÓSZÍNŰSÉG IX.1. Események, a valószínűség bevezetése 1. A kísérlet naiv fogalma. Kísérlet nek nevezzük egy olyan jelenség előidézését vagy megfigyelését, amelynek kimenetelét az általunk

Részletesebben

Példa a report dokumentumosztály használatára

Példa a report dokumentumosztály használatára Példa a report dokumentumosztály használatára Szerző neve évszám Tartalomjegyzék 1. Valószínűségszámítás 5 1.1. Események matematikai modellezése.............. 5 1.2. A valószínűség matematikai modellezése............

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

4. Az A és B események egymást kizáró eseményeknek vagy idegen (diszjunkt)eseményeknek nevezzük, ha AB=O

4. Az A és B események egymást kizáró eseményeknek vagy idegen (diszjunkt)eseményeknek nevezzük, ha AB=O 1. Mit nevezünk elemi eseménynek és eseménytérnek? A kísérlet lehetséges kimeneteleit elemi eseményeknek nevezzük. Az adott kísélethez tartozó elemi események halmazát eseménytérnek nevezzük, jele: X 2.

Részletesebben

Valószínűségi változók. Várható érték és szórás

Valószínűségi változók. Várható érték és szórás Matematikai statisztika gyakorlat Valószínűségi változók. Várható érték és szórás Valószínűségi változók 2016. március 7-11. 1 / 13 Valószínűségi változók Legyen a (Ω, A, P) valószínűségi mező. Egy X :

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.15. Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza) alkotja az eseményteret. Esemény: az eseménytér részhalmazai.

Részletesebben

VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA

VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA A VALÓSZÍNŰSÉGI SZEMLÉLET ALAPOZÁSA 1-6. OSZTÁLY A biztos, a lehetetlen és a lehet, de nem biztos események megkülünböztetése Valószínűségi játékok, kísérletek események

Részletesebben

Elméleti összefoglaló a Valószín ségszámítás kurzushoz

Elméleti összefoglaló a Valószín ségszámítás kurzushoz Elméleti összefoglaló a Valószín ségszámítás kurzushoz Véletlen kísérletek, események valószín sége Deníció. Egy véletlen kísérlet lehetséges eredményeit kimeneteleknek nevezzük. A kísérlet kimeneteleinek

Részletesebben

Biomatematika 2 Orvosi biometria

Biomatematika 2 Orvosi biometria Biomatematika 2 Orvosi biometria 2017.02.13. Populáció és minta jellemző adatai Hibaszámítás Valószínűség 1 Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza)

Részletesebben

BIOMATEMATIKA ELŐADÁS

BIOMATEMATIKA ELŐADÁS BIOMATEMATIKA ELŐADÁS 7. Bevezetés a valószínűségszámításba Debreceni Egyetem, 2015 Dr. Bérczes Attila, Bertók Csanád A diasor tartalma 1 Bevezetés 2 Definíciók, tulajdonságok Példák Valószínűségi mező

Részletesebben

Valószín ségszámítás és statisztika

Valószín ségszámítás és statisztika Valószín ségszámítás és statisztika Informatika BSc, esti tagozat Backhausz Ágnes agnes@math.elte.hu fogadóóra: szerda 10-11 és 13-14, D 3-415 2018/2019. tavaszi félév Bevezetés A valószín ségszámítás

Részletesebben

1. tétel Halmazok és halmazok számossága. Halmazműveletek és logikai műveletek kapcsolata.

1. tétel Halmazok és halmazok számossága. Halmazműveletek és logikai műveletek kapcsolata. 1. tétel Halmazok és halmazok számossága. Halmazműveletek és logikai műveletek kapcsolata. HLMZOK halmaz axiomatikus fogalom, nincs definíciója. benne van valami a halmazban szintén axiomatikus fogalom,

Részletesebben

Biometria az orvosi gyakorlatban. Számítógépes döntéstámogatás

Biometria az orvosi gyakorlatban. Számítógépes döntéstámogatás SZDT-01 p. 1/23 Biometria az orvosi gyakorlatban Számítógépes döntéstámogatás Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Gyakorlat SZDT-01 p.

Részletesebben

Matematika III. 3. A valószínűségszámítás elemei Prof. Dr. Závoti, József

Matematika III. 3. A valószínűségszámítás elemei Prof. Dr. Závoti, József Matematika III. 3. A valószínűségszámítás elemei Prof. Dr. Závoti, József Matematika III. 3. : A valószínűségszámítás elemei Prof. Dr. Závoti, József Lektor : Bischof, Annamária Ez a modul a TÁMOP - 4.1.2-08/1/A-2009-0027

Részletesebben

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 3. MA3-3 modul. A valószínűségszámítás elemei

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 3. MA3-3 modul. A valószínűségszámítás elemei Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof Dr Závoti József Matematika III 3 MA3-3 modul A valószínűségszámítás elemei SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról szóló 1999

Részletesebben

Matematikai alapok és valószínőségszámítás. Valószínőségszámítási alapok

Matematikai alapok és valószínőségszámítás. Valószínőségszámítási alapok Matematikai alapok és valószínőségszámítás Valószínőségszámítási alapok Bevezetés A tudományos életben vizsgálódunk pontosabb megfigyelés, elırejelzés, megértés reményében. Ha egy kísérletet végzünk, annak

Részletesebben

Jármőtervezés és vizsgálat I. VALÓSZÍNŐSÉGSZÁMÍTÁSI ALAPFOGALMAK Dr. Márialigeti János

Jármőtervezés és vizsgálat I. VALÓSZÍNŐSÉGSZÁMÍTÁSI ALAPFOGALMAK Dr. Márialigeti János BUDAPESTI MŐSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM KÖZLEKEDÉSMÉRNÖKI KAR JÁRMŐELEMEK ÉS HAJTÁSOK TANSZÉK Jármőtervezés és vizsgálat I. VALÓSZÍNŐSÉGSZÁMÍTÁSI ALAPFOGALMAK Dr. Márialigeti János Budapest 2008

Részletesebben

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem.

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Elemi esemény: a kísérlet egyes lehetséges egyes lehetséges kimenetelei.

Részletesebben

Mi az adat? Az adat elemi ismeret. Az adatokból információkat

Mi az adat? Az adat elemi ismeret. Az adatokból információkat Mi az adat? Az adat elemi ismeret. Tények, fogalmak olyan megjelenési formája, amely alkalmas emberi eszközökkel történő értelmezésre, feldolgozásra, továbbításra. Az adatokból gondolkodás vagy gépi feldolgozás

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:

Részletesebben

x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel:

x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel: Valószínűségi változó általános fogalma: A : R leképezést valószínűségi változónak nevezzük, ha : ( ) x, x R, x rögzített esetén esemény.

Részletesebben

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1 Halmazok 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 2 A fejezet legfontosabb elemei Halmaz megadási módjai Halmazok közti műveletek (metszet,

Részletesebben

Valószínűségszámítás és statisztika a fizikában február 16.

Valószínűségszámítás és statisztika a fizikában február 16. számítás és statisztika a fizikában 2018. február 16. Technikai információk Palla Gergely / pallag@hal.elte.hu / ELTE TTK Biológiai Fizika Tanszék, Északi Tömb, 3.90. szoba Fogadó óra: hétfő, 16-18. Az

Részletesebben

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás Matematikai alapok és valószínőségszámítás Valószínőségi eloszlások Binomiális eloszlás Bevezetés A tudományos életben megfigyeléseket teszünk, kísérleteket végzünk. Ezek többféle különbözı eredményre

Részletesebben

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé.

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. HA 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) HA 2 Halmazok HA 3 Megjegyzések A halmaz, az elem és az eleme fogalmakat nem definiáljuk, hanem alapfogalmaknak

Részletesebben

Valószínűségszámítás összefoglaló

Valószínűségszámítás összefoglaló Statisztikai módszerek BMEGEVGAT Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:

Részletesebben

Valószín ségszámítás. Survey statisztika mesterszak és földtudomány alapszak Backhausz Ágnes 2018/2019.

Valószín ségszámítás. Survey statisztika mesterszak és földtudomány alapszak Backhausz Ágnes 2018/2019. Valószín ségszámítás Survey statisztika mesterszak és földtudomány alapszak Backhausz Ágnes agnes@cs.elte.hu 2018/2019. szi félév A valószín ségszámítás kurzus céljai a statisztika megalapozása: a véletlen

Részletesebben

1. Kombinatorikai bevezetés

1. Kombinatorikai bevezetés 1. Kombinatorikai bevezetés 1.1. Permutációk Adott n különböző elem ismétlés nélküli permutációján az elemek egy meghatározott sorrendjét értjük. Az n különböző elem összes permutációinak számát P n -nel

Részletesebben

Elméleti összefoglaló a Sztochasztika alapjai kurzushoz

Elméleti összefoglaló a Sztochasztika alapjai kurzushoz Elméleti összefoglaló a Sztochasztika alapjai kurzushoz 1. dolgozat Véletlen kísérletek, események valószín sége Deníció. Egy véletlen kísérlet lehetséges eredményeit kimeneteleknek nevezzük. A kísérlet

Részletesebben

Halmazelmélet. 1. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Halmazelmélet p. 1/1

Halmazelmélet. 1. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Halmazelmélet p. 1/1 Halmazelmélet 1. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Halmazelmélet p. 1/1 A halmaz fogalma, jelölések A halmaz fogalmát a matematikában nem definiáljuk, tulajdonságaival

Részletesebben

Gazdasági matematika II. vizsgadolgozat megoldása A csoport

Gazdasági matematika II. vizsgadolgozat megoldása A csoport Gazdasági matematika II. vizsgadolgozat megoldása A csoport Definiálja az alábbi fogalmakat!. Egy eseménynek egy másik eseményre vonatkozó feltételes valószínűsége. ( pont) Az A esemény feltételes valószínűsége

Részletesebben

Matematika III. 4. A valószínűségi változó és jellemzői Prof. Dr. Závoti, József

Matematika III. 4. A valószínűségi változó és jellemzői Prof. Dr. Závoti, József Matematika III. 4. A valószínűségi változó és jellemzői Prof. Dr. Závoti, József Matematika III. 4. : A valószínűségi változó és jellemzői Prof. Dr. Závoti, József Lektor : Bischof, Annamária Ez a modul

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 8. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás, // KURZUS: Matematika II. MODUL: Valószínűség-számítás 21. lecke: A feltételes valószínűség, események függetlensége Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,

Részletesebben

1. előadás: Halmazelmélet, számfogalom, teljes

1. előadás: Halmazelmélet, számfogalom, teljes 1. előadás: Halmazelmélet, számfogalom, teljes indukció Szabó Szilárd Halmazok Halmaz: alapfogalom, bizonyos elemek (matematikai objektumok) összessége. Egy halmaz akkor adott, ha minden objektumról eldönthető,

Részletesebben

24. tétel A valószínűségszámítás elemei. A valószínűség kiszámításának kombinatorikus modellje.

24. tétel A valószínűségszámítás elemei. A valószínűség kiszámításának kombinatorikus modellje. 24. tétel valószíűségszámítás elemei. valószíűség kiszámításáak kombiatorikus modellje. GYORISÁG ÉS VLÓSZÍŰSÉG meyibe az egyes adatok a sokaságo belüli részaráyát adjuk meg (törtbe vagy százalékba), akkor

Részletesebben

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 4. MA3-4 modul. A valószínűségi változó és jellemzői

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 4. MA3-4 modul. A valószínűségi változó és jellemzői Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematika III. 4. MA3-4 modul A valószínűségi változó és jellemzői SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról

Részletesebben

Valószínűségszámítás. Tómács Tibor. F, P ) egy valószínűségi mező, A P (A). Ha ϱ n az A gyakorisága, kísérletek száma, akkor minden ε. p(1 p) nε 2.

Valószínűségszámítás. Tómács Tibor. F, P ) egy valószínűségi mező, A P (A). Ha ϱ n az A gyakorisága, kísérletek száma, akkor minden ε. p(1 p) nε 2. Tómács Tibor Valószínűségszámítás F, P egy valószínűségi mező, A P (A. Ha ϱ n az A gyakorisága, kísérletek száma, akkor minden ε én ( ϱ n P n p ε p(1 p nε 2. Matematikai és Informatikai Intézet Tómács

Részletesebben

Bevezetés. Valószínűségszámítás 2 előadás III. alk. matematikus szak. Irodalom. Egyéb info., számonkérés. Cél. Alapfogalmak (ismétlés)

Bevezetés. Valószínűségszámítás 2 előadás III. alk. matematikus szak. Irodalom. Egyéb info., számonkérés. Cél. Alapfogalmak (ismétlés) Valószínűségszámítás 2 előaás III. alk. matematikus szak 2016/2017 1. félév Zempléni Anrás Bevezetés Iroalom, követelmények A félév célja Alapfogalmak mértékelméleti alapon Kapcsolóás a val.szám. 1-hez

Részletesebben

Matematikai logika és halmazelmélet

Matematikai logika és halmazelmélet Matematikai logika és halmazelmélet Wettl Ferenc előadása alapján 2015-09-07 Wettl Ferenc előadása alapján Matematikai logika és halmazelmélet 2015-09-07 1 / 21 Tartalom 1 Matematikai kijelentések szerkezete

Részletesebben

Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus. KOKI,

Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus. KOKI, Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár PhD kurzus. KOKI, 2015.09.17. Mi a statisztika? A sokaság (a sok valami) feletti áttekintés megszerzése, a sokaságról való információszerzés eszköze.

Részletesebben

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül A Borel Cantelli lemma és annak általánosítása. A valószínűségszámítás egyik fontos eredménye a Borel Cantelli lemma. Először informálisan ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az

Részletesebben

Valószínűségszámítás és statisztika

Valószínűségszámítás és statisztika Valószínűségszámítás és statisztika Programtervező informatikus szak esti képzés Varga László Valószínűségelméleti és Statisztika Tanszék Matematikai Intézet Természettudományi Kar Eötvös Loránd Tudományegyetem

Részletesebben

Valószín ségszámítás és statisztika

Valószín ségszámítás és statisztika Valószín ségszámítás és statisztika Informatika BSc, esti tagozat Backhausz Ágnes agnes@cs.elte.hu 2016/2017. tavaszi félév Bevezetés Célok: véletlen folyamatok modellezése; kísérletekb l, felmérésekb

Részletesebben

Mérhetőség, σ-algebrák, Lebesgue Stieltjes-integrál, véletlen változók és eloszlásfüggvényeik

Mérhetőség, σ-algebrák, Lebesgue Stieltjes-integrál, véletlen változók és eloszlásfüggvényeik Mérhetőség, σ-algebrák, Lebesgue Stieltjes-integrál, véletlen változók és eloszlásfüggvényeik Az A halmazrendszer σ-algebra az Ω alaphalmazon, ha Ω A; A A A c A; A i A, i N, i N A i A. Az A halmazrendszer

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 2. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Matematikai logika Diszkrét matematika I. középszint

Részletesebben

TANTÁRGYI PROGRAM Matematikai alapok 2. útmutató

TANTÁRGYI PROGRAM Matematikai alapok 2. útmutató BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok 2. útmutató 2015/2016. tanév I. félév Tantárgyi program Tantárgy megnevezése Tantárgy jellege/típusa:

Részletesebben

Halmaz: alapfogalom, bizonyos elemek (matematikai objektumok) Egy halmaz akkor adott, ha minden objektumról eldönthető, hogy

Halmaz: alapfogalom, bizonyos elemek (matematikai objektumok) Egy halmaz akkor adott, ha minden objektumról eldönthető, hogy 1. előadás: Halmazelmélet Szabó Szilárd Halmazok Halmaz: alapfogalom, bizonyos elemek (matematikai objektumok) összessége. Egy halmaz akkor adott, ha minden objektumról eldönthető, hogy hozzátartozik-e,

Részletesebben

Néhány kockadobással kapcsolatos feladat 1 P 6

Néhány kockadobással kapcsolatos feladat 1 P 6 Néhány kockadobással kapcsolatos feladat Feldobunk egy kockát. Az eseménytér: ; 2; ; ; ; Az összes esetek száma:. Feldobunk egy kockát. Mi a valószínűsége, hogy hatost dobunk? A kedvező esetek száma: (hatost

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 1 I. HALmAZOk 1. JELÖLÉSEk A halmaz fogalmát tulajdonságait gyakran használjuk a matematikában. A halmazt nem definiáljuk, ezt alapfogalomnak tekintjük. Ez nem szokatlan, hiszen

Részletesebben

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 9. évfolyam I. Halmazok 1. Alapfogalmak, jelölések 2. Halmaz, részhalmaz fogalma, részhalmazok száma, jelölések 3. Nevezetes számhalmazok (N,

Részletesebben

Matematika A4 I. gyakorlat megoldás

Matematika A4 I. gyakorlat megoldás Matematika A I. gyakorlat megoldás 1. Kombinatorikus módszer ismétlés nélküli ismétléses permutáció n! n! k 1!k 2!...k r! n futó beérkezésének sorrendje n golyót ennyiféleképpen állíthatunk sorba, ha k

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2013 ősz 1. Diszkrét matematika I. középszint 8. előadás Mérai László merai@compalg.inf.elte.hu compalg.inf.elte.hu/ merai Komputeralgebra Tanszék 2013 ősz Kombinatorika

Részletesebben

Bizonytalan tudás kezelése

Bizonytalan tudás kezelése Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék Bizonytalan tudás kezelése Előadó: Előadás anyaga: Hullám Gábor Pataki Béla Dobrowiecki Tadeusz Valószínűségi

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 2 II. A valószínűségi VÁLTOZÓ És JELLEMZÉsE 1. Valószínűségi VÁLTOZÓ Definíció: Az leképezést valószínűségi változónak nevezzük, ha

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 7 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási

Részletesebben

BOOLE ALGEBRA Logika: A konjunkció és diszjunkció tulajdonságai

BOOLE ALGEBRA Logika: A konjunkció és diszjunkció tulajdonságai BOOLE ALGEBRA Logika: A konjunkció és diszjunkció tulajdonságai 1.a. A B B A 2.a. (A B) C A (B C) 3.a. A (A B) A 4.a. I A I 5.a. A (B C) (A B) (A C) 6.a. A A I 1.b. A B B A 2.b. (A B) C A (B C) 3.b. A

Részletesebben

A matematika nyelvér l bevezetés

A matematika nyelvér l bevezetés A matematika nyelvér l bevezetés Wettl Ferenc 2012-09-06 Wettl Ferenc () A matematika nyelvér l bevezetés 2012-09-06 1 / 19 Tartalom 1 Matematika Matematikai kijelentések 2 Logikai m veletek Állítások

Részletesebben

MATEMATIKA HETI 3 ÓRA. IDŐPONT : 2009 június 8.

MATEMATIKA HETI 3 ÓRA. IDŐPONT : 2009 június 8. EURÓPAI ÉRETTSÉGI 2009 MATEMATIKA HETI 3 ÓRA IDŐPONT : 2009 június 8. A VIZSGA IDŐTARTAMA : 3 óra (180 perc) MEGENGEDETT SEGÉDESZKÖZÖK : Európai képletgyűjtemény Nem programozható, nem grafikus kalkulátor

Részletesebben

Dr. Vincze Szilvia;

Dr. Vincze Szilvia; 2014. szeptember 17. és 19. Dr. Vincze Szilvia; vincze@agr.unideb.hu https://portal.agr.unideb.hu/oktatok/drvinczeszilvia/oktatas/oktatott_targyak/index/index.html 2010/2011-es tanév I. féléves tematika

Részletesebben

A valós számok halmaza

A valós számok halmaza VA 1 A valós számok halmaza VA 2 A valós számok halmazának axiómarendszere és alapvető tulajdonságai Definíció Az R halmazt a valós számok halmazának nevezzük, ha teljesíti a következő axiómarendszerben

Részletesebben

Matematika B4 II. gyakorlat

Matematika B4 II. gyakorlat Matematika B II. gyakorlat 00. február.. Bevezető kérdések. Feldobunk egy kockát és egy érmét. Ábrázoljuk az eseményteret! Legyenek adottak az alábbi események: -ast dobunk, -est dobunk, fejet dobunk,

Részletesebben

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA 1 SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA Heti óraszám: 3 Éves óraszám: 37 x 3 = 111 A tanmenet 101 óra beosztását tartalmazza. A dolgozatok írása és javítása 10 órát foglal

Részletesebben

Gazdasági matematika II. tanmenet

Gazdasági matematika II. tanmenet Gazdasági matematika II. tanmenet Mádi-Nagy Gergely A hivatkozásokban az alábbi tankönyvekre utalunk: T: Tóth Irén (szerk.): Operációkutatás I., Nemzeti Tankönyvkiadó 1987. Cs: Csernyák László (szerk.):

Részletesebben

Feladatok és megoldások az 1. sorozat Építőkari Matematika A3

Feladatok és megoldások az 1. sorozat Építőkari Matematika A3 Feladatok és megoldások az 1. sorozat Építőkari Matematika A3 1. Tegyük fel, hogy A és B egymást kölcsönösen kizáró események, melyekre P{A} = 0.3 és P{B} = 0.. Mi a valószínűsége, hogy (a A vagy B bekövetkezik;

Részletesebben

Elemi matematika szakkör

Elemi matematika szakkör Elemi matematika szakkör Kolozsvár, 2015. november 9. 1.1. Feladat. Tekintsünk egy E halmazt és annak minden A részhalmazára az A halmaz f A : E {0, 1} karakterisztikus függvényét, amelyet az { 1, x A

Részletesebben

Matematika III. Nagy Károly 2011

Matematika III. Nagy Károly 2011 Matematika III előadások összefoglalója (Levelezős hallgatók számára) Nagy Károly 20 . Kombinatorika.. Definíció. Adott n darab egymástól különböző elem. Ezeknek egy meghatározott sorrendjét az n elem

Részletesebben

Feladatok és megoldások a 8. hétre Építőkari Matematika A3

Feladatok és megoldások a 8. hétre Építőkari Matematika A3 Feladatok és megoldások a 8. hétre Építőkari Matematika A3 1. Oldjuk meg a következő differenciálegyenlet rendszert: x + 2y 3x + 4y = 2 sin t 2x + y + 2x y = cos t. (1 2. Oldjuk meg a következő differenciálegyenlet

Részletesebben

Funkcionálanalízis. n=1. n=1. x n y n. n=1

Funkcionálanalízis. n=1. n=1. x n y n. n=1 Funkcionálanalízis 2011/12 tavaszi félév - 2. előadás 1.4. Lényeges alap-terek, példák Sorozat terek (Folytatás.) C: konvergens sorozatok tere. A tér pontjai sorozatok: x = (x n ). Ezen belül C 0 a nullsorozatok

Részletesebben

HALMAZOK. A racionális számok halmazát olyan számok alkotják, amelyek felírhatók b. jele:. A racionális számok halmazának végtelen sok eleme van.

HALMAZOK. A racionális számok halmazát olyan számok alkotják, amelyek felírhatók b. jele:. A racionális számok halmazának végtelen sok eleme van. HALMAZOK Tanulási cél Halmazok megadása, halmazműveletek megismerése és alkalmazása, halmazok ábrázolása Venn diagramon. Motivációs példa Egy fogyasztó 80 000 pénzegység jövedelmet fordít két termék, x

Részletesebben

A valószínűségszámítás elemei

A valószínűségszámítás elemei Alapfogalmak BIOSTATISZTIKA ÉS INFORMATIKA A valószínűségszámítás elemei Jelenség: minden, ami lényegében azonos feltételek mellett megismételhető, amivel kapcsolatban megfigyeléseket lehet végezni, lehet

Részletesebben

Valószínűségszámítás I.

Valószínűségszámítás I. Valószínűségszámítás I. DEFINÍCIÓ: (Véletlen jelenség) Véletlen jelenség alatt olyan jelenséget értünk, amely lefolyását a körülmények (figyelembe vehető okok) nem határoznak meg egyértelműen. DEFINÍCIÓ:

Részletesebben

TANTÁRGYI PROGRAM Matematikai alapok II. útmutató

TANTÁRGYI PROGRAM Matematikai alapok II. útmutató BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok II. útmutató 2013/2014. tanév II. félév Tantárgyi program Tantárgy megnevezése Tantárgy jellege/típusa:

Részletesebben

Valószínűségszámítás és statisztika. István Fazekas

Valószínűségszámítás és statisztika. István Fazekas Valószínűségszámítás és statisztika István Fazekas Tartalomjegyzék 1. fejezet. A valószínűségszámítás alapfogalmai 5 1.1. A valószínűség 5 1.2. Halmazalgebrák és σ-algebrák 11 1.3. A feltételes valószínűség

Részletesebben

1. Történeti bevezető. Alapfogalmak: véletlen kísérlet, eseménytér, esemény, elemi esemény, műveletek eseményekkel. Axiómák, szigma algebra.

1. Történeti bevezető. Alapfogalmak: véletlen kísérlet, eseménytér, esemény, elemi esemény, műveletek eseményekkel. Axiómák, szigma algebra. Valószínűségszámítás jegyzet. rész A jegyzet elsősorban a BME-VIK informatikus hallgatóinak készült. Ez azt jelenti, hogy nem matematikai, csak mérnöki precizitással céloztuk meg a leírásokat, definíciókat,

Részletesebben

2. Logika gyakorlat Függvények és a teljes indukció

2. Logika gyakorlat Függvények és a teljes indukció 2. Logika gyakorlat Függvények és a teljes indukció Folláth János Debreceni Egyetem - Informatika Kar 2012/13. I. félév Áttekintés 1 Függvények Relációk Halmazok 2 Természetes számok Formulák Definíció

Részletesebben

Készítette: Ernyei Kitti. Halmazok

Készítette: Ernyei Kitti. Halmazok Halmazok Jelölések: A halmazok jele általában nyomtatott nagybetű: A, B, C Az x eleme az A halmaznak: Az x nem eleme az A halmaznak: Az A halmaz az a, b, c elemekből áll: A halmazban egy elemet csak egyszer

Részletesebben

Egy halmazt elemei megadásával tekintünk ismertnek. Az elemeket felsorolással,vagy ha lehet a rájuk jellemző közös tulajdonság megadásával adunk meg.

Egy halmazt elemei megadásával tekintünk ismertnek. Az elemeket felsorolással,vagy ha lehet a rájuk jellemző közös tulajdonság megadásával adunk meg. Halmazelmélet A matematikai halmazelmélet megalapítója Georg Cantor (1845 1918) matematikus. Cantor Oroszországban született, de életét Németországban töltötte. Egy halmazt elemei megadásával tekintünk

Részletesebben

Valószínűségszámítás

Valószínűségszámítás European Virtual Laboratory of Mathematics Project No. 2006 - SK/06/B/F/PP - 177436 Európai Virtuális Matematikai Laboratórium Árvai- Homolya Szilvia Valószínűségszámítás EVML e-könyvek Miskolc 2008 Sorozat

Részletesebben

2011. szeptember 14. Dr. Vincze Szilvia;

2011. szeptember 14. Dr. Vincze Szilvia; 2011. szeptember 14. Dr. Vincze Szilvia; vincze@fin.unideb.hu https://portal.agr.unideb.hu/oktatok/drvinczeszilvia Első pillantásra hihetetlennek tűnik, hogy egy olyan tiszta és érzelmektől mentes tudomány,

Részletesebben

i p i p 0 p 1 p 2... i p i

i p i p 0 p 1 p 2... i p i . vizsga, 06--9, Feladatok és megoldások. (a) Adja meg az diszkrét eloszlás várható értékének a definícióját! i 0... p i p 0 p p... i p i (b) Tegyük fel, hogy a rigófészkekben található tojások X száma

Részletesebben

Integr alsz am ıt as. 1. r esz aprilis 12.

Integr alsz am ıt as. 1. r esz aprilis 12. Integrálszámítás. 1. rész. 2018. április 12. Területszámítás f : [a, b] IR + korlátos függvény. Mennyi a függvény grafikonja és az x tengely közti terület? Riemann integrál, ismétlés F: Az összes lehetséges

Részletesebben

RE 1. Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!

RE 1. Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel! RE 1 Relációk Függvények RE 2 Definíció: Ha A, B és ρ A B, akkor azt mondjuk, hogy ρ reláció A és B között, vagy azt, hogy ρ leképezés A-ból B-be. Ha speciálisan A=B, azaz ρ A A, akkor azt mondjuk, hogy

Részletesebben

A matematika nyelvéről bevezetés

A matematika nyelvéről bevezetés A matematika nyelvéről bevezetés Wettl Ferenc 2006. szeptember 19. Wettl Ferenc () A matematika nyelvéről bevezetés 2006. szeptember 19. 1 / 17 Tartalom 1 Matematika Kijelentő mondatok Matematikai kijelentések

Részletesebben

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 8. előadás Előadó: Dr. Ertsey Imre Minták alapján történő értékelések A statisztika foglalkozik. a tömegjelenségek vizsgálatával Bizonyos esetekben lehetetlen illetve célszerűtlen a teljes

Részletesebben

Gazdasági matematika II. Tantárgyi útmutató

Gazdasági matematika II. Tantárgyi útmutató Módszertani Intézeti Tanszék Gazdálkodási és menedzsment, pénzügy és számvitel szakok távoktatás tagozat Gazdasági matematika II. Tantárgyi útmutató 2016/17 tanév II. félév 1/6 A KURZUS ALAPADATAI Tárgy

Részletesebben

Valós függvények tulajdonságai és határérték-számítása

Valós függvények tulajdonságai és határérték-számítása EL 1 Valós függvények tulajdonságai és határérték-számítása Az ebben a részben szereplő függvények értelmezési tartománya legyen R egy részhalmaza. EL 2 Definíció: zérushely Az f:d R függvénynek zérushelye

Részletesebben

Területi sor Kárpát medence Magyarország Nyugat-Európa

Területi sor Kárpát medence Magyarország Nyugat-Európa Területi sor Terület megnevezése Magyarok száma 2011.01.01. Kárpát medence 13 820 000 Magyarország 10 600 00 Nyugat-Európa 1 340 000 HIV prevalence (%) in adults in Africa, 2005 2.5 Daganatos halálozás

Részletesebben

A VALÓSZÍNŰSÉGSZÁMÍTÁS ALAPJAI

A VALÓSZÍNŰSÉGSZÁMÍTÁS ALAPJAI TÓMÁCS TIBOR A VALÓSZÍNŰSÉGSZÁMÍTÁS ALAPJAI Második, javított kiadás EKF LÍCEUM KIADÓ, EGER 25 Lektor: Sztrik János egyetemi docens Megjelent az EKF Líceum Kiadó műszaki gondozásában A szedés a MiKTEX

Részletesebben

Diszkrét matematika 1. középszint

Diszkrét matematika 1. középszint Diszkrét matematika 1. középszint 2017. sz 1. Diszkrét matematika 1. középszint 3. el adás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

A valószínűségszámítás elemei

A valószínűségszámítás elemei A valószínűségszámítás elemei Kísérletsorozatban az esemény relatív gyakorisága: k/n, ahol k az esemény bekövetkezésének abszolút gyakorisága, n a kísérletek száma. Pl. Jelenség: kockadobás Megfigyelés:

Részletesebben

Diszkrét matematika HALMAZALGEBRA. Halmazalgebra

Diszkrét matematika HALMAZALGEBRA. Halmazalgebra Halmazalgebra Ebben a fejezetben összefoglaljuk a halmazokról tanult középiskolai ismeretanyagot, és néhány érdekességgel, módszerrel ki is egészítjük. A halmaz alapfogalom. Mondhatjuk, hogy tárgyak, fogalmak,

Részletesebben

Követelmény a 7. évfolyamon félévkor matematikából

Követelmény a 7. évfolyamon félévkor matematikából Követelmény a 7. évfolyamon félévkor matematikából Gondolkodási és megismerési módszerek Elemek halmazba rendezése több szempont alapján. Halmazok ábrázolása. A nyelv logikai elemeinek helyes használata.

Részletesebben

Matematika alapjai; Feladatok

Matematika alapjai; Feladatok Matematika alapjai; Feladatok 1. Hét 1. Tekintsük a,, \ műveleteket. Melyek lesznek a.) kommutativok b.) asszociativak c.) disztributívak-e a, műveletek? Melyik melyikre? 2. Fejezzük ki a műveletet a \

Részletesebben

VALÓSZÍN SÉG-SZÁMÍTÁS

VALÓSZÍN SÉG-SZÁMÍTÁS VALÓSZÍN SÉG-SZÁMÍTÁS oktatási segédanyag Harmati István Árpád SZÉCHENYI ISTVÁN EGYETEM MATEMATIKA ÉS SZÁMÍTÁSTUDOMÁNY TANSZÉK. Ez egy másik kávéház. Tartalomjegyzék. A valószín ségszámítás axiómái 5..

Részletesebben

Valószín ségszámítás közgazdászoknak

Valószín ségszámítás közgazdászoknak Valószín ségszámítás közgazdászoknak Sz cs Gábor Szegedi Tudományegyetem, Bolyai Intézet 2015. szi félév Bevezetés Tudnivalók a kurzusról Tudnivalók a kurzusról Az el adás és a gyakorlat külön kreditelt,

Részletesebben

Eseményalgebra, kombinatorika

Eseményalgebra, kombinatorika Eseméyalgebra, kombiatorika Eseméyalgebra Defiíció. Véletle kísérletek evezük mide olya megfigyelést, melyek több kimeetele lehetséges, és a véletletől függ, (azaz az általuk figyelembevett feltételek

Részletesebben