Jármőtervezés és vizsgálat I. VALÓSZÍNŐSÉGSZÁMÍTÁSI ALAPFOGALMAK Dr. Márialigeti János
|
|
- Veronika Csonkané
- 5 évvel ezelőtt
- Látták:
Átírás
1 BUDAPESTI MŐSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM KÖZLEKEDÉSMÉRNÖKI KAR JÁRMŐELEMEK ÉS HAJTÁSOK TANSZÉK Jármőtervezés és vizsgálat I. VALÓSZÍNŐSÉGSZÁMÍTÁSI ALAPFOGALMAK Dr. Márialigeti János Budapest 2008
2 1. AZ ESEMÉNY FOGALMA, ESEMÉNY TÉR, MŐVELETEK ESEMÉNYEKKEL 1.1 Véletlen esemény Véletlen kísérlet (vagy természeti jelenség): amelynek kimenetelét az általunk figyelembe vett (ismert feltételek nem határozzák meg egyértelmően. Kísérlet lehetséges kimenetele = elemi esemény Jelölése: ω Elemi események összessége az esemény tér (halmaz), jele: Ω ; ω Ω 1. ábra. Elemi események, esemény tér, véletlen esemény Véletlen (lehetséges) esemény : elemi események egy halmaza: A, B,.. Ha ω * A és egy kísérlet esetén ω * kimenetel adódik, azt mondjuk, hogy A véletlen esemény bekövetkezett. Pl. Ha egy élettartam vizsgálat esetén az N t törési ciklusszámra A = {N t > 10 6 ciklus} és egy kísérletben N t =2, adódik, akkor A bekövetkezett! Kitüntetett események: - Ω, amely minden elemi eseményt tartalmaz: Biztos esemény Valósz. alapok/márialigeti /15
3 - O, üres halmaz, amely nem tartalmaz elemet, így Ω minden halmazának eleme: Lehetetlen esemény 1.2. Mőveletek eseményekkel: Összeadás: A+B, vagy A (U) B a két esemény közül legalább az egyik bekövetkezik (egyesítés) 2. ábra. Események összeadása (unió) Szorzás: AB, vagy AI B mindkét esemény bekövetkezik (metszet) 3. ábra. Események szorzata Komplementer esemény: A komplementer eseménye: A, A+ A=Ω, A A=0 Valósz. alapok/márialigeti /15
4 4. ábra. Komplementer esemény 2. GYAKORISÁG, RELATÍV GYAKORISÁG, VALÓSZÍNŐSÉG 2.1. Gyakoriság Véletlen kísérlet kimenetelét nem tudjuk megjósolni. Kísérlet sorozatot végezve, a kimenetelek alkotta esemény sorozat áttekinthetetlennek tőnik. Legyen A és B két lehetséges esemény, kimenetel. Azt tapasztaljuk, hogy a kísérletek számát növelve a k A és k B, az A és B események bekövetkezése gyakoriságainak (számának) a k A /k B hányadosa relatív stabilitást mutat, és a kísérletek n számát növelve egy meghatározott értékhez tart. Tehát az egyes események (kimenetelek) gyakoriságainak relatív súlya állandó Valószínőség fogalma Hozzárendelve így egy eseményhez egy tetszésszerinti számot, a relatív gyakoriságok hányadosa alapján, minden eseményhez egyértelmően tudunk egy számot hozzárendelni. Egy tetszés szerinti A eseményhez ilyen módon hozzárendelt számot P(A)-val jelöljük, és az A esemény valószínőségének nevezzük. Valósz. alapok/márialigeti /15
5 2.3. Relatív gyakoriság és valószínőség A valószínőség skálájának meghatározásához válasszuk ki a minden kísérlettel kapcsolatban meghatározható Ω biztos eseményt. Rendeljük ehhez az 1 értéket. n kísérlet esetén Ω gyakorisága k Ω =n. Mivel pl. k A /k Ω =áll., k A is állandó, és k A /n = áll. 1, mivel k A k Ω pont alapján: P(A)=k A /k Ω.P(Ω)= k A /n.1= k A /n 1, n. A k A /n az A esemény relatív gyakorisága, és n< esetén k A /n~p(a). 0 P(A) 1. Megjegyzés: Legyenek A és B egymást kizáró események, AB=O. Ekkor k A+B = k A + k B, illetve k A+B /n = k A /n + k B /n, így P(A+B) = P(A) + P(B) 3. A VALÓSZÍNŐSÉG AXIÓMÁI (i) O P(A) 1 (ii) P(Ω) = 1 (iii) A 1, A 2,. Egymást páronként kizáró események véges vagy végtelen sorozata, azaz A i A k =O, i k, akkor P ( A ) = P( ) k A k k k A P(..) függvényt valószínőségnek vagy valószínőségeloszlásnak nevezzük. Valósz. alapok/márialigeti /15
6 4. ESEMÉNYEK VALÓSZÍNŐSÉGÉNEK NÉHÁNY ALAPVETİ ÖSSZEFÜGGÉSE 4.1. A lehetetlen esemény valószínősége 0, azaz P(O)= 0, és A+O=A, AO=O 4.2. P( A)= 1- P(A) 4.3. Tetszıleges A és B eseményre igaz, hogy P( AU B) = P( A) + P( B) P( AI B) 4.4. Ha a B esemény tartalmazza A-t, vagyis A B, akkor P(A) P(B) és P(A-B) = P(B) P(A) 5. ábra. Események kivonása 4.5. Feltételes valószínőség Legyen A és B két esemény, P(B)>0. T. f. h. egy kísérletsorozatban a B esemény gyakorisága k B, és ezek között k AB gyakorisággal az A is bekövetkezett. A k AB / k B hányadost az A esemény B-re vonatkoztatott relativ gyakoriságának nevezzük. Valósz. alapok/márialigeti /15
7 Mivel k AB /n ~ P(AB) és k B /n ~ P(B), k AB k /n P(AB) = AB ~. k k /n P(B) B B P(AB) A számot az A esemény B eseményre vonatkoztatott P(B) feltételes valószínőségének nevezzük, és P(A B)-vel jelöljük: P(A B )= P(AB) P(B) (1) 6. ábra. A feltételes valószínőség értelmezése 4.5./ Események függetlensége Az A eseményt a B eseménytıl függetlennek nevezzük, ha P(A B)= P(A). Ebbıl következik, az (1) egyenlet átrendezésével, hogy ha A független B tıl, akkor: P(AB)= P(A)P(B) (2) Valósz. alapok/márialigeti /15
8 A fenti egyenlet átrendezésével: P(AB)/P(A)=P(B)=P(B A), vagyis ha A független B-tıl, akkor B is független A-tól. 5. A VALÓSZÍNŐSÉGI VÁLTOZÓ FOGALMA A valószínőségi változó az ω elemi események Ω halmazán értelmezett függvény. Egydimenziós eset. Olyan esetekben, amelyekben az elemi eseménnyel egyetlen számértéket lehet vagy kívánunk kapcsolatba hozni, a függvény (hozzárendelés) az elemi események terének a számegyenesre vagy annak egy részhalmazára való leképezés. 7. ábra. A valószínőségi változó értelmezése Azt a számot, amit az elemi eseményhez ilyen módon hozzárendelünk görög betővel jelöljük, és kiírhatjuk azt az ω elemi eseményt is zárójelben, amelyhez a hozzárendelés történik: ξ (ω) vagy η(ω).., egyszerően ξ vagy η. Megjegyzés: Gyakran a kísérlettel kapcsolatos esemény eleve számértékkel definiálható. Ebben az esetben az elemi eseményt önmagához rendeljük. Valósz. alapok/márialigeti /15
9 Valószínőségi vektorváltozó Ebben az esetben az elemi eseményhez több számértéket rendelünk, amelyek egy vektor változó komponenseiként értelmezhetık. Ez tehát egy, az Ω halamazon értelmezett vektor függvény: ω ~ ξ ω (ξ 1, ξ 2, ξ 3,.. ξ n ) n< 8. ábra. A valószínőségi vektorváltozó értelmezése kétdimenziós esetben: ξ 1 = ξ, ξ 2 =η Sztochasztikus folyamatok Idıben lejátszódó véletlen folyamatok esetén az ω elemi eseményhez egy T idıtartományon értelmezett függvényt rendelünk. Miközben a véletlen folyamat az idıben lefut, a vizsgált rendszer egy jellemzıje minden t T idıpillanatban t tıl függı ξ t, (vagy ξ(t)) értéket vesz fel, az adott ω elemi esemény esetén. A ξ= ξ (t);ω) tehát egy kétváltozós függvénynek tekinthetı: ω=áll., rögzített ω esetén egy ξ ω (t) idıfüggvény, rögzített t T esetén ξ t (ω) függvény. Valósz. alapok/márialigeti /15
10 9. ábra. Sztochasztikus folyamat értelmezése 6. VALÓSZÍNŐSÉGI VÁLTOZÓK ELOSZLÁSAI, ELOSZLÁSFÜGGVÉNY Legyen A Ω esemény, P(ω A) = P(A). Legyen továbbá a ξ(ω) E valószínőségi változóra ω A, és minden ω A-ra ξ(ω) E. Ebben az esetben P(ω A)=P(ξ(ω) E) A P(ξ(ω) E) valószínőségeloszlást a ξ(ω) valószínőségi változó valószínőségeloszlásának nevezzük. Valósz. alapok/márialigeti /15
11 10. ábra. A valószínőségi változó valószínőségeloszlásának értelmezése Erre is teljesülnek a valószínőségeloszlás axiómái, ahol Ω szerepét a ξ(ω) értelmezési tartománya veszi át. ξ esetén ez az egész számegyenes. A valószínőségeloszlás megadása. A P(ξ(ω) E) események megadása tetszésszerinti E halmazra meglehetısen nehézkes. Ezért az alábbiak szerint járunk el. Legyen x a számegyenes egy tetszés szerinti, rögzített pontja, és tekintsük a valószínőséget. P(ξ(ω) E)= P{ξ(ω) ( < x )}=P(ξ<x)= F(x) Ha x et a ξ valószínőségi változó értéktartományán, pl. a x tartományon végigfuttatjuk, egy függvényt kapunk. Ezt az F(x) függvényt a ξ valószínőségi változó eloszlásfüggvényének nevezzük (rövidítve eof). Valósz. alapok/márialigeti /15
12 11. ábra. Az eloszlá függvény értelmezése Az F(x) eloszlásfüggvény tulajdonságai, tartomány esetén. a./ Értékkészlete: 0 F(x) 1 x a x x értelmezési b b./ F(x 1 ) F(x 2 ), ha x 1 < x 2, mivel ha ξ< x 1 ξ< x 2 c./ F x) = 0, F( x) 1, lim ( lim = x xa x xb d./ F(x) minden x-ben balról folytonos. (Mi csak folytonos eof.-al foglalkozunk) e./ ξ [a;b) esemény valószínősége P(ξ<a) + P(a ξ <b)=p(ξ<b), átrendezve P(a ξ <b)= P(ξ <b)-p(ξ<a) = F(b)-F(a) f./ ξ= a esemény valószínősége, folytonos val. vált. és eof. esetén P( a - ε < ξ < a +ε )= F(a +ε) F(a - ε) ε 0 esetén F(a ±ε) F(a), mivel F folytonos, így P(ξ=a)=0, de ez nem lehetetlen esemény. Tehát abból, hogy a lehetetlen esemény valószínősége 0, nem következik, hogy a 0 valószínőségő esemény lehetetlen. Valósz. alapok/márialigeti /15
13 12. ábra. Az eloszlásfüggvény 13. ábra. A P(ξ=a ) értelmezése g./a ξ valószínőségi változót és annak F(x) eloszlásfüggvényét folytonosnak nevezzük, ha van olyan f(x) 0 függvény, hogy a számegyenes minden (a;b) intervallumára: F ( b) F( a) = P( a< x< b) = f ( x) dx Az f(x) függvényt a ξ val. vált. sőrőségfüggvényének nevezzük. a = x a, b = x esetén F( b) F( xa ) = P( xa < x< b) = f ( x) dx= F( x) x x a b a a = x, b= esetén: a x b P( xa < ξ < xb ) = f ( x) dx= 1, Valósz. alapok/márialigeti /15 x b x a
14 Vagyis a sőrőségfüggvény alatti terület ábra. A sőrőség- és eloszlás függvény kapcsolata h./ Mivel F(x) folytonos, P(a ξ b)= P(a ξ<b)= P(a< ξ b) = P(a< ξ <b) Az elıbbiekbıl következik, hogy F(x) differenciálható, tehát df( x) f ( x) = = F ( x) dx 7. VALÓSZÍNŐSÉGI VÁLTOZÓK JELLEMZİI 7.1. Várható érték (vé) Legyen ξ folytonos eloszlású, az xa x x folytonos F(x) eof-al. A várható érték: Valósz. alapok/márialigeti /15 b értelmezési tartományon
15 x = b M (ξ ) xf ( x) dx Összeg v.é. Ha ζ= ξ+η és ξ és η v.é. létezik, akkor M(ζ)=M(ξ)+M(η), speciálisan M(ξ+c)=M(ξ)+c, c=áll. Szorzat v.é. Ha ζ= ξη és ξ és η v.é. létezik, akkor M(ζ)=M(ξ)M(η), speciálisan M(ξc)=cM(ξ), c=áll. x a 15. ábra. A várható érték értelmezése 7.2. Szórásnégyzet, szórás A D 2 (ξ ) szórásnégyzet definíció szerint a ξ-m(ξ) valószínőségi változó négyzetének várható értéke: D 2 (ξ) = M[(ξ-M(ξ)) 2 ], a D(ξ) szórás ennek pozitív négyzetgyöke: D ( ξ ) = D 2 ( ξ ) Kiszámítása a v.é. összefüggése alapján: 2 x = b D ( ξ ) ( x M ( ξ )) f ( x) dx x a Valósz. alapok/márialigeti /15 2
16 16. ábra. A szórásnégyzet értelmezése Valósz. alapok/márialigeti /15
Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem.
Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Elemi esemény: a kísérlet egyes lehetséges egyes lehetséges kimenetelei.
RészletesebbenValószínűségi változók. Várható érték és szórás
Matematikai statisztika gyakorlat Valószínűségi változók. Várható érték és szórás Valószínűségi változók 2016. március 7-11. 1 / 13 Valószínűségi változók Legyen a (Ω, A, P) valószínűségi mező. Egy X :
Részletesebben4. Az A és B események egymást kizáró eseményeknek vagy idegen (diszjunkt)eseményeknek nevezzük, ha AB=O
1. Mit nevezünk elemi eseménynek és eseménytérnek? A kísérlet lehetséges kimeneteleit elemi eseményeknek nevezzük. Az adott kísélethez tartozó elemi események halmazát eseménytérnek nevezzük, jele: X 2.
RészletesebbenKészítette: Fegyverneki Sándor
VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y
Részletesebben1. VALÓSZÍNŰSÉGSZÁMÍTÁSI ÉS MATEMATIKAI STATISZTIKAI ALAPFOGALMAK Az esemény fogalma, eseménytér, műveletek eseményekkel...
Tartalom 1. VALÓSZÍNŰSÉGSZÁMÍTÁSI ÉS MATEMATIKAI STATISZTIKAI ALAPFOGALMAK... 9 1.1. Az esemény fogalma, eseménytér, műveletek eseményekkel...9 1.1.1. Az esemény fogalma, eseménytér... 9 1.1.. Műveletek
RészletesebbenElméleti összefoglaló a Valószín ségszámítás kurzushoz
Elméleti összefoglaló a Valószín ségszámítás kurzushoz Véletlen kísérletek, események valószín sége Deníció. Egy véletlen kísérlet lehetséges eredményeit kimeneteleknek nevezzük. A kísérlet kimeneteleinek
RészletesebbenValószínűségszámítás összefoglaló
Statisztikai módszerek BMEGEVGAT Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:
RészletesebbenA valószínűségszámítás elemei
A valószínűségszámítás elemei Kísérletsorozatban az esemény relatív gyakorisága: k/n, ahol k az esemény bekövetkezésének abszolút gyakorisága, n a kísérletek száma. Pl. Jelenség: kockadobás Megfigyelés:
RészletesebbenA valószínűségszámítás elemei
Alapfogalmak BIOSTATISZTIKA ÉS INFORMATIKA A valószínűségszámítás elemei Jelenség: minden, ami lényegében azonos feltételek mellett megismételhető, amivel kapcsolatban megfigyeléseket lehet végezni, lehet
RészletesebbenBiometria az orvosi gyakorlatban. Számítógépes döntéstámogatás
SZDT-01 p. 1/23 Biometria az orvosi gyakorlatban Számítógépes döntéstámogatás Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Gyakorlat SZDT-01 p.
Részletesebbenx, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel:
Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel: Valószínűségi változó általános fogalma: A : R leképezést valószínűségi változónak nevezzük, ha : ( ) x, x R, x rögzített esetén esemény.
RészletesebbenGazdasági matematika II. vizsgadolgozat megoldása A csoport
Gazdasági matematika II. vizsgadolgozat megoldása A csoport Definiálja az alábbi fogalmakat!. Egy eseménynek egy másik eseményre vonatkozó feltételes valószínűsége. ( pont) Az A esemény feltételes valószínűsége
RészletesebbenMatematikai alapok és valószínőségszámítás. Valószínőségszámítási alapok
Matematikai alapok és valószínőségszámítás Valószínőségszámítási alapok Bevezetés A tudományos életben vizsgálódunk pontosabb megfigyelés, elırejelzés, megértés reményében. Ha egy kísérletet végzünk, annak
Részletesebben1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség.
1. tétel Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. A valószínűségszámítás tárgya: véletlen tömegjelenségek vizsgálata. véletlen: a kísérlet kimenetelét
Részletesebben[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.15. Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza) alkotja az eseményteret. Esemény: az eseménytér részhalmazai.
RészletesebbenBiomatematika 2 Orvosi biometria
Biomatematika 2 Orvosi biometria 2017.02.13. Populáció és minta jellemző adatai Hibaszámítás Valószínűség 1 Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza)
RészletesebbenFEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:
RészletesebbenElméleti összefoglaló a Sztochasztika alapjai kurzushoz
Elméleti összefoglaló a Sztochasztika alapjai kurzushoz 1. dolgozat Véletlen kísérletek, események valószín sége Deníció. Egy véletlen kísérlet lehetséges eredményeit kimeneteleknek nevezzük. A kísérlet
RészletesebbenMegoldások. ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4; 2, 3) normális eloszlású P (ξ
Megoldások Harmadik fejezet gyakorlatai 3.. gyakorlat megoldása ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4;, 3 normális eloszlású P (ξ 8 ξ 5 feltételes valószínűségét (.3. alapján számoljuk.
RészletesebbenGazdasági matematika II. tanmenet
Gazdasági matematika II. tanmenet Mádi-Nagy Gergely A hivatkozásokban az alábbi tankönyvekre utalunk: T: Tóth Irén (szerk.): Operációkutatás I., Nemzeti Tankönyvkiadó 1987. Cs: Csernyák László (szerk.):
RészletesebbenGazdasági matematika II. vizsgadolgozat, megoldással,
Gazdasági matematika II. vizsgadolgozat, megoldással, levelező képzés Definiálja az alábbi fogalmakat! 1. Kvadratikus mátrix invertálhatósága és inverze. (4 pont) Egy A kvadratikus mátrixot invertálhatónak
RészletesebbenHALMAZELMÉLET feladatsor 1.
HALMAZELMÉLET feladatsor 1. Egy (H,, ) algebrai struktúra háló, ha (H, ) és (H, ) kommutatív félcsoport, és teljesül az ún. elnyelési tulajdonság: A, B H: A (A B) = A, A (A B) = A. A (H,, ) háló korlátos,
RészletesebbenMatematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás
Matematikai alapok és valószínőségszámítás Valószínőségi eloszlások Binomiális eloszlás Bevezetés A tudományos életben megfigyeléseket teszünk, kísérleteket végzünk. Ezek többféle különbözı eredményre
RészletesebbenVéletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.
Valószín ségelméleti és matematikai statisztikai alapfogalmak összefoglalása (Kemény Sándor - Deák András: Mérések tervezése és eredményeik értékelése, kivonat) Véletlen jelenség: okok rendszere hozza
RészletesebbenMatematika III. 4. A valószínűségi változó és jellemzői Prof. Dr. Závoti, József
Matematika III. 4. A valószínűségi változó és jellemzői Prof. Dr. Závoti, József Matematika III. 4. : A valószínűségi változó és jellemzői Prof. Dr. Závoti, József Lektor : Bischof, Annamária Ez a modul
RészletesebbenA fontosabb definíciók
A legfontosabb definíciókat jelöli. A fontosabb definíciók [Descartes szorzat] Az A és B halmazok Descartes szorzatán az A és B elemeiből képezett összes (a, b) a A, b B rendezett párok halmazát értjük,
RészletesebbenNyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 4. MA3-4 modul. A valószínűségi változó és jellemzői
Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematika III. 4. MA3-4 modul A valószínűségi változó és jellemzői SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról
RészletesebbenMindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé.
HA 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) HA 2 Halmazok HA 3 Megjegyzések A halmaz, az elem és az eleme fogalmakat nem definiáljuk, hanem alapfogalmaknak
RészletesebbenMi az adat? Az adat elemi ismeret. Az adatokból információkat
Mi az adat? Az adat elemi ismeret. Tények, fogalmak olyan megjelenési formája, amely alkalmas emberi eszközökkel történő értelmezésre, feldolgozásra, továbbításra. Az adatokból gondolkodás vagy gépi feldolgozás
RészletesebbenMindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1
Halmazok 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 2 A fejezet legfontosabb elemei Halmaz megadási módjai Halmazok közti műveletek (metszet,
RészletesebbenTeljes eseményrendszer. Valószínőségszámítás. Példák. Teljes valószínőség tétele. Példa. Bayes tétele
Teljes eseményrendszer Valószínőségszámítás 3. elıadás 2009.09.22. Defnícó. Események A 1, A 2,..., sorozata teljes eseményrendszer, ha egymást páronként kzárják és egyesítésük Ω. Tulajdonság: P A ) +
RészletesebbenTERMÉKEK MŐSZAKI TERVEZÉSE Megbízhatóságra, élettartamra tervezés I.
TERMÉKEK MŐSZAKI TERVEZÉSE Megbízhatóságra, élettartamra tervezés I. Dr. Kovács Zsolt egyetemi tanár Megbízhatóság-elméleti alapok A megbízhatóságelmélet az a komplex tudományág, amely a meghibásodási
RészletesebbenNemparaméteres próbák
Nemparaméteres próbák Budapesti Mőszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Mőegyetem rkp. 3. D ép. 334. Tel: 463-16-80 Fax: 463-30-91 http://www.vizgep.bme.hu
RészletesebbenSorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján
Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján Számsorozatok, vektorsorozatok konvergenciája Def.: Számsorozatok értelmezése:
RészletesebbenMatematika III. 2. Eseményalgebra Prof. Dr. Závoti, József
Matematika III. 2. Eseményalgebra Prof. Dr. Závoti, József Matematika III. 2. : Eseményalgebra Prof. Dr. Závoti, József Lektor : Bischof, Annamária Ez a modul a TÁMOP - 4.1.2-08/1/A-2009-0027 Tananyagfejlesztéssel
RészletesebbenValószín ségszámítás és statisztika
Valószín ségszámítás és statisztika Informatika BSc, esti tagozat Backhausz Ágnes agnes@math.elte.hu fogadóóra: szerda 10-11 és 13-14, D 3-415 2018/2019. tavaszi félév Bevezetés A valószín ségszámítás
RészletesebbenAbszolút folytonos valószín ségi változó (4. el adás)
Abszolút folytonos valószín ségi változó (4. el adás) Deníció (Abszolút folytonosság és s r ségfüggvény) Az X valószín ségi változó abszolút folytonos, ha van olyan f : R R függvény, melyre P(X t) = t
RészletesebbenA következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.
Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ
RészletesebbenA lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait.
2. VEKTORTÉR A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait. Legyen K egy test és V egy nem üres halmaz,
RészletesebbenFirst Prev Next Last Go Back Full Screen Close Quit
Valós függvények (2) (Határérték) 1. A a R szám δ > 0 sugarú környezete az (a δ, a + δ) nyílt intervallum. Ezután a valós számokat, a számegyenesen való ábrázolhatóságuk miatt, pontoknak is fogjuk hívni.
RészletesebbenBiostatisztika. Sz cs Gábor. 2018/19 tavaszi félév. Szegedi Tudományegyetem, Bolyai Intézet
Biostatisztika Sz cs Gábor Szegedi Tudományegyetem, Bolyai Intézet 2018/19 tavaszi félév Bevezetés Tudnivalók, követelmények Tudnivalók, követelmények Félév tematikája: Értékelés: Valószín ségszámítás
RészletesebbenA valós számok halmaza
VA 1 A valós számok halmaza VA 2 A valós számok halmazának axiómarendszere és alapvető tulajdonságai Definíció Az R halmazt a valós számok halmazának nevezzük, ha teljesíti a következő axiómarendszerben
RészletesebbenValószín ségszámítás és statisztika
Valószín ségszámítás és statisztika Informatika BSc, esti tagozat Backhausz Ágnes agnes@cs.elte.hu 2016/2017. tavaszi félév Bevezetés Célok: véletlen folyamatok modellezése; kísérletekb l, felmérésekb
RészletesebbenBevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus. KOKI,
Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár PhD kurzus. KOKI, 2015.09.17. Mi a statisztika? A sokaság (a sok valami) feletti áttekintés megszerzése, a sokaságról való információszerzés eszköze.
RészletesebbenHalmazelmélet. 1. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Halmazelmélet p. 1/1
Halmazelmélet 1. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Halmazelmélet p. 1/1 A halmaz fogalma, jelölések A halmaz fogalmát a matematikában nem definiáljuk, tulajdonságaival
RészletesebbenRelációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!
függvények RE 1 Relációk Függvények függvények RE 2 Definíció Ha A, B és ρ A B, akkor azt mondjuk, hogy ρ reláció A és B között, vagy azt, hogy ρ leképezés A-ból B-be. Ha speciálisan A=B, azaz ρ A A, akkor
RészletesebbenBevezetés. Valószínűségszámítás 2 előadás III. alk. matematikus szak. Irodalom. Egyéb info., számonkérés. Cél. Alapfogalmak (ismétlés)
Valószínűségszámítás 2 előaás III. alk. matematikus szak 2016/2017 1. félév Zempléni Anrás Bevezetés Iroalom, követelmények A félév célja Alapfogalmak mértékelméleti alapon Kapcsolóás a val.szám. 1-hez
RészletesebbenRE 1. Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!
RE 1 Relációk Függvények RE 2 Definíció: Ha A, B és ρ A B, akkor azt mondjuk, hogy ρ reláció A és B között, vagy azt, hogy ρ leképezés A-ból B-be. Ha speciálisan A=B, azaz ρ A A, akkor azt mondjuk, hogy
Részletesebbenminden x D esetén, akkor x 0 -at a függvény maximumhelyének mondjuk, f(x 0 )-at pedig az (abszolút) maximumértékének.
Függvények határértéke és folytonossága Egy f: D R R függvényt korlátosnak nevezünk, ha a függvényértékek halmaza korlátos. Ha f(x) f(x 0 ) teljesül minden x D esetén, akkor x 0 -at a függvény maximumhelyének
Részletesebben2014. szeptember 24. és 26. Dr. Vincze Szilvia
2014. szeptember 24. és 26. Dr. Vincze Szilvia Mind a hétköznapi, mind a tudományos életben gyakran előfordul, hogy bizonyos halmazok elemei között kapcsolat figyelhető meg. A kapcsolat fogalmának matematikai
RészletesebbenStatisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1
Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában
RészletesebbenDiszkrét matematika 1. középszint
Diszkrét matematika 1. középszint 2017. sz 1. Diszkrét matematika 1. középszint 3. el adás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
RészletesebbenValószínűségszámítás. Tómács Tibor. F, P ) egy valószínűségi mező, A P (A). Ha ϱ n az A gyakorisága, kísérletek száma, akkor minden ε. p(1 p) nε 2.
Tómács Tibor Valószínűségszámítás F, P egy valószínűségi mező, A P (A. Ha ϱ n az A gyakorisága, kísérletek száma, akkor minden ε én ( ϱ n P n p ε p(1 p nε 2. Matematikai és Informatikai Intézet Tómács
RészletesebbenAnalízis előadás és gyakorlat vázlat
Analízis előadás és gyakorlat vázlat Készült a PTE TTK GI szakos hallgatóinak Király Balázs 2010-11. I. Félév 2 1. fejezet Számhalmazok és tulajdonságaik 1.1. Nevezetes számhalmazok ➀ a) jelölése: N b)
RészletesebbenA L Hospital-szabály, elaszticitás, monotonitás, konvexitás
A L Hospital-szabály, elaszticitás, monotonitás, konvexitás 9. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék A L Hospital-szabály, elaszticitás, monotonitás, konvexitás p. / A L
RészletesebbenSzámsorok. 1. Definíció. Legyen adott valós számoknak egy (a n ) n=1 = (a 1, a 2,..., a n,...) végtelen sorozata. Az. a n
Számsorok 1. Definíció. Legyen adott valós számoknak egy (a n ) = (a 1, a 2,..., a n,...) végtelen sorozata. Az végtelen összeget végtelen számsornak (sornak) nevezzük. Az a n számot a sor n-edik tagjának
Részletesebben1. A kísérlet naiv fogalma. melyek közül a kísérlet minden végrehajtásakor pontosan egy következik be.
IX. ESEMÉNYEK, VALÓSZÍNŰSÉG IX.1. Események, a valószínűség bevezetése 1. A kísérlet naiv fogalma. Kísérlet nek nevezzük egy olyan jelenség előidézését vagy megfigyelését, amelynek kimenetelét az általunk
Részletesebbenegyenletesen, és c olyan színű golyót teszünk az urnába, amilyen színűt húztunk. Bizonyítsuk
Valószínűségszámítás 8. feladatsor 2015. november 26. 1. Bizonyítsuk be, hogy az alábbi folyamatok mindegyike martingál. a S n, Sn 2 n, Y n = t n 1+ 1 t 2 Sn, t Fn = σ S 1,..., S n, 0 < t < 1 rögzített,
RészletesebbenMatematika alapjai; Feladatok
Matematika alapjai; Feladatok 1. Hét 1. Tekintsük a,, \ műveleteket. Melyek lesznek a.) kommutativok b.) asszociativak c.) disztributívak-e a, műveletek? Melyik melyikre? 2. Fejezzük ki a műveletet a \
RészletesebbenMatematikai alapok és valószínőségszámítás. Normál eloszlás
Matematikai alapok és valószínőségszámítás Normál eloszlás A normál eloszlás Folytonos változók esetén az eloszlás meghatározása nehezebb, mint diszkrét változók esetén. A változó értékei nem sorolhatóak
RészletesebbenValószínűségszámítás és statisztika a fizikában február 16.
számítás és statisztika a fizikában 2018. február 16. Technikai információk Palla Gergely / pallag@hal.elte.hu / ELTE TTK Biológiai Fizika Tanszék, Északi Tömb, 3.90. szoba Fogadó óra: hétfő, 16-18. Az
RészletesebbenMérhetőség, σ-algebrák, Lebesgue Stieltjes-integrál, véletlen változók és eloszlásfüggvényeik
Mérhetőség, σ-algebrák, Lebesgue Stieltjes-integrál, véletlen változók és eloszlásfüggvényeik Az A halmazrendszer σ-algebra az Ω alaphalmazon, ha Ω A; A A A c A; A i A, i N, i N A i A. Az A halmazrendszer
Részletesebben1. Példa. A gamma függvény és a Fubini-tétel.
. Példa. A gamma függvény és a Fubini-tétel.. Az x exp x + t )) függvény az x, t tartományon folytonos, és nem negatív, ezért alkalmazható rá a Fubini-tétel. I x exp x + t )) dxdt + t dt π 4. [ exp x +
RészletesebbenBizonytalan tudás kezelése
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék Bizonytalan tudás kezelése Előadó: Előadás anyaga: Hullám Gábor Pataki Béla Dobrowiecki Tadeusz Valószínűségi
RészletesebbenDifferenciálszámítás. 8. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Differenciálszámítás p. 1/1
Differenciálszámítás 8. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Differenciálszámítás p. 1/1 Egyenes meredeksége Egyenes meredekségén az egyenes és az X-tengely pozitív iránya
RészletesebbenFraktálok. Kontrakciók Affin leképezések. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék. TARTALOMJEGYZÉK Kontrakciók Affin transzformációk
Fraktálok Kontrakciók Affin leképezések Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék TARTALOMJEGYZÉK 1 of 71 A Lipschitz tulajdonság ÁTMÉRŐ, PONT ÉS HALMAZ TÁVOLSÁGA Definíció Az (S, ρ) metrikus tér
RészletesebbenFunkcionálanalízis. n=1. n=1. x n y n. n=1
Funkcionálanalízis 2011/12 tavaszi félév - 2. előadás 1.4. Lényeges alap-terek, példák Sorozat terek (Folytatás.) C: konvergens sorozatok tere. A tér pontjai sorozatok: x = (x n ). Ezen belül C 0 a nullsorozatok
RészletesebbenAnalízis I. beugró vizsgakérdések
Analízis I. beugró vizsgakérdések Programtervező Informatikus szak 2008-2009. 2. félév Készítette: Szabó Zoltán SZZNACI.ELTE zotyo@bolyaimk.hu v1.7 Forrás: Dr. Weisz Ferenc: Prog. Mat. 2006-2007 definíciók
RészletesebbenSorozatok. 5. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Sorozatok p. 1/2
Sorozatok 5. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Sorozatok p. 1/2 A sorozat definíciója Definíció. A természetes számok halmazán értelmezett valós értékű a: N R függvényt
RészletesebbenSorozatok, határérték fogalma. Függvények határértéke, folytonossága
Sorozatok, határérték fogalma. Függvéyek határértéke, folytoossága 1) Végtele valós számsorozatok Fogalma, megadása Defiíció: A természetes számok halmazá értelmezett a: N R egyváltozós valós függvéyt
RészletesebbenAz ész természetéhez tartozik, hogy a dolgokat nem mint véletleneket, hanem mint szükségszerűeket szemléli (Spinoza: Etika, II. rész, 44.
Dr. Vincze Szilvia Az ész természetéhez tartozik, hogy a dolgokat nem mint véletleneket, hanem mint szükségszerűeket szemléli (Spinoza: Etika, II. rész, 44. tétel) Környezetünkben sok olyan jelenséget
RészletesebbenValós függvények tulajdonságai és határérték-számítása
EL 1 Valós függvények tulajdonságai és határérték-számítása Az ebben a részben szereplő függvények értelmezési tartománya legyen R egy részhalmaza. EL 2 Definíció: zérushely Az f:d R függvénynek zérushelye
RészletesebbenMATEMATIKA 2. dolgozat megoldása (A csoport)
MATEMATIKA. dolgozat megoldása (A csoport). Definiálja az alábbi fogalmakat: (egyváltozós) függvény folytonossága, differenciálhatósága, (többváltozós függvény) iránymenti deriváltja. (3x8 pont). Az f
Részletesebben1/1. Házi feladat. 1. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy
/. Házi feladat. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy mindig igaz. (p (( p) q)) (( p) ( q)). Igazoljuk, hogy minden A, B és C halmazra A \ (B C) = (A \ B) (A \ C) teljesül.
RészletesebbenMegoldások MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!
MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!) 2016. JANUÁR 21. Elérhető pontszám: 50 pont Megoldások 1. 6. 2. 7. 3. 8. 4. 9. 5. Össz.:
RészletesebbenStatisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.
Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,
RészletesebbenStatisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.
Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,
Részletesebben1. Kombinatorikai bevezetés
1. Kombinatorikai bevezetés 1.1. Permutációk Adott n különböző elem ismétlés nélküli permutációján az elemek egy meghatározott sorrendjét értjük. Az n különböző elem összes permutációinak számát P n -nel
RészletesebbenGazdasági matematika II. vizsgadolgozat megoldása, június 10
Gazdasági matematika II. vizsgadolgozat megoldása, 204. június 0 A dolgozatírásnál íróeszközön kívül más segédeszköz nem használható. A dolgozat időtartama: 90 perc. Ha a dolgozat első részéből szerzett
RészletesebbenMATEMATIKAI STATISZTIKA KISFELADAT. Feladatlap
Közlekedésmérnök Kar Jármőtervezés és vzsgálat alapja I. Feladatlap NÉV:..tk.:. Feladat sorsz.:.. Feladat: Egy jármő futómő alkatrész terhelésvzsgálatakor felvett, az alkatrészre ható terhelı erı csúcsértékek
RészletesebbenFEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen
RészletesebbenMatematika A1a Analízis
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Folytonosság H607, EIC 2019-03-07 Wettl Ferenc
RészletesebbenSorozatok határértéke SOROZAT FOGALMA, MEGADÁSA, ÁBRÁZOLÁSA; KORLÁTOS ÉS MONOTON SOROZATOK
Sorozatok határértéke SOROZAT FOGALMA, MEGADÁSA, ÁBRÁZOLÁSA; KORLÁTOS ÉS MONOTON SOROZATOK Sorozat fogalma Definíció: Számsorozaton olyan függvényt értünk, amelynek értelmezési tartománya a pozitív egész
Részletesebben1. Házi feladat. Határidő: I. Legyen f : R R, f(x) = x 2, valamint. d : R + 0 R+ 0
I. Legyen f : R R, f(x) = 1 1 + x 2, valamint 1. Házi feladat d : R + 0 R+ 0 R (x, y) f(x) f(y). 1. Igazoljuk, hogy (R + 0, d) metrikus tér. 2. Adjuk meg az x {0, 3} pontok és r {1, 2} esetén a B r (x)
Részletesebben2010. október 12. Dr. Vincze Szilvia
2010. október 12. Dr. Vincze Szilvia Tartalomjegyzék 1.) Sorozat definíciója 2.) Sorozat megadása 3.) Sorozatok szemléltetése 4.) Műveletek sorozatokkal 5.) A sorozatok tulajdonságai 6.) A sorozatok határértékének
Részletesebben3. Egy ξ valószínűségi változó eloszlásfüggvénye melyik képlettel van definiálva?
. z és események függetlensége melyik összefüggéssel van definiálva? P () + P () = P ( ) = P ()P () = P ( ) = P () P () 2. z alábbi összefüggések közül melyek igazak, melyek nem igazak tetszőleges és eseményeke?
RészletesebbenFüggvények 1. oldal Készítette: Ernyei Kitti. Függvények
Függvények 1. oldal Készítette: Ernyei Kitti Függvények DEFINÍCIÓ: Ha adott két nemüres halmaz: és, továbbá minden eleméhez hozzárendeljük a valamely elemét, akkor ezt a hozzárendelést függvénynek nevezzük.
Részletesebben(Independence, dependence, random variables)
Két valószínűségi változó együttes vizsgálata Feltételes eloszlások Két diszkrét változó együttes eloszlása a lehetséges értékpárok és a hozzájuk tartozó valószínűségek (táblázat) Példa: Egy urna 3 fehér,
RészletesebbenIntegr alsz am ıt as. 1. r esz aprilis 12.
Integrálszámítás. 1. rész. 2018. április 12. Területszámítás f : [a, b] IR + korlátos függvény. Mennyi a függvény grafikonja és az x tengely közti terület? Riemann integrál, ismétlés F: Az összes lehetséges
RészletesebbenBIOMATEMATIKA ELŐADÁS
BIOMATEMATIKA ELŐADÁS 9. Együttes eloszlás, kovarianca, nevezetes eloszlások Debreceni Egyetem, 2015 Dr. Bérczes Attila, Bertók Csanád A diasor tartalma 1 Bevezetés, definíciók Együttes eloszlás Függetlenség
RészletesebbenEgyü ttes e s vetü leti eloszlá s, sü rü se gfü ggve ny, eloszlá sfü ggve ny
Együ ttes e s vetü leti eloszlá s, sü rü se gfü ggve ny, eloszlá sfü ggve ny Szűk elméleti összefoglaló Együttes és vetületi eloszlásfüggvény: X = (X, X, X n ) valószínűségi vektorváltozónak hívjuk. X
RészletesebbenMetrikus terek, többváltozós függvények
Metrikus terek, többváltozós függvények 2003.10.15 Készítette: Dr. Toledo Rodolfo és Dr. Blahota István 1. Metrikus terek, metrika tulajdonságai 1.1. A valós, komplex, racionális, természetes és egész
RészletesebbenTerületi sor Kárpát medence Magyarország Nyugat-Európa
Területi sor Terület megnevezése Magyarok száma 2011.01.01. Kárpát medence 13 820 000 Magyarország 10 600 00 Nyugat-Európa 1 340 000 HIV prevalence (%) in adults in Africa, 2005 2.5 Daganatos halálozás
RészletesebbenBrósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.
Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:
Részletesebbenf(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva
6. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 6.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási
Részletesebben2014. november Dr. Vincze Szilvia
24. november 2-4. Dr. Vincze Szilvia Tartalomjegyzék. Meredekség, szelő, szelő meredeksége 2. Differencia-hányados fogalma 3. Differenciál-hányados fogalma 5. Folytonosság és differenciálhatóság kapcsolata
RészletesebbenHalmazelméleti alapfogalmak
Halmazelméleti alapfogalmak halmaz (sokaság) jól meghatározott, megkülönböztetett dolgok (tárgyak, fogalmak, stb.) összessége. - halmaz alapfogalom. z azt jelenti, hogy csak példákon keresztül magyarázzuk,
RészletesebbenA sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex
A sorozat fogalma Definíció. A természetes számok N halmazán értelmezett függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet a valós számok halmaza, valós számsorozatról beszélünk, mígha az
RészletesebbenValószínűségszámítás
Valószínűségszámítás Pap Gyula Szegedi Tudományegyetem 2010/2011 tanév, II. félév Pap Gyula (SZE) Valószínűségszámítás 2010/2011 tanév, II. félév 1 / 122 Ajánlott irodalom: RÉNYI ALFRÉD Valószínűségszámítás
Részletesebben