3. Egy ξ valószínűségi változó eloszlásfüggvénye melyik képlettel van definiálva?
|
|
- Gábor Mészáros
- 6 évvel ezelőtt
- Látták:
Átírás
1 . z és események függetlensége melyik összefüggéssel van definiálva? P () + P () = P ( ) = P ()P () = P ( ) = P () P () 2. z alábbi összefüggések közül melyek igazak, melyek nem igazak tetszőleges és eseményeke? [6 pont] P ( ) = P () + P () P ( ) = P ()P () P ( ) = P () + P () P ( ) P ( ) = P () P () P () + P () = 3. gy ξ valószínűségi változó eloszlásfüggvénye melyik képlettel van definiálva? (x) = P (ξ = x) (x) = P (ξ < x) (x) = P (0 < ξ < x) (x) = P ( x < ξ < 0) (x) = P ( x < ξ < x)
2 . Tegyük fel, hogy az, és események teljes eseményendszet alkotnak. Melyik igaz az alábbi állítások közül? P () + P () + P () = 0 P () + P () + P () = /2 P () + P () + P () = 5. Mi annak a definíciója, hogy egy ξ valószínűségi változó folytonos eloszlású? gy ξ valószínűségi változó folytonos eloszlású, ha az (x) = P (ξ < x) függvény folytonos az egész számegyenesen. gy ξ valószínűségi változó folytonos eloszlású, ha létezik olyan f függvény, melye P (ξ < x) = x f(t)dt, < x <. gy ξ valószínűségi változó folytonos eloszlású, ha P (ξ = x) = 0 tetszőleges x R esetén. 6. Legyen ξ egy folytonos eloszlású valószínűségi változó f sűűségfüggvénnyel. Hogyan számolható ki a P (2 ξ < 5) valószínűség? f(2) + f(3) + f() + f(5) f(2)f(3)f()f(5) 5 2 f(x)dx (f(2) + f(3) + f() + f(5)) 7. z alábbiak közül melyek igazak, melyek nem igazak egy klasszikus valószínűségi mezőe? [6 pont] Minden elemi esemény egyben esemény is. 2
3 z elemi események valószínűségei különbözők. Minden elemi esemény egyfomán valószínű. z eseményté véges sok elemi eseményből áll. z eseményté megszámlálhatóan végtelen sok elemi eseményből áll. 8. ξ és η valószínűségi változók kovaianciája melyik képlettel van definiálva? (ξη) ((ξ (ξ))(η (η))) (ξ + η) (ξ (ξ))(η (η)) 9. Tegyük fel, hogy (ξ, η) folytonos eloszlású vektováltozó f sűűségfüggvénnyel. Legyen g az η valószínűségi változó sűűségfüggvénye. Melyik képlettel számolható ki g? g(x) = f(x, y)dy g(y) = f(x, y)dx g(y) = sup <x< f(x, y) g(y) = inf <x< f(x, y) 0. Legyen ξ, ξ 2,... egy szabályos kocka független, egymás utáni feldobásával kapott számsoozat. Mihez konvegál majdnem biztosan az (ξ n ξ n ) soozat, ha n? z eedményt egész vagy tizedes töt alakban adja meg! (sak a pontos eedményt fogadom el.) 3
4 . 22 focijátékosból két fős csapatot kialakítunk. Mennyi annak a valószínűsége, hogy a két legjobb játékos két különböző csapatba keül? [ pont] /2 3/ 3/22 2/2 /5 2. gy sugaú céltábláa lövés ékezik az egyenletességi hipotézisnek megfelelően. Legyen ξ a találatnak a céltábla középpontjától mét távolsága. Mennyi a ξ valószínűségi változó szóása? [6 pont] következő testmagasság adatokat méték: 73, 8, 87, 8 (cm). testmagasság nomális eloszlású ismeetlen szóással. 0%-os szignifikancia szinten azt a nullhipotézist teszteljük, hogy a váható testmagasság 83 cm. Mennyi a tesztstatisztika? z eedményt egész vagy tizedes töt alakban adja meg! (z eedményt 5%-os hibahatáal fogadom el.) [6 pont]. következő testmagasság adatokat méték: 73, 8, 87, 8 (cm). testmagasság nomális eloszlású ismeetlen szóással. 0%-os szignifikancia szinten azt a nullhipotézist teszteljük, hogy a váható testmagasság 83 cm. Mennyi a kitikus éték? z eedményt egész vagy
5 tizedes töt alakban adja meg! (sak az eloszlástáblázatból kikeesett étéket fogadom el.) [6 pont] 5. következő testmagasság adatokat méték: 73, 8, 87, 8 (cm). testmagasság nomális eloszlású ismeetlen szóással. Mennyi a váható étéke vonatkozó 99% megbízhatósági szintű konfidencia intevallum bal végpontja? z eedményt egész vagy tizedes töt alakban adja meg! (z eedményt ± cm hibahatáon belül fogadom el.) [2 pont] 6. következő testmagasság adatokat méték: 73, 8, 87, 8 (cm). Mennyi az adatokhoz tatozó empiikus eloszlásfüggvény étéke az x = 83 helyen? z eedményt egész vagy tizedes töt alakban adja meg! (sak a pontos eedményt fogadom el.) 5
Valószínűségi változók. Várható érték és szórás
Matematikai statisztika gyakorlat Valószínűségi változók. Várható érték és szórás Valószínűségi változók 2016. március 7-11. 1 / 13 Valószínűségi változók Legyen a (Ω, A, P) valószínűségi mező. Egy X :
Készítette: Fegyverneki Sándor
VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y
Matematika III. 4. A valószínűségi változó és jellemzői Prof. Dr. Závoti, József
Matematika III. 4. A valószínűségi változó és jellemzői Prof. Dr. Závoti, József Matematika III. 4. : A valószínűségi változó és jellemzői Prof. Dr. Závoti, József Lektor : Bischof, Annamária Ez a modul
Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 4. MA3-4 modul. A valószínűségi változó és jellemzői
Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematika III. 4. MA3-4 modul A valószínűségi változó és jellemzői SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról
4. Az A és B események egymást kizáró eseményeknek vagy idegen (diszjunkt)eseményeknek nevezzük, ha AB=O
1. Mit nevezünk elemi eseménynek és eseménytérnek? A kísérlet lehetséges kimeneteleit elemi eseményeknek nevezzük. Az adott kísélethez tartozó elemi események halmazát eseménytérnek nevezzük, jele: X 2.
Gazdasági matematika II. vizsgadolgozat megoldása A csoport
Gazdasági matematika II. vizsgadolgozat megoldása A csoport Definiálja az alábbi fogalmakat!. Egy eseménynek egy másik eseményre vonatkozó feltételes valószínűsége. ( pont) Az A esemény feltételes valószínűsége
Elméleti összefoglaló a Valószín ségszámítás kurzushoz
Elméleti összefoglaló a Valószín ségszámítás kurzushoz Véletlen kísérletek, események valószín sége Deníció. Egy véletlen kísérlet lehetséges eredményeit kimeneteleknek nevezzük. A kísérlet kimeneteleinek
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:
Abszolút folytonos valószín ségi változó (4. el adás)
Abszolút folytonos valószín ségi változó (4. el adás) Deníció (Abszolút folytonosság és s r ségfüggvény) Az X valószín ségi változó abszolút folytonos, ha van olyan f : R R függvény, melyre P(X t) = t
Elméleti összefoglaló a Sztochasztika alapjai kurzushoz
Elméleti összefoglaló a Sztochasztika alapjai kurzushoz 1. dolgozat Véletlen kísérletek, események valószín sége Deníció. Egy véletlen kísérlet lehetséges eredményeit kimeneteleknek nevezzük. A kísérlet
Gazdasági matematika II. vizsgadolgozat megoldása, június 10
Gazdasági matematika II. vizsgadolgozat megoldása, 204. június 0 A dolgozatírásnál íróeszközön kívül más segédeszköz nem használható. A dolgozat időtartama: 90 perc. Ha a dolgozat első részéből szerzett
Megoldások. ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4; 2, 3) normális eloszlású P (ξ
Megoldások Harmadik fejezet gyakorlatai 3.. gyakorlat megoldása ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4;, 3 normális eloszlású P (ξ 8 ξ 5 feltételes valószínűségét (.3. alapján számoljuk.
Mérhetőség, σ-algebrák, Lebesgue Stieltjes-integrál, véletlen változók és eloszlásfüggvényeik
Mérhetőség, σ-algebrák, Lebesgue Stieltjes-integrál, véletlen változók és eloszlásfüggvényeik Az A halmazrendszer σ-algebra az Ω alaphalmazon, ha Ω A; A A A c A; A i A, i N, i N A i A. Az A halmazrendszer
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.15. Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza) alkotja az eseményteret. Esemény: az eseménytér részhalmazai.
Jármőtervezés és vizsgálat I. VALÓSZÍNŐSÉGSZÁMÍTÁSI ALAPFOGALMAK Dr. Márialigeti János
BUDAPESTI MŐSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM KÖZLEKEDÉSMÉRNÖKI KAR JÁRMŐELEMEK ÉS HAJTÁSOK TANSZÉK Jármőtervezés és vizsgálat I. VALÓSZÍNŐSÉGSZÁMÍTÁSI ALAPFOGALMAK Dr. Márialigeti János Budapest 2008
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,
x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel:
Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel: Valószínűségi változó általános fogalma: A : R leképezést valószínűségi változónak nevezzük, ha : ( ) x, x R, x rögzített esetén esemény.
Funkcionálanalízis. n=1. n=1. x n y n. n=1
Funkcionálanalízis 2011/12 tavaszi félév - 2. előadás 1.4. Lényeges alap-terek, példák Sorozat terek (Folytatás.) C: konvergens sorozatok tere. A tér pontjai sorozatok: x = (x n ). Ezen belül C 0 a nullsorozatok
Nemparaméteres próbák
Nemparaméteres próbák Budapesti Mőszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Mőegyetem rkp. 3. D ép. 334. Tel: 463-16-80 Fax: 463-30-91 http://www.vizgep.bme.hu
BIOMATEMATIKA ELŐADÁS
BIOMATEMATIKA ELŐADÁS 9. Együttes eloszlás, kovarianca, nevezetes eloszlások Debreceni Egyetem, 2015 Dr. Bérczes Attila, Bertók Csanád A diasor tartalma 1 Bevezetés, definíciók Együttes eloszlás Függetlenség
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.22. Valószínűségi változó Véletlentől függő számértékeket (értékek sokasága) felvevő változókat valószínűségi változóknak nevezzük(jelölés: ξ, η, x). (pl. x =
Normális eloszlás tesztje
Valószínűség, pontbecslés, konfidenciaintervallum Normális eloszlás tesztje Kolmogorov-Szmirnov vagy Wilk-Shapiro próba. R-funkció: shapiro.test(vektor) balra ferde eloszlás jobbra ferde eloszlás balra
1. Kombinatorikai bevezetés
1. Kombinatorikai bevezetés 1.1. Permutációk Adott n különböző elem ismétlés nélküli permutációján az elemek egy meghatározott sorrendjét értjük. Az n különböző elem összes permutációinak számát P n -nel
Valószínűségszámítás összefoglaló
Statisztikai módszerek BMEGEVGAT Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:
Gazdasági matematika II. vizsgadolgozat, megoldással,
Gazdasági matematika II. vizsgadolgozat, megoldással, levelező képzés Definiálja az alábbi fogalmakat! 1. Kvadratikus mátrix invertálhatósága és inverze. (4 pont) Egy A kvadratikus mátrixot invertálhatónak
egyenletesen, és c olyan színű golyót teszünk az urnába, amilyen színűt húztunk. Bizonyítsuk
Valószínűségszámítás 8. feladatsor 2015. november 26. 1. Bizonyítsuk be, hogy az alábbi folyamatok mindegyike martingál. a S n, Sn 2 n, Y n = t n 1+ 1 t 2 Sn, t Fn = σ S 1,..., S n, 0 < t < 1 rögzített,
A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.
Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ
Optimalizálási eljárások GYAKORLAT, MSc hallgatók számára. Analízis R d -ben
Optimalizálási eljárások GYAKORLAT, MSc hallgatók számára Analízis R d -ben Gyakorlatvezetõ: Hajnal Péter 2012. február 8 1. Konvex függvények Definíció. f : D R konvex, ha dom(f) := D R n konvex és tetszőleges
Valószín ségszámítás és statisztika
Valószín ségszámítás és statisztika Informatika BSc, esti tagozat Backhausz Ágnes agnes@cs.elte.hu 2016/2017. tavaszi félév Bevezetés Célok: véletlen folyamatok modellezése; kísérletekb l, felmérésekb
1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség.
1. tétel Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. A valószínűségszámítás tárgya: véletlen tömegjelenségek vizsgálata. véletlen: a kísérlet kimenetelét
First Prev Next Last Go Back Full Screen Close Quit
Valós függvények (2) (Határérték) 1. A a R szám δ > 0 sugarú környezete az (a δ, a + δ) nyílt intervallum. Ezután a valós számokat, a számegyenesen való ábrázolhatóságuk miatt, pontoknak is fogjuk hívni.
Matematika A3 Valószínűségszámítás, 5. gyakorlat 2013/14. tavaszi félév
Matematika A3 Valószínűségszámítás, 5. gyakorlat 013/14. tavaszi félév 1. Folytonos eloszlások Eloszlásfüggvény és sűrűségfüggvény Egy valószínűségi változó, illetve egy eloszlás eloszlásfüggvényének egy
Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1
Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában
lim 2 2 lim 2 lim 1 lim 3 4 lim 4 FOLYTONOSSÁG 1 x helyen? ( 2 a matek világos oldala Mosóczi András 4.1.? 4.5.? 4.2.? 4.6.? 4.3.? 4 4.7. 4.4.? 4.8.?
FÜGGVÉNYEK HTÁÉTÉKE Mosóczi ndrás..?..?..?..?..?..?..?.8.? FOLYTONOSSÁG DEFINÍCIÓ. z üggvény olytonos az a helyen értelmezve van az a helyen létezik és véges a tárértéke az a helyen és a a DEFINÍCIÓ. z
Biomatematika 2 Orvosi biometria
Biomatematika 2 Orvosi biometria 2017.02.13. Populáció és minta jellemző adatai Hibaszámítás Valószínűség 1 Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza)
Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.
Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,
Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.
Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,
NEVEZETES FOLYTONOS ELOSZLÁSOK
Bodó Beáta - MATEMATIKA II 1 NEVEZETES FOLYTONOS ELOSZLÁSOK EXPONENCIÁLIS ELOSZLÁS 1. A ξ valószínűségi változó eponenciális eloszlású 80 várható értékkel. (a) B Adja meg és ábrázolja a valószínűségi változó
Gazdasági matematika II. tanmenet
Gazdasági matematika II. tanmenet Mádi-Nagy Gergely A hivatkozásokban az alábbi tankönyvekre utalunk: T: Tóth Irén (szerk.): Operációkutatás I., Nemzeti Tankönyvkiadó 1987. Cs: Csernyák László (szerk.):
Biometria, haladó biostatisztika EA+GY biometub17vm Szerda 8:00-9:00, 9:00-11:00 Déli Tömb 0-804, Lóczy Lajos terem
Biometria, haladó biostatisztika EA+GY biometub17vm Szerda 8:00-9:00, 9:00-11:00 Déli Tömb 0-804, Lóczy Lajos terem Előadások-gyakorlatok 2018-ban (13 alkalom) IX.12, 19, 26, X. 3, 10, 17, 24, XI. 7, 14,
Bevezetés. Valószínűségszámítás 2 előadás III. alk. matematikus szak. Irodalom. Egyéb info., számonkérés. Cél. Alapfogalmak (ismétlés)
Valószínűségszámítás 2 előaás III. alk. matematikus szak 2016/2017 1. félév Zempléni Anrás Bevezetés Iroalom, követelmények A félév célja Alapfogalmak mértékelméleti alapon Kapcsolóás a val.szám. 1-hez
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát
Bevezetés. 1. előadás, 2015. február 11. Módszerek. Tematika
Bevezetés 1. előadás, 2015. február 11. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettudományi Kar Eötvös Loránd Tudományegyetem Áringadozások előadás Heti 2 óra előadás + 2 óra
Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem.
Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Elemi esemény: a kísérlet egyes lehetséges egyes lehetséges kimenetelei.
Matematika A1a Analízis
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Folytonosság H607, EIC 2019-03-07 Wettl Ferenc
Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján
Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján Számsorozatok, vektorsorozatok konvergenciája Def.: Számsorozatok értelmezése:
Matematika alapjai; Feladatok
Matematika alapjai; Feladatok 1. Hét 1. Tekintsük a,, \ műveleteket. Melyek lesznek a.) kommutativok b.) asszociativak c.) disztributívak-e a, műveletek? Melyik melyikre? 2. Fejezzük ki a műveletet a \
Valószínűségszámítás
European Virtual Laboratory of Mathematics Project No. 2006 - SK/06/B/F/PP - 177436 Európai Virtuális Matematikai Laboratórium Árvai- Homolya Szilvia Valószínűségszámítás EVML e-könyvek Miskolc 2008 Sorozat
Analízis előadás és gyakorlat vázlat
Analízis előadás és gyakorlat vázlat Készült a PTE TTK GI szakos hallgatóinak Király Balázs 2010-11. I. Félév 2 1. fejezet Számhalmazok és tulajdonságaik 1.1. Nevezetes számhalmazok ➀ a) jelölése: N b)
e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma:
Normális eloszlás ξ valószínűségi változó normális eloszlású. ξ N ( µ, σ 2) Paraméterei: µ: várható érték, σ 2 : szórásnégyzet (µ tetszőleges, σ 2 tetszőleges pozitív valós szám) Normális eloszlás sűrűségfüggvénye:
Matematikai statisztika I. témakör: Valószínűségszámítási ismétlés
Matematikai statisztika I. témakör: Valószínűségszámítási ismétlés Elek Péter 1. Valószínűségi változók és eloszlások 1.1. Egyváltozós eset Ismétlés: valószínűség fogalma Valószínűségekre vonatkozó axiómák
Adatok statisztikai értékelésének főbb lehetőségei
Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció
Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem
agy számok törvényei Statisztikai mintavétel Várható érték becslése Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem A mérés mint statisztikai mintavétel A méréssel az eloszlásfüggvénnyel
9. ábra. A 25B-7 feladathoz
. gyakolat.1. Feladat: (HN 5B-7) Egy d vastagságú lemezben egyenletes ρ téfogatmenti töltés van. A lemez a ±y és ±z iányokban gyakolatilag végtelen (9. ába); az x tengely zéuspontját úgy választottuk meg,
Feladatok 2. zh-ra. 1. Eseményalgebra április Feladat. Az A és B eseményekr l tudjuk, hogy P (A) = 0, 6, P (B) = 0, 7 és
Feladatok 2 zh-ra 205 április 3 Eseményalgebra Feladat Az A és B eseményekr l tudjuk, hogy P (A) = 0, 7, P (B) = 0, 4 és P (A B) = 0, 5 Határozza meg az A B esemény valószín ségét! P (A B) = 0, 2 2 Feladat
Matematika A3 Valószínűségszámítás, 6. gyakorlat 2013/14. tavaszi félév
Matematika A3 Valószínűségszámítás, 6. gyakorlat 2013/14. tavaszi félév 1. A várható érték és a szórás transzformációja 1. Ha egy valószínűségi változóhoz hozzáadunk ötöt, mínusz ötöt, egy b konstanst,
egyetemi jegyzet Meskó Balázs
egyetemi jegyzet 2011 Előszó 2. oldal Tartalomjegyzék 1. Bevezetés 4 1.1. A matematikai statisztika céljai.............................. 4 1.2. Alapfogalmak......................................... 4 2.
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 2 II. A valószínűségi VÁLTOZÓ És JELLEMZÉsE 1. Valószínűségi VÁLTOZÓ Definíció: Az leképezést valószínűségi változónak nevezzük, ha
Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus. KOKI,
Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár PhD kurzus. KOKI, 2015.09.17. Mi a statisztika? A sokaság (a sok valami) feletti áttekintés megszerzése, a sokaságról való információszerzés eszköze.
A valószínűségszámítás elemei
A valószínűségszámítás elemei Kísérletsorozatban az esemény relatív gyakorisága: k/n, ahol k az esemény bekövetkezésének abszolút gyakorisága, n a kísérletek száma. Pl. Jelenség: kockadobás Megfigyelés:
Mi az adat? Az adat elemi ismeret. Az adatokból információkat
Mi az adat? Az adat elemi ismeret. Tények, fogalmak olyan megjelenési formája, amely alkalmas emberi eszközökkel történő értelmezésre, feldolgozásra, továbbításra. Az adatokból gondolkodás vagy gépi feldolgozás
1. Házi feladat. Határidő: I. Legyen f : R R, f(x) = x 2, valamint. d : R + 0 R+ 0
I. Legyen f : R R, f(x) = 1 1 + x 2, valamint 1. Házi feladat d : R + 0 R+ 0 R (x, y) f(x) f(y). 1. Igazoljuk, hogy (R + 0, d) metrikus tér. 2. Adjuk meg az x {0, 3} pontok és r {1, 2} esetén a B r (x)
Integr alsz am ıt as. 1. r esz aprilis 12.
Integrálszámítás. 1. rész. 2018. április 12. Területszámítás f : [a, b] IR + korlátos függvény. Mennyi a függvény grafikonja és az x tengely közti terület? Riemann integrál, ismétlés F: Az összes lehetséges
3. Egy szabályos dobókockával háromszor dobunk egymás után. Legyen A az az esemény, hogy
Valószínűségszámítás. zárthelyi dolgozat 009. október 5.. Egy osztályba 3-an járnak. Minden fizikaórán a a többi órától függetlenül a tanár kisorsol egy felelőt, véletlenszerűen, egyenletesen, azaz mindig
1/1. Házi feladat. 1. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy
/. Házi feladat. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy mindig igaz. (p (( p) q)) (( p) ( q)). Igazoljuk, hogy minden A, B és C halmazra A \ (B C) = (A \ B) (A \ C) teljesül.
Backhausz Ágnes 1. Bevezetés A valószínűség elemi tulajdonságai... 5
Valószínűségszámítás Földtudomány BSc szak, 2016/2017. őszi félév Backhausz Ágnes agnes@cs.elte.hu Tartalomjegyzék 1. Bevezetés 2 2. A Kolmogorov-féle valószínűségi mező 3 2.1. Klasszikus valószínűségi
Metrikus terek, többváltozós függvények
Metrikus terek, többváltozós függvények 2003.10.15 Készítette: Dr. Toledo Rodolfo és Dr. Blahota István 1. Metrikus terek, metrika tulajdonságai 1.1. A valós, komplex, racionális, természetes és egész
Valószín ségszámítás és statisztika
Valószín ségszámítás és statisztika Informatika BSc, esti tagozat Backhausz Ágnes agnes@math.elte.hu fogadóóra: szerda 10-11 és 13-14, D 3-415 2018/2019. tavaszi félév Bevezetés A valószín ségszámítás
2. A ξ valószín ségi változó eloszlásfüggvénye a következ : x 4 81 F (x) = x 4 ha 3 < x 0 különben
1 feladatsor 1 Egy dobozban 20 fehér golyó van Egy szabályos dobókockával dobunk, majd a következ t tesszük: ha a dobott szám 1,2 vagy 3, akkor tíz golyót cserélünk ki pirosra; ha a dobott szám 4 vagy
matematikai statisztika
Valószínűségszámítás és matematikai statisztika 2003. május 23. ii Tartalomjegyzék I. Valószínűségszámítás 1 1. Véletlen jelenségek matematikai modellje 3 1.1. Valószínűségi mező..............................
Differenciálszámítás. 8. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Differenciálszámítás p. 1/1
Differenciálszámítás 8. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Differenciálszámítás p. 1/1 Egyenes meredeksége Egyenes meredekségén az egyenes és az X-tengely pozitív iránya
Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.
Valószín ségelméleti és matematikai statisztikai alapfogalmak összefoglalása (Kemény Sándor - Deák András: Mérések tervezése és eredményeik értékelése, kivonat) Véletlen jelenség: okok rendszere hozza
A L Hospital-szabály, elaszticitás, monotonitás, konvexitás
A L Hospital-szabály, elaszticitás, monotonitás, konvexitás 9. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék A L Hospital-szabály, elaszticitás, monotonitás, konvexitás p. / A L
Ellenőrző kérdések a Matematika I. tantárgy elméleti részéhez, 2. rész
Ellenőrző kérdések a Matematika I. tantárgy elméleti részéhez, 2. rész Mintakérdések a 2. ZH elméleti részéhez. Nem csak ezek a kérdések szerepelhetnek az elméleti részben, de azért hasonló típusú kérdések
Alapfogalmak, valós számok Sorozatok, határérték Függvények határértéke, folytonosság A differenciálszámítás Függvénydiszkusszió Otthoni munka
Pintér Miklós miklos.pinter@uni-corvinus.hu Ősz Alapfogalmak Halmazok Definíció Legyen A egy tetszőleges halmaz, ekkor x A (x / A) jelentése: x (nem) eleme A-nak. A B (A B) jelentése: A (valódi) részhalmaza
Boros Zoltán február
Többváltozós függvények differenciál- és integrálszámítása (2 3. előadás) Boros Zoltán 209. február 9 26.. Vektorváltozós függvények differenciálhatósága és iránymenti deriváltjai A továbbiakban D R n
Bevezetés a hipotézisvizsgálatokba
Bevezetés a hipotézisvizsgálatokba Nullhipotézis: pl. az átlag egy adott µ becslése : M ( x -µ ) = 0 Alternatív hipotézis: : M ( x -µ ) 0 Szignifikancia: - teljes bizonyosság csak teljes enumerációra -
Széchenyi István Egyetem
polár 3D gömbi Széchenyi István Egyetem Téglalapon vett integrál polár 3D gömbi Legyenek [a, b], [c, d] R véges intervallumok, és jelölje T az [a, b] [c, d] = {(x, y) R : a x b, c y d } téglalapot. Legyen
1. Példa. A gamma függvény és a Fubini-tétel.
. Példa. A gamma függvény és a Fubini-tétel.. Az x exp x + t )) függvény az x, t tartományon folytonos, és nem negatív, ezért alkalmazható rá a Fubini-tétel. I x exp x + t )) dxdt + t dt π 4. [ exp x +
f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva
6. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 6.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási
Biometria az orvosi gyakorlatban. Számítógépes döntéstámogatás
SZDT-01 p. 1/23 Biometria az orvosi gyakorlatban Számítógépes döntéstámogatás Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Gyakorlat SZDT-01 p.
Közlemény. Biostatisztika és informatika alapjai. Alapsokaság és minta
Közlemény Biostatisztika és informatika alajai. előadás: Az orvostudományban előforduló nevezetes eloszlások 6. szetember 9. Veres Dániel Statisztika és Informatika tankönyv (Herényi Levente) már kaható
biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás
Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani
Kiváltott agyi jelek informatikai feldolgozása Statisztika Kiss Gábor IB.157.
Kiváltott agyi jelek informatikai feldolgozása 2017 Statisztika Kiss Gábor IB.157. kiss.gabor@tmit.bme.hu Bevezető Miért tanuljuk ezt? A statisztika a valóság számszerű információinak megfigyelésére, összegzésére,
előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás
13-14. előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás 2016. november 28. és december 5. 13-14. előadás 1 / 35 Bevezetés A diszkrét
2014. szeptember 24. és 26. Dr. Vincze Szilvia
2014. szeptember 24. és 26. Dr. Vincze Szilvia Mind a hétköznapi, mind a tudományos életben gyakran előfordul, hogy bizonyos halmazok elemei között kapcsolat figyelhető meg. A kapcsolat fogalmának matematikai
A Statisztika alapjai
A Statisztika alapjai BME A3c Magyar Róbert 2016.05.12. Mi az a Statisztika? A statisztika a valóság számszerű információinak megfigyelésére, összegzésére, elemzésére és modellezésére irányuló gyakorlati
Valószínűségszámítás. Tómács Tibor. F, P ) egy valószínűségi mező, A P (A). Ha ϱ n az A gyakorisága, kísérletek száma, akkor minden ε. p(1 p) nε 2.
Tómács Tibor Valószínűségszámítás F, P egy valószínűségi mező, A P (A. Ha ϱ n az A gyakorisága, kísérletek száma, akkor minden ε én ( ϱ n P n p ε p(1 p nε 2. Matematikai és Informatikai Intézet Tómács
Kiválasztás. A változó szerint. Rangok. Nem-paraméteres eljárások. Rang: Egy valamilyen szabály szerint felállított sorban elfoglalt hely.
Kiválasztás A változó szerint Egymintás t-próba Mann-Whitney U-test paraméteres nem-paraméteres Varianciaanalízis De melyiket válasszam? Kétmintás t-próba Fontos, hogy mindig a kérdésnek és a változónak
36 0,3. Mo.: 36 0,19. Mo.: 36 0,14. Mo.: 32 = 0,9375 32 = 0,8125 32 = 0,40625. Mo.: 32 = 0,25
Valószínűségszámítás I. Kombinatorikus valószínűségszámítás. BKSS 4... Egy szabályos dobókockát feldobva mennyi annak a valószínűsége, hogy a -ost dobunk; 0. b legalább 5-öt dobunk; 0, c nem az -est dobjuk;
SZOLVENCIATŐKE MINT FIXPONT
SZÜLE BORBÁLA SZOLVENCIATŐKE MINT FIXPONT A tanulmányban a szező a fixpont-iteáció témájával foglalkozik egy elméleti modellben, a biztosítók szolvenciatőkéjének számolásával kapcsolatban. A téma aktualitását
Gyakorló feladatok. Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László
Gyakorló feladatok Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László I/. A vizsgaidőszak második napján a hallgatók %-ának az E épületben, %-ának a D épületben,
17. előadás: Vektorok a térben
17. előadás: Vektorok a térben Szabó Szilárd A vektor fogalma A mai előadásban n 1 tetszőleges egész szám lehet, de az egyszerűség kedvéért a képletek az n = 2 esetben szerepelnek. Vektorok: rendezett
Differenciálegyenletek numerikus megoldása
a Matematika mérnököknek II. című tárgyhoz Differenciálegyenletek numerikus megoldása Fokozatos közeĺıtés módszere (1) (2) x (t) = f (t, x(t)), x I, x(ξ) = η. Az (1)-(2) kezdeti érték probléma ekvivalens
[Biomatematika 2] Orvosi biometria. Visegrády Balázs
[Biomatematika 2] Orvosi biometria Visegrády Balázs 2016. 03. 27. Probléma: Klinikai vizsgálatban három különböző antiaritmiás gyógyszert (ß-blokkoló) alkalmaznak, hogy kipróbálják hatásukat a szívműködés
Matematika B4 VIII. gyakorlat megoldása
Matematika B4 VIII. gyakorlat megoldása 5.április 7.. Eloszlás- és sűrűségfüggvény Ha az X egy folytonos valószínűségi változó, akkor X-et jól jellemzi az eloszlás illetve a sűrűségfüggvénye. Az eloszlásfüggvény
0,9268. Valószín ségszámítás és matematikai statisztika NGB_MA001_3, NGB_MA002_3 zárthelyi dolgozat
A 1. A feln ttkorú munkaképes lakosság 24%-a beszél legalább egy idegen nyelvet, 76%-a nem beszél idegen nyelven. Az idegen nyelvet beszél k 2,5%-a, az idegen nyelvet nem beszél k 10%-a munkanélküli. Véletlenszer
Statisztika elméleti összefoglaló
1 Statisztika elméleti összefoglaló Tel.: 0/453-91-78 1. Tartalomjegyzék 1. Tartalomjegyzék.... Becsléselmélet... 3 3. Intervallumbecslések... 5 4. Hipotézisvizsgálat... 8 5. Regresszió-számítás... 11
Operációkutatás. 4. konzultáció: Sorbanállás. Exponenciális elsozlás (ismétlés)
Operációkutatás NYME KTK, gazdálkodás szak, levelező alapképzés 2002/2003. tanév, II. évf. 2.félév Előadó: Dr. Takách Géza NyME FMK Információ Technológia Tanszék 9400 Sopron, Bajcsy Zs. u. 9. GT fszt.
ALÁÍRÁS NÉLKÜL A TESZT ÉRVÉNYTELEN!
A1 A2 A3 (8) A4 (12) A (40) B1 B2 B3 (15) B4 (11) B5 (14) Bónusz (100+10) Jegy NÉV (nyomtatott nagybetűvel) CSOPORT: ALÁÍRÁS: ALÁÍRÁS NÉLKÜL A TESZT ÉRVÉNYTELEN! 2011. december 29. Általános tudnivalók: