Bizonytalan tudás kezelése
|
|
- László Mészáros
- 7 évvel ezelőtt
- Látták:
Átírás
1 Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék Bizonytalan tudás kezelése Előadó: Előadás anyaga: Hullám Gábor Pataki Béla Dobrowiecki Tadeusz Valószínűségi axiómák BME I.E. 414,
2 Bizonytalan tudás Lehetséges okok Lazaság/lustaság - a részletes kapcsolatok megfogalmazása túl nehéz, a használatuk szintén nehézkes (véges erőforrások) Elméleti ismeret hiánya - adott problématerületnek az elméleti feltárása még nem zárult le, vagy lezárni soha nem lehet Gyakorlati ismeret hiánya - nem minden, a szabályokban hivatkozott feltétel ismert a szabályok alkalmazásakor
3 Bizonytalan tudás Példa: p. Tünet( p, Fogfájás) Van( p, Fogszuvasodás) p. Tünet( p, Fogfájás) Van( p, Fogszuvasodás) Van( p, Ínysorvadás) Van( p, Bölcsességfognő )... p. Van( p, Fogszuvasodás) Tünet( p, Fogfájás) Fogfájás és fogszuvasodás közötti kapcsolat egyik irányban sem feltétlen logikai következmény. Az ágens tudása legjobb esetben is csak egy bizonyos mértékű hiedelmet jelent az adott állítással kapcsolatban.
4 Volt már Valószínűségi axiómák 1. Minden valószínűség 0 és 1 közé esik 0 P(A) A biztosan igaz állítás valószínűsége 1, a biztosan hamis állításé 0. P(Igaz) = 1 P(Hamis) = 0 3. Diszjunkció valószínűsége: P(A B) = P(A) + P(B) - P(A B) Valószínűségi axiómákból bizonyítottuk pl., hogy: P( A) = 1 - P(A) P(A) = P(A B) + P(A B) stb.
5 Valószínűségi állítások Volt már bináris Lyuk = Igaz P(Lyuk = Igaz) P(Lyuk) többértékű (kategorikus) Időjárás 1 értéket vesz fel az alábbi 4 lehetségesből {Napos, Esős, Felhős, Havazás} P(Időjárás = Esős) folytonos Hőmérséklet = 22.1 ºC, Hőmérséklet < 22 ºC változó P(Hőmérséklet < 22 ºC) Feltételes valószínűség: P(A B) = P(A B) / P(B)
6 Valószínűségi állítások átalakítása Volt már Láncszabály: P(A B C D E) = P(A B C D E) P(B C D E) = P(A B C D E) P(B C D E) P(C D E) = P(A B C D E) P(B C D E) P(C D E) P(D E) P(E) P( X X X... X ) = P( X X X... X ) P( X X X... X ) = N N 1 N 1 2 N 1 P( X X X... X ) P( X X X... X ) P( X X X... X ) N 2 N N 2 N 1 2 N 1 N =... = P( X X X... X ) i= 1 i 1 2 i 1
7 Bayes-tétel Volt már P( A B) = P( B A) P( A) P( B) P( B A ) P( A ) P( A B) =, = Ω, A = k N k k N U Ai Ai i= 1 P( B Ai ) P( A i ) k i= 1 Miért fontos a Bayes-tétel? Sokszor rendelkezünk kauzális (ok-okozati) tudással: Ok Okozat A Betegség Tűz B Tünet Riasztás P( tünet betegség) P( riasztás tűz)
8 Bayes-tétel Viszont sokszor ellentétes irányban szeretnék következtetni, tehát evidenciák (következmények) alapján az ok(ok)ra P( betegség tünet) P( tűz riasztás) Ok A Betegség Tűz Okozat Diagnosztika B Tünet Riasztás
9 Bayes-tétel jelentőssége Lehetővé teszi a valószínűségi állítások átalakítását Így kiszámíthatóvá válnak nehezen becsülhető mennyiségek Oksági irány: általában könnyebb becsülni Diagnosztikai irány: általában nehezebb Mi a Tünet létrejöttének valószínűsége a Betegség ismeretében? Mi a Betegség kialakulásának a valószínűsége? P( Betegség Tünet) = P( Tünet Betegség) P( Betegség) P( Tünet) Mi a Betegség meglétének valószínűsége a Tünet ismeretében? Ok Okozat Mi a Tünet létrejöttének a valószínűsége? A B Betegség Tünet
10 Bayes-tétel jelentősége P( Betegség Tünet) = Mi a Betegség meglétének valószínűsége a Tünet ismeretében? Mi a Tünet létrejöttének valószínűsége a Betegség ismeretében? Mi a Betegség kialakulásának a valószínűsége? P( Tünet Betegség) P( Betegség) P( Tünet) Mi a Tünet létrejöttének a valószínűsége? a posteriori valószínűség (poszterior) Likelihood a priori valószínűség (prior) P( A B) = P ( B A ) P ( A ) P( B) Normalizációs konstans
11 Bayes-tétel - műveletek Összetett feltétel A értéke: {ν 1,ν 2, ν N } P( A = v ) = P k k P( A = v ) P( A = v ) = 0, k j k P( A = v ) P( A = v )... P( A = v ) = j k = 1 = 2 = k = i= 1 P( A v ) P( A v )... P( A v ) P P( B A) P( A) P( B A X ) P( A X ) P( A B) = P( A B X ) = P( B) P( B X ) N i
12 Bayes-tétel - műveletek Bővítés: A értéke: {ν 1,ν 2, ν N } P( A = v ) = P k k P( A = v ) P( A = v ) = 0, k j k P( A = v ) P( A = v )... P( A = v ) = j k = 1 = 2 = k = i= 1 P( A v ) P( A v )... P( A v ) P N i P( A B) P( B A) P( A) P( B A) P( A) = = P( B) ( ) ( ) N P B Ai P Ai i= 1 Pl. ha A egy bináris valószínűségi változó: P( B = 1 A = 1) P( A = 1) P( A = 1 B = 1) = P( B = 1 A = 0) P( A = 0) + P( B = 1 A = 1) P( A = 1)
13 Valószínűség értelmezése Frekventista vs. bayesi megközelítés frekventista nézőpont: a valószínűség objektív, események gyakoriságából számítható Valószínűség (frekventistadefiníciója): Egy adott A esemény valószínűsége az a számérték, amely körül az esemény relatív gyakorisága (f A ) ingadozik, ha egyre több kísérletet végzünk. P(A)= lim n f A P(A) tehát azt mutatja meg, hogy az A esemény az összes kísérlet mekkora hányadában (%) következik be.
14 Valószínűség értelmezése Frekventista vs. bayesi megközelítés bayesi nézőpont: a valószínűség egy eseménybe vetett hiedelem mértéke. Valószínűség (bayesi definíciója): Egy adott A esemény valószínűsége az adott esemény bekövetkezési esélye. Ez a gyakorlatban azt a hiedelmet fejezi ki, hogy a pillanatnyi tudásunk birtokában, a jelenlegi helyzettől megkülönböztethetetlen esetek mekkora hányadában fog bekövetkezni az adott esemény. Prior valószínűségekből (hiedelmekből) indulunk ki és az új evidencia érkezésekor azokat frissítjük (posterior valószínűségekké) P(A) P(A) P(A) Bayes-tétel P(A B) B
15 Hiedelmek és értelmezésük Egy adott kijelentéshez rendelt (szubjektív) 0 / 1 valószínűség: határozott hiedelem, hogy az állítás hamis / igaz. A 0 és 1 közötti valószínűség a mondat igazságtartalmában való hiedelem mértékeinek felel meg. Az állítás valójában persze vagy igaz vagy hamis. A 0.8 (szubjektív) valószínűség nem jelenti, hogy az állítás a 80 %-ban igaz, hanem egy 80 %-os mértékű hiedelmet, azaz igen erős elvárást az állítás igazságával szemben. Valószínűségi kijelentés szemantikája: egy kijelentéshez rendelt valószínűség az addigi észlelésektől (tény, evidencia, tényállás) függ. Ágens kihúz egy lapot egy megkevert kártyapakliból. Mielőtt ránézne a lapra: P( a lap pikk ász (lesz) ) = 1/52. Miután megnézte: P(...) = 0, vagy 1. Orvos páciens megvizsgálása után P1 valószínűségűnek lát egy konkrét betegséget. Labor lelet ezt vagy erősíti (> P1), vagy gyengíti (< P1).
16 Események véletlen kísérlet Elemi esemény: minden lehetséges kimenetel (e 1,e 2,,e n ), amiről egy kísérlet elvégzése után eldönthető, hogy bekövetkezett vagy sem e 1 e 2 e n = Ø Eseménytér: egy kísérlet összes kimenetele, az összes elemi esemény halmaza (Ω). e 1 U e 2 U Ue n =Ω Véletlen esemény: az eseménytér egy részhalmaza Biztos esemény: a kísérlet során biztosan (minden kimenetelnél) bekövetkezik. Ellentett esemény: akkor és csak akkor következik be, ha az eredeti esemény nem következik be 16
17 Együttes valószínűség-eloszlás Volt már Az együttes valószínűség-eloszlás P(X 1,...,X n ) minden egyes elemi eseményhez valószínűséget rendel. Ha minden vizsgált valószínűségi változó diszkrét, akkor az együttes valószínűség-eloszlás leírható egy n-dimenziós táblázattal Egy cella = az adott állapot valószínűsége. Írjuk le a budapesti időjárást két (egy bináris és egy ternáris) változóval: időjárás: {napos, felhős}, hőmérséklet: {meleg, közepes, hideg}. Akkor az együttes eloszlás P(időjárás, hőmérséklet):
18 Együttes valószínűség-eloszlás Írjuk le a budapesti időjárást két (egy bináris és egy ternáris) változóval: időjárás: {napos, felhős}, hőmérséklet: {meleg, közepes, hideg}. Akkor az együttes eloszlás P(időjárás, hőmérséklet): Meleg Közepes Hideg Napos Felhős Volt már Mivel az elemi események egymást kizáróak, ezek együttes bekövetkezése szükségszerűen hamis tény. Az axiómákból következően: a táblázat elemeinek összege 1.
19 Volt már Marginális és más eloszlások P(hőmérséklet) = Meleg Közepes Hideg P(időjárás) = Napos Felhős.4.6 Meleg Közepes Hideg Napos Felhős
20 Volt már Marginális és más eloszlások P(hőmérséklet időjárás = Napos) = P(időjárás hőmérséklet) = Meleg Közepes Hideg Meleg Közepes Hideg Napos Felhős Meleg Közepes Hideg Napos Felhős
21 Együttes valószínűség-eloszlás Jó hír: együttes eloszlás birtokában minden kérdésre kapunk választ, ami a benne szereplő véletlen változók viszonyára és tulajdonságaira vonatkozik. Rossz hír: nemigen megy 10-nél több változót tartalmazó eloszlások megadása P(x 1, x 2,, x N ) esetén kell 2 N 1 független valószínűségérték. A diagnózishoz exponenciális számú valószínűség ismerete szükséges. Rémálom: ha valamelyik valószínűség értéke megváltozik?
22 A bayesi frissítés Egyesével gyűjtjük a tényeket, majd módosítjuk az ismeretlen változóval kapcsolatos korábbi hiedelmi mértéket. 1. Fogfájás: P( Fogsz Ffáj) = P( Fogsz) P( Ffáj Fogsz ) P( Ffáj) 2. Lyuk: a Bayes-tételt úgy alkalmazzuk, hogy a továbbiakban a Fogfájás-t állandó feltételnek tekintjük: P( Fogsz Lyuk) = P( Fogsz) P( Fogsz Ffáj Lyuk) = P( Fogsz Ffáj) P( Lyuk Fogsz ) P( Lyuk) P( Lyuk Ffáj Fogsz ) P( Lyuk Ffáj)
23 A bayesi frissítés -példa P( Fogsz Ffáj Lyuk) = P( Fogsz Ffáj) P( Lyuk Ffáj Fogsz ) P( Lyuk Ffáj) P( Fogsz Ffáj) = P( Fogsz) P( Ffáj Fogsz ) P( Ffáj) P( Fogsz Ffáj Lyuk) P( Ffáj Fogsz ) P( Lyuk Ffáj Fogsz ) = P( Fogsz) P( Ffáj) P( Lyuk Ffáj)
24 Feltételes függetlenség Mind a fogfájásnak, mind a szonda lyukba akadásának közvetlen oka a fogszuvasodás. Amint tudjuk, hogy fogszuvasodás, nem hisszük, hogy a szonda lyukba akadásának valószínűsége a fogfájástól fog függeni. Hasonlóképpen, a szonda találata nem befolyásolja annak valószínűségét, hogy a szuvasodás fogfájást okoz. P( Lyuk Ffáj Fogsz ) = P( Lyuk Fogsz ) P( Ffáj Lyuk Fogsz ) = P( Ffáj Fogsz ) a Fogszuvasodás ténye esetén a Fogfájás és Lyuk között fennáll a feltételes függetlenség.
25 Feltételes függetlenség - alkalmazás P( Fogsz Ffáj Lyuk) P( Ffáj Fogsz ) P( Lyuk Ffáj Fogsz ) = P( Fogsz) P( Ffáj) P( Lyuk Ffáj) P( Lyuk Ffáj Fogsz ) = P( Lyuk Fogsz ) P( Ffáj Lyuk Fogsz ) = P( Ffáj Fogsz ) P( Fogsz Ffáj Lyuk) P( Ffáj Fogsz ) P( Lyuk Fogsz ) = P( Fogsz) P( Ffáj) P( Lyuk Ffáj)
26 Normalizálás Még mindig kérdéses a: P(Lyuk Fogfájás)?! - várhatóan figyelembe kell venni a tünetek összes lehetséges párosítását (hármasait, stb.), valóságban ez a kifejezés kiesik: a nevezők szorzata: P(Lyuk Fogfájás) P(Fogfájás) = P(Lyuk) Ezt az un. normalizálással kiküszöbölhetjük, feltéve, hogy pl. a P(Lyuk Fogszuvasodás)-t megbecsüljük. P( Lyuk Fogsz ) P( Fogsz ) P( Fogsz Lyuk) = P( Lyuk) P( Fogsz Lyuk) P( Lyuk Fogsz ) P( Fogsz )
27 Normalizálás P( Lyuk Fogsz ) P( Fogsz ) P( Fogsz Lyuk) = P( Lyuk) P( Fogsz Lyuk) P( Lyuk Fogsz ) P( Fogsz ) P( Fogsz Lyuk) = αp( Lyuk Fogsz ) P( Fogsz ) = C α P( Fogsz Lyuk) = αp( Lyuk Fogsz ) P( Fogsz ) = C α P( Fogsz Lyuk) + P( Fogsz Lyuk) = ( C + C ) α = 1 α = ( C + C ) P( Ok Hatás, Hatás,... Hatás ) = 1 2 α P( Ok ) P( Ok Hatás ) P( Ok Hatás )... P( Ok Hatás ) N 1 2 N
28 Lehetséges problémák Az a priori feltételes és együttes valószínűségek begyűjtése nehéz és költséges Az emberek rossz valószínűségbecslők (szubjektív megközelítés esetén) A Bayes-szabály sok számítást igényel
Bizonytalanság. Mesterséges intelligencia április 4.
Bizonytalanság Mesterséges intelligencia 2014. április 4. Bevezetés Eddig: logika, igaz/hamis Ha nem teljes a tudás A világ nem figyelhető meg közvetlenül Részleges tudás nem reprezentálható logikai eszközökkel
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Bizonytalan tudás és kezelése Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade Milyen matematikát
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Valószínűségi hálók - alapok Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade A szükséges
1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség.
1. tétel Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. A valószínűségszámítás tárgya: véletlen tömegjelenségek vizsgálata. véletlen: a kísérlet kimenetelét
Jármőtervezés és vizsgálat I. VALÓSZÍNŐSÉGSZÁMÍTÁSI ALAPFOGALMAK Dr. Márialigeti János
BUDAPESTI MŐSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM KÖZLEKEDÉSMÉRNÖKI KAR JÁRMŐELEMEK ÉS HAJTÁSOK TANSZÉK Jármőtervezés és vizsgálat I. VALÓSZÍNŐSÉGSZÁMÍTÁSI ALAPFOGALMAK Dr. Márialigeti János Budapest 2008
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Valószínűségi hálók - alapok Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade Valószínűségi
x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel:
Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel: Valószínűségi változó általános fogalma: A : R leképezést valószínűségi változónak nevezzük, ha : ( ) x, x R, x rögzített esetén esemény.
Bizonytalanság Valószín ség Bayes szabály. Bizonytalanság. November 5, 2009. Bizonytalanság
November 5, 2009 i következtetés Legyen az A t akció az, hogy t perccel a repül gép indulása el tt indulunk otthonról. Kérdés, hogy A t végrehajtásával kiérünk-e id ben? Problemák: 1. hiányos ismeret (utak
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.15. Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza) alkotja az eseményteret. Esemény: az eseménytér részhalmazai.
Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem.
Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Elemi esemény: a kísérlet egyes lehetséges egyes lehetséges kimenetelei.
Biomatematika 2 Orvosi biometria
Biomatematika 2 Orvosi biometria 2017.02.13. Populáció és minta jellemző adatai Hibaszámítás Valószínűség 1 Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza)
Valószínűségi változók. Várható érték és szórás
Matematikai statisztika gyakorlat Valószínűségi változók. Várható érték és szórás Valószínűségi változók 2016. március 7-11. 1 / 13 Valószínűségi változók Legyen a (Ω, A, P) valószínűségi mező. Egy X :
Mi az adat? Az adat elemi ismeret. Az adatokból információkat
Mi az adat? Az adat elemi ismeret. Tények, fogalmak olyan megjelenési formája, amely alkalmas emberi eszközökkel történő értelmezésre, feldolgozásra, továbbításra. Az adatokból gondolkodás vagy gépi feldolgozás
Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1
Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában
Elméleti összefoglaló a Valószín ségszámítás kurzushoz
Elméleti összefoglaló a Valószín ségszámítás kurzushoz Véletlen kísérletek, események valószín sége Deníció. Egy véletlen kísérlet lehetséges eredményeit kimeneteleknek nevezzük. A kísérlet kimeneteleinek
Valószínűségi hálók. Mesterséges Intelligencia - MI. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék Mesterséges Intelligencia - MI Valószínűségi hálók Előadó: Hullám Gábor Pataki Béla Előadás anyaga: Dobrowiecki
VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA
VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA A VALÓSZÍNŰSÉGI SZEMLÉLET ALAPOZÁSA 1-6. OSZTÁLY A biztos, a lehetetlen és a lehet, de nem biztos események megkülünböztetése Valószínűségi játékok, kísérletek események
Gazdasági matematika II. vizsgadolgozat megoldása A csoport
Gazdasági matematika II. vizsgadolgozat megoldása A csoport Definiálja az alábbi fogalmakat!. Egy eseménynek egy másik eseményre vonatkozó feltételes valószínűsége. ( pont) Az A esemény feltételes valószínűsége
BIOMATEMATIKA ELŐADÁS
BIOMATEMATIKA ELŐADÁS 7. Bevezetés a valószínűségszámításba Debreceni Egyetem, 2015 Dr. Bérczes Attila, Bertók Csanád A diasor tartalma 1 Bevezetés 2 Definíciók, tulajdonságok Példák Valószínűségi mező
Környezet statisztika
Környezet statisztika Permutáció, variáció, kombináció k számú golyót n számú urnába helyezve hányféle helykitöltés lehetséges, ha a golyókat helykitöltés Minden urnába akárhány golyó kerülhet (ismétléses)
Valószínűségszámítás összefoglaló
Statisztikai módszerek BMEGEVGAT Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:
Készítette: Fegyverneki Sándor
VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y
4. Az A és B események egymást kizáró eseményeknek vagy idegen (diszjunkt)eseményeknek nevezzük, ha AB=O
1. Mit nevezünk elemi eseménynek és eseménytérnek? A kísérlet lehetséges kimeneteleit elemi eseményeknek nevezzük. Az adott kísélethez tartozó elemi események halmazát eseménytérnek nevezzük, jele: X 2.
Matematikai alapok és valószínőségszámítás. Valószínőségszámítási alapok
Matematikai alapok és valószínőségszámítás Valószínőségszámítási alapok Bevezetés A tudományos életben vizsgálódunk pontosabb megfigyelés, elırejelzés, megértés reményében. Ha egy kísérletet végzünk, annak
Az ész természetéhez tartozik, hogy a dolgokat nem mint véletleneket, hanem mint szükségszerűeket szemléli (Spinoza: Etika, II. rész, 44.
Dr. Vincze Szilvia Az ész természetéhez tartozik, hogy a dolgokat nem mint véletleneket, hanem mint szükségszerűeket szemléli (Spinoza: Etika, II. rész, 44. tétel) Környezetünkben sok olyan jelenséget
Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás
Matematikai alapok és valószínőségszámítás Valószínőségi eloszlások Binomiális eloszlás Bevezetés A tudományos életben megfigyeléseket teszünk, kísérleteket végzünk. Ezek többféle különbözı eredményre
Bizonytalanságok melletti következtetés
Bizonytalanságok melletti következtetés Mesterséges Intelligencia I. Valószínűségi alapfogalmak (ismétlés) A, B,C események esetén a priori valószínűség: feltételes (a posteiori) valószínűség: Bayes-formula
Bayes-tétel és a feltámadás
Bayes-tétel és a feltámadás Kodácsy Tamás 2004. március 21. 1. Feltételes valószínűség A mai valószínűségszámítás általánosan elfogadott elmélete (Kolmogorov-féle elmélet) a valószínűség fogalmát a következő
Least Squares becslés
Least Squares becslés A négyzetes hibafüggvény: i d i ( ) φx i A négyzetes hibafüggvény mellett a minimumot biztosító megoldás W=( d LS becslés A gradiens számítása és nullává tétele eredményeképp A megoldás
Példa a report dokumentumosztály használatára
Példa a report dokumentumosztály használatára Szerző neve évszám Tartalomjegyzék 1. Valószínűségszámítás 5 1.1. Események matematikai modellezése.............. 5 1.2. A valószínűség matematikai modellezése............
Matematika III. 3. A valószínűségszámítás elemei Prof. Dr. Závoti, József
Matematika III. 3. A valószínűségszámítás elemei Prof. Dr. Závoti, József Matematika III. 3. : A valószínűségszámítás elemei Prof. Dr. Závoti, József Lektor : Bischof, Annamária Ez a modul a TÁMOP - 4.1.2-08/1/A-2009-0027
Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 3. MA3-3 modul. A valószínűségszámítás elemei
Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof Dr Závoti József Matematika III 3 MA3-3 modul A valószínűségszámítás elemei SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról szóló 1999
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen
Valószín ségszámítás és statisztika
Valószín ségszámítás és statisztika Informatika BSc, esti tagozat Backhausz Ágnes agnes@math.elte.hu fogadóóra: szerda 10-11 és 13-14, D 3-415 2018/2019. tavaszi félév Bevezetés A valószín ségszámítás
Elméleti összefoglaló a Sztochasztika alapjai kurzushoz
Elméleti összefoglaló a Sztochasztika alapjai kurzushoz 1. dolgozat Véletlen kísérletek, események valószín sége Deníció. Egy véletlen kísérlet lehetséges eredményeit kimeneteleknek nevezzük. A kísérlet
Biometria az orvosi gyakorlatban. Számítógépes döntéstámogatás
SZDT-01 p. 1/23 Biometria az orvosi gyakorlatban Számítógépes döntéstámogatás Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Gyakorlat SZDT-01 p.
24. tétel A valószínűségszámítás elemei. A valószínűség kiszámításának kombinatorikus modellje.
24. tétel valószíűségszámítás elemei. valószíűség kiszámításáak kombiatorikus modellje. GYORISÁG ÉS VLÓSZÍŰSÉG meyibe az egyes adatok a sokaságo belüli részaráyát adjuk meg (törtbe vagy százalékba), akkor
Területi sor Kárpát medence Magyarország Nyugat-Európa
Területi sor Terület megnevezése Magyarok száma 2011.01.01. Kárpát medence 13 820 000 Magyarország 10 600 00 Nyugat-Európa 1 340 000 HIV prevalence (%) in adults in Africa, 2005 2.5 Daganatos halálozás
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Valószínűségi hálók - következtetés Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade Következtetés
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:
Valószín ségszámítás és statisztika
Valószín ségszámítás és statisztika Informatika BSc, esti tagozat Backhausz Ágnes agnes@cs.elte.hu 2016/2017. tavaszi félév Bevezetés Célok: véletlen folyamatok modellezése; kísérletekb l, felmérésekb
Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,
// KURZUS: Matematika II. MODUL: Valószínűség-számítás 21. lecke: A feltételes valószínűség, események függetlensége Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,
Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus. KOKI,
Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár PhD kurzus. KOKI, 2015.09.17. Mi a statisztika? A sokaság (a sok valami) feletti áttekintés megszerzése, a sokaságról való információszerzés eszköze.
BME Nyílt Nap november 21.
Valószínűségszámítás, statisztika és valóság Néhány egyszerű példa Kói Tamás Budapesti Műszaki és Gazdaságtudományi Egyetem koitomi@math.bme.hu BME Nyílt Nap 2014. november 21. Matematikai modell Matematikai
A valószínűségszámítás elemei
A valószínűségszámítás elemei Kísérletsorozatban az esemény relatív gyakorisága: k/n, ahol k az esemény bekövetkezésének abszolút gyakorisága, n a kísérletek száma. Pl. Jelenség: kockadobás Megfigyelés:
Valószínűségszámítás és statisztika a fizikában február 16.
számítás és statisztika a fizikában 2018. február 16. Technikai információk Palla Gergely / pallag@hal.elte.hu / ELTE TTK Biológiai Fizika Tanszék, Északi Tömb, 3.90. szoba Fogadó óra: hétfő, 16-18. Az
1. A kísérlet naiv fogalma. melyek közül a kísérlet minden végrehajtásakor pontosan egy következik be.
IX. ESEMÉNYEK, VALÓSZÍNŰSÉG IX.1. Események, a valószínűség bevezetése 1. A kísérlet naiv fogalma. Kísérlet nek nevezzük egy olyan jelenség előidézését vagy megfigyelését, amelynek kimenetelét az általunk
Együ ttes e s vetü leti eloszlá s, sü rü se gfü ggve ny, eloszlá sfü ggve ny
Együ ttes e s vetü leti eloszlá s, sü rü se gfü ggve ny, eloszlá sfü ggve ny Szűk elméleti összefoglaló Együttes és vetületi eloszlásfüggvény: X = (X, X, X n ) valószínűségi vektorváltozónak hívjuk. X
Mesterséges Intelligencia I.
Mesterséges Intelligencia I. 10. elıadás (2008. november 10.) Készítette: Romhányi Anita (ROANAAT.SZE) - 1 - Statisztikai tanulás (Megfigyelések alapján történı bizonytalan következetésnek tekintjük a
Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat
Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi fizika és statisztika I. előadás 2016.11.09 Orvosi
Valószínűségszámítás. Tómács Tibor. F, P ) egy valószínűségi mező, A P (A). Ha ϱ n az A gyakorisága, kísérletek száma, akkor minden ε. p(1 p) nε 2.
Tómács Tibor Valószínűségszámítás F, P egy valószínűségi mező, A P (A. Ha ϱ n az A gyakorisága, kísérletek száma, akkor minden ε én ( ϱ n P n p ε p(1 p nε 2. Matematikai és Informatikai Intézet Tómács
1. Kombinatorikai bevezetés
1. Kombinatorikai bevezetés 1.1. Permutációk Adott n különböző elem ismétlés nélküli permutációján az elemek egy meghatározott sorrendjét értjük. Az n különböző elem összes permutációinak számát P n -nel
Gazdasági matematika II. tanmenet
Gazdasági matematika II. tanmenet Mádi-Nagy Gergely A hivatkozásokban az alábbi tankönyvekre utalunk: T: Tóth Irén (szerk.): Operációkutatás I., Nemzeti Tankönyvkiadó 1987. Cs: Csernyák László (szerk.):
Biológiai rendszerek modellellenőrzése bayesi megközelítésben
Biológiai rendszerek modellellenőrzése bayesi megközelítésben Gál Tamás Zoltán Szoftver verifikáció és validáció kiselőadás, 2013. ősz Forrás: Sumit K. Jha et al.: A Bayesian Approach to Model Checking
Csima Judit október 24.
Adatbáziskezelés Funkcionális függőségek Csima Judit BME, VIK, Számítástudományi és Információelméleti Tanszék 2018. október 24. Csima Judit Adatbáziskezelés Funkcionális függőségek 1 / 1 Relációs sémák
V. Bizonytalanságkezelés
Bizonytalanság forrásai V. Bizonytalanságkezelés Hiányzó adat mellett történő következtetés Mi lehet a páciens betegsége? Bizonytalan adatra épülő következtetés objektív Pontatlan műszerek pontatlan leolvasása:
Algoritmuselmélet. Bonyolultságelmélet. Katona Gyula Y.
Algoritmuselmélet Bonyolultságelmélet Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 12. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet
Ellátási lánc optimalizálás P-gráf módszertan alkalmazásával mennyiségi és min ségi paraméterek gyelembevételével
Ellátási lánc optimalizálás P-gráf módszertan alkalmazásával mennyiségi és min ségi paraméterek gyelembevételével Pekárdy Milán, Baumgartner János, Süle Zoltán Pannon Egyetem, Veszprém XXXII. Magyar Operációkutatási
Diszkrét matematika I.
Diszkrét matematika I. középszint 2013 ősz 1. Diszkrét matematika I. középszint 8. előadás Mérai László merai@compalg.inf.elte.hu compalg.inf.elte.hu/ merai Komputeralgebra Tanszék 2013 ősz Kombinatorika
Mesterséges intelligencia, 7. előadás 2008. október 13. Készítette: Masa Tibor (KPM V.)
Mesterséges intelligencia, 7. előadás 2008. október 13. Készítette: Masa Tibor (KPM V.) Bizonytalanságkezelés: Az eddig vizsgáltakhoz képest teljesen más világ. A korábbi problémák nagy része logikai,
Biometria az orvosi gyakorlatban. Regresszió Túlélésanalízis
SZDT-09 p. 1/36 Biometria az orvosi gyakorlatban Regresszió Túlélésanalízis Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Logisztikus regresszió
(Independence, dependence, random variables)
Két valószínűségi változó együttes vizsgálata Feltételes eloszlások Két diszkrét változó együttes eloszlása a lehetséges értékpárok és a hozzájuk tartozó valószínűségek (táblázat) Példa: Egy urna 3 fehér,
Matematika III. 2. Eseményalgebra Prof. Dr. Závoti, József
Matematika III. 2. Eseményalgebra Prof. Dr. Závoti, József Matematika III. 2. : Eseményalgebra Prof. Dr. Závoti, József Lektor : Bischof, Annamária Ez a modul a TÁMOP - 4.1.2-08/1/A-2009-0027 Tananyagfejlesztéssel
TANTÁRGYI PROGRAM Matematikai alapok II. útmutató
BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok II. útmutató 2013/2014. tanév II. félév Tantárgyi program Tantárgy megnevezése Tantárgy jellege/típusa:
A maximum likelihood becslésről
A maximum likelihood becslésről Definíció Parametrikus becsléssel foglalkozunk. Adott egy modell, mellyel elképzeléseink szerint jól leírható a meghatározni kívánt rendszer. (A modell típusának és rendszámának
TANTÁRGYI PROGRAM Matematikai alapok 2. útmutató
BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok 2. útmutató 2015/2016. tanév I. félév Tantárgyi program Tantárgy megnevezése Tantárgy jellege/típusa:
Biomatematika 2 Orvosi biometria
Biomatematika 2 Orvosi biometria 2017.02.05. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)
Mérés és modellezés 1
Mérés és modellezés 1 Mérés és modellezés A mérnöki tevékenység alapeleme a mérés. A mérés célja valamely jelenség megismerése, vizsgálata. A mérés tervszerűen végzett tevékenység: azaz rögzíteni kell
Kísérlettervezés alapfogalmak
Kísérlettervezés alapfogalmak Rendszermodellezés Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Kísérlettervezés Cél: a modell paraméterezése a valóság alapján
Logika es sz am ıt aselm elet I. r esz Logika 1/36
1/36 Logika és számításelmélet I. rész Logika 2/36 Elérhetőségek Tejfel Máté Déli épület, 2.606 matej@inf.elte.hu http://matej.web.elte.hu Tankönyv 3/36 Tartalom 4/36 Bevezető fogalmak Ítéletlogika Ítéletlogika
Egyenletek, egyenlőtlenségek, egyenletrendszerek I.
Egyenletek, egyenlőtlenségek, egyenletrendszerek I. DEFINÍCIÓ: (Nyitott mondat) Az olyan állítást, amelyben az alany helyén változó szerepel, nyitott mondatnak nevezzük. A nyitott mondatba írt változót
Diszkrét matematika I.
Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 2. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Matematikai logika Diszkrét matematika I. középszint
1. Alapfogalmak Algoritmus Számítási probléma Specifikáció Algoritmusok futási ideje
1. Alapfogalmak 1.1. Algoritmus Az algoritmus olyan elemi műveletekből kompozíciós szabályok szerint felépített összetett művelet, amelyet megadott feltételt teljesítő bemeneti adatra végrehajtva, a megkívánt
Matematika A3 Valószínűségszámítás, 6. gyakorlat 2013/14. tavaszi félév
Matematika A3 Valószínűségszámítás, 6. gyakorlat 2013/14. tavaszi félév 1. A várható érték és a szórás transzformációja 1. Ha egy valószínűségi változóhoz hozzáadunk ötöt, mínusz ötöt, egy b konstanst,
Matematikai statisztika c. tárgy oktatásának célja és tematikája
Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:
Mérhetőség, σ-algebrák, Lebesgue Stieltjes-integrál, véletlen változók és eloszlásfüggvényeik
Mérhetőség, σ-algebrák, Lebesgue Stieltjes-integrál, véletlen változók és eloszlásfüggvényeik Az A halmazrendszer σ-algebra az Ω alaphalmazon, ha Ω A; A A A c A; A i A, i N, i N A i A. Az A halmazrendszer
A valószínűségszámítás elemei
Alapfogalmak BIOSTATISZTIKA ÉS INFORMATIKA A valószínűségszámítás elemei Jelenség: minden, ami lényegében azonos feltételek mellett megismételhető, amivel kapcsolatban megfigyeléseket lehet végezni, lehet
Osztályozóvizsga követelményei
Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 7 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási
Algoritmusok Tervezése. 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás
Algoritmusok Tervezése 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás Mi az algoritmus? Lépések sorozata egy feladat elvégzéséhez (legáltalánosabban) Informálisan algoritmusnak nevezünk bármilyen jól definiált
Kettőnél több csoport vizsgálata. Makara B. Gábor
Kettőnél több csoport vizsgálata Makara B. Gábor Három gyógytápszer elemzéséből az alábbi energia tartalom adatok származtak (kilokalória/adag egységben) Három gyógytápszer elemzésébô A B C 30 5 00 10
Markov modellek 2015.03.19.
Markov modellek 2015.03.19. Markov-láncok Markov-tulajdonság: egy folyamat korábbi állapotai a későbbiekre csak a jelen állapoton keresztül gyakorolnak befolyást. Semmi, ami a múltban történt, nem ad előrejelzést
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.08. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)
i p i p 0 p 1 p 2... i p i
. vizsga, 06--9, Feladatok és megoldások. (a) Adja meg az diszkrét eloszlás várható értékének a definícióját! i 0... p i p 0 p p... i p i (b) Tegyük fel, hogy a rigófészkekben található tojások X száma
1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása
HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat
Matematika A4 II. gyakorlat megoldás
Matematika A4 II. gyakorlat megoldás 1. Feltételes valószínűség Vizsgálhatjuk egy A esemény bekövetkezésének valószínűségét úgy is, hogy tudjuk, hogy egy másik B esemény már bekövetkezett. Például ha a
Statisztikai alapok. Leíró statisztika Lineáris módszerek a statisztikában
Statisztikai alapok Leíró statisztika Lineáris módszerek a statisztikában Tudományosan és statisztikailag tesztelhető állítások? A keserűcsokoládé finomabb, mint a tejcsoki. A patkány a legrondább állat,
Az első számjegyek Benford törvénye
Az első számjegyek Benford törvénye Frank Benford (1883-1948) A General Electric fizikusa Simon Newcomb (1835 1909) asztronómus 1. oldal 2. oldal A híres arizonai csekk sikkasztási eset http://www.aicpa.org/pubs/jofa/may1999/nigrini.htm
Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 8. előadás Előadó: Dr. Ertsey Imre Minták alapján történő értékelések A statisztika foglalkozik. a tömegjelenségek vizsgálatával Bizonyos esetekben lehetetlen illetve célszerűtlen a teljes
Megoldások. ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4; 2, 3) normális eloszlású P (ξ
Megoldások Harmadik fejezet gyakorlatai 3.. gyakorlat megoldása ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4;, 3 normális eloszlású P (ξ 8 ξ 5 feltételes valószínűségét (.3. alapján számoljuk.
Valószín ségszámítás. Survey statisztika mesterszak és földtudomány alapszak Backhausz Ágnes 2018/2019.
Valószín ségszámítás Survey statisztika mesterszak és földtudomány alapszak Backhausz Ágnes agnes@cs.elte.hu 2018/2019. szi félév A valószín ségszámítás kurzus céljai a statisztika megalapozása: a véletlen
A F u z z y C L I P S a l a p j a i
A F u z z y C L I P S a l a p j a i A CLIPS rendszer bovítése a bizonytalan információk hatékony kezelése céljából. K é t f é l e b i z o n y t a l a n s á g t á m o g a t á s a : Pontosan nem megfogalmazható
NGB_IN040_1 SZIMULÁCIÓS TECHNIKÁK dr. Pozna Claudio Radu, Horváth Ernő
SZÉCHENYI ISTVÁN EGYETEM Műszaki Tudományi Kar Informatika Tanszék BSC FOKOZATÚ MÉRNÖK INFORMATIKUS SZAK NGB_IN040_1 SZIMULÁCIÓS TECHNIKÁK dr. Pozna Claudio Radu, Horváth Ernő Fejlesztői dokumentáció GROUP#6
Néhány kockadobással kapcsolatos feladat 1 P 6
Néhány kockadobással kapcsolatos feladat Feldobunk egy kockát. Az eseménytér: ; 2; ; ; ; Az összes esetek száma:. Feldobunk egy kockát. Mi a valószínűsége, hogy hatost dobunk? A kedvező esetek száma: (hatost
Mérés és modellezés Méréstechnika VM, GM, MM 1
Mérés és modellezés 2008.02.04. 1 Mérés és modellezés A mérnöki tevékenység alapeleme a mérés. A mérés célja valamely jelenség megismerése, vizsgálata. A mérés tervszerűen végzett tevékenység: azaz rögzíteni
Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból
Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 9. évfolyam I. Halmazok 1. Alapfogalmak, jelölések 2. Halmaz, részhalmaz fogalma, részhalmazok száma, jelölések 3. Nevezetes számhalmazok (N,
Matematika III. 4. A valószínűségi változó és jellemzői Prof. Dr. Závoti, József
Matematika III. 4. A valószínűségi változó és jellemzői Prof. Dr. Závoti, József Matematika III. 4. : A valószínűségi változó és jellemzői Prof. Dr. Závoti, József Lektor : Bischof, Annamária Ez a modul
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Racionalitás: a hasznosság és a döntés Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade
A kockázat fogalma. A kockázat fogalma. Fejezetek a környezeti kockázatok menedzsmentjéből 2 Bezegh András
Fejezetek a környezeti kockázatok menedzsmentjéből 2 Bezegh András A kockázat fogalma A kockázat (def:) annak kifejezése, hogy valami nem kívánt hatással lesz a valaki/k értékeire, célkitűzésekre. A kockázat
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.22. Valószínűségi változó Véletlentől függő számértékeket (értékek sokasága) felvevő változókat valószínűségi változóknak nevezzük(jelölés: ξ, η, x). (pl. x =
1. Hányféle sorrendben vonulhat ki a pályára egy focimeccsen a tizenegy kezdő játékos?
Valószínűségszámítás, földtudomány alapszak, 2015/2016. őszi félév 1. Hányféle sorrendben vonulhat ki a pályára egy focimeccsen a tizenegy kezdő játékos? 2. Két tizenhárom fős vízilabdacsapat mérkőzik