Bayes-tétel és a feltámadás
|
|
- Zalán Mészáros
- 8 évvel ezelőtt
- Látták:
Átírás
1 Bayes-tétel és a feltámadás Kodácsy Tamás március Feltételes valószínűség A mai valószínűségszámítás általánosan elfogadott elmélete (Kolmogorov-féle elmélet) a valószínűség fogalmát a következő módon határozza meg. Tekintsünk egy kísérletet, és ehhez kapcsolódóan egy A eseményt. Hajtsuk végre a kísérletet n-szer, egymástól függetlenül, azonos körülmények között. Jelölje k A az A bekövetkezésének a számát. Ha ka n relatív gyakoriság nagy n esetén egy fix szám körül ingadozik, akkor ezt az A-ra jellemző számot -val jelöljük, és A valószínűségének (probability) nevezzük. [Faz03] A Kolmogorov-féle valószínűségszámítás elmélete három alapvető axiómára épül: 1. 0 minden A eseményre. 2. A biztos esemény (Ω) mindig bekövetkezik, így P(Ω) Ha A és B egymást kizáró események, akkor P(A + B) + P(B). A valószínűség értéke 0 és 1 közötti szám, egy A esemény bekövetkezésének a valószínűségét -val jelöljük. A 1 azt jelenti, hogy A bekövetkezése elkerülhetetlen (biztos esemény), ha pedig A bekövetkezése lehetetlen, akkor 0. Tegyük fel, hogy A és B olyan események, amelyek bekövetkezésének valószínűségét és P(B) jelöli. A kérdés az, hogy mekkora A esemény bekövetkezésének valószínűsége, ha B esemény is bekövetkezett? Tételezzük fel, hogy B esemény bekövetkezésének esélye nem 0, ekkor A esemény B-re vonatkozó feltételes valószínűségét P(A B)-vel jelöljük. A feltételes valószínűség P(A B) a következő módon adható meg (A&B az A és B esemény szorzatát jelenti, azaz A&B akkor következik be, ha mind A mind B bekövetkezik) Példa a Bayes-tételre P(B A) : P(B&A) Vegyünk egy példát. Egy zsákban 50 db golyó van, a golyók között van 20 db fehér és 30 db fekete. A fehérek közül 10 db nagy golyó, és 10 db kis golyó van, a feketék közt 20 db nagy és 10 db kis golyó van. Mekkora annak az esélye, hogy ha kihúzunk egy nagy golyót, az fehér lesz? Annak a valószínűsége, hogy húzáskor egy olyan golyót március 21. Jesenius kerekasztal-beszélgetés, Istenérvek és valószínűségszámítás 1
2 választunk, ami nagy és fehér: P(A&B) , annak a valószínűsége, hogy a kiválasztott golyó nagy: P(B) Ebből adódóan a kérdésre a válasz: P(A B) P(A&B) P(B) Bayes formula A Bayes formula a feltételes valószínűség fogalmából következik: P(B A) P(A B)P(B) Bizonyítás: P(B A) P(B&A) P(A&B)P(B) P(B) P(A B)P(B) 2. A Bayes tétel alkalmazása A Bayes tétel kiváló eszköznek bizonyult a tekintetben is, hogy egy intelligens tervező mellett statisztikai alapú érvelést lehessen megfogalmazni. Richard Swinburne korunk egyik legnagyobb teista filozófusa a bayesianus gondolatmenetet használja fel arra, hogy istenérveket állítson fel, oly módon, hogy a vizsgált hipotézist (Isten létezése) a jelenlegi háttérismeretünk, valamint a hipotézist alátámasztó bizonyítékok alapján becsüli meg. A Bayes tétel tehát egy olyan eszköz Swinburne kezében, amelynek segítségével a hipotézis, a háttérismeret, és a bizonyítékok meghatározásával különböző istenérveket fogalmaz meg, ezek összefoglalásáról lásd [Sza98]. Swinburne gondolatmeneteiben a Bayes tétel alkalmazására az alábbi összefüggésben kerül sor [Swi02, 10.o.]: Bizonyítás: P(h e&k) P(h&e&k) P(h e&k) P(e h&k)p(h k) P(e&h&k) P(e&h&k) P(e h&k)p(h k) A képletben h (hypotesis) egy hipotézist jelöl, e (evidence) azokat a bizonyítékokat, amelyek h hipotézist alátámasztják, k (knowledge) pedig a h hipotézistől független háttértudásunkat jelöli. Ez alapján az egyenletben lévő valószínűségek az alábbiakat jelentik: P(h e&k) h hipotézis valószínűségét fejezi ki annak a fényében, hogy e evidencia a k háttértudás alapján mennyire valószínű. Ez h a posteriori valószínűsége. P(e h&k) annak valószínűségét fejezi ki, hogy az e evidencia mennyire valószínű h hipotézist és k háttérismeret figyelembe vétele mellett. P(h k) azt fejezi ki, hogy h milyen valószínű akkor, ha csak a k háttérismeretre támaszkodunk. Azaz h a priori valószínűségéről van szó. Ha k tautologikus, és h&k h, akkor P(h k)1. e evidencia valószínűségét fejezi ki k háttérismeret tudatában. 2
3 3. Feltámadás melletti érv [Swi03] Swinburne Jézus feltámadására vonatkozó gondolatmenete a testetöltés (incarnatio) és feltámadás (resurrectio) csodáját kapcsolja össze úgy, hogy azt állítja: a testetöltés csodája ugyanakkora valószínűségű mint a feltámadás csodája. Hiszen ha elfogadjuk azt, hogy Isten, aki teremtette a világot, teremtménnyé lesz, akit az egek egei sem tudnak befogadni az anyaméhbe kerül, akkor nem akadhatunk meg azon, hogy az emberré lett Isten (aki a élet és halál Ura), legyőzi a halált és feltámad. Tehát: ha Isten megtestesül oly módon, hogy életének óriási csodában kell tetőznie, és a [testetöltés] feltételezése esetén egyetlen komoly jelöltje van ennek, a feltámadás, akkor lennie kellett feltámadásnak. [Swi03] A kérdés így az: hogyan írhatjuk le a testetöltés valószínűségét? Az erre választadó következtetés Swinburne egyik legösszetettebb bayesianus érvelése. A képletben szereplő változókat az alábbiakban határozza meg. A h hipotézis azt teszi fel, hogy Isten testetölt. Legyen k az a háttérismeret, amit a theologia naturalis, a természeti teológia nyújt nekünk. (Az az ismeret, amelyet Istenről nem konkrétan a Szentírásból, hanem Isten általános kijelentéséből: a természetből, a lelkiismeretből, és a történelem egészéből nyerünk.) Legyen e a történeti bizonyíték, ami három bizonyíték (e 1 &e 2 &e 3 ) szorzatából áll. Ebből e 1 ún. előzetes történeti bizonyíték, e 3 pedig utólagos történeti bizonyíték. Az e 2 annak a bizonyítéka, hogy Isten megtestesülésének előzetes feltételei teljesülnek valamely meg nem nevezett prófétában (olyan mértékben, de nem feltétlenül ugyanolyan módon, mint Jézusnál). Az e 3 annak a bizonyítéka, hogy Isten megtestesülésének utólagos következményei (pl. az élete óriási csodával tetőződik be) teljesülnek ugyanannál a prófétánál. Az e 2 pedig annak a bizonyítéka, hogy e feltételek ilyen fokig és ilyen módon egyetlen más prófétánál sem teljesültek. P(e h&k) Mekkora lehet annak a valószínűsége, hogy a történeti bizonyítékok összessége (e) teljesül amellett, hogy a természeti teológia által nyújtott háttérismeretünk mellett feltesszük: Isten testetöltött? (e) Úgy érveltem, hogy a megtestesült Istentől azt várnánk, hogy szent életet éljen, mély erkölcsi igazságokra tanítson minket, a megtestesülését és a megváltása általi megbékélést hirdető egyházat alapítson, valamint azt, hogy ő maga isteninek hirdesse magát, és azt hirdesse, hogy az életével elégtételt ad. Az első három elvárást alátámasztja az, amit Jézusról tudunk, de az utolsó két elvárást talán nem annyira (ld. Messiás titok). (h&k) Ha Jézus életét olyan óriási csoda tetőzné be, mint a feltámadás, akkor a megjelenéseivel és az üres sírral kapcsolatban talán sokkal több bizonyítékot várnánk, mint amennyivel rendelkezünk. Legyünk szerények, és tegyük fel, hogy ez a valószínűség: P(e h&k) 1/10 3
4 P(h k) Mekkora lehet annak a valószínűsége, hogy Isten megtestesül? Ennek a becslését két valószínűség szorzatából vezetjük le: P(h k) P(h t&k)p(t k) A t itt a teizmust jelöli, vagyis azt az állítást, hogy létezik a hagyományos felfogásnak megfelelő Isten. P(t k) annak a valószínűségét jelenti, hogy van ilyen Isten, ha feltételezzük a természeti teológia igazságát. Azaz Istennek a természetben, a történelemben és a lelkiismeretben megmutatkozó nyomai és jelei mennyiben igazolják az ő létét? Tegyük fel visszafogottan azt, hogy ez a valószínűség: 1/2. P(h t&k) az a valószínűség, hogy ha van Isten, akkor megtestesül. Mennyire szükségszerű Isten megtestesülése? Legyen ez az érték is 1/2. A fentiekből következően a természeti teológia fennállása mellet annak valószínűsége, hogy Isten megtestesül kb. 25%, hiszen P(h k) P(h t&k)p(t k) 1/2 1/2 1/4 Mekkora annak a valószínűsége, hogy a természeti teológiából kapott ismeretek fennállása mellett igaz a testetöltés mellett szóló történeti bizonyíték? Írjuk fel két valószínűség összegeként a keresett valószínűséget, azaz ugyanakkora, mint ha annak a két egymást kizáró esetnek a valószínűségét adnánk meg: P(e&k&h) + P(e&k& h) (P(h) + P( h)) P( h&k)p(e&k&h) + P( h&k)p(e&k& h) P( h&k) P(e&h&k) + P(e& h&k)p( h&k) P( h&k) P(e h&k)p(h k) }{{} + P(e h&k)p( h k) }{{} Az első kifejezés értékét már kiszámoltuk: 1/10 1/4 1/40 A második kifejezésben P( h k) 1 P(h k), azaz 3/4. Mennyi P(e h&k)? Ez azt a valószínűséget fejezi ki, hogy ha nem kerül sor megtestesülésre, de a természeti teológia által kapott ismereteink igazak, akkor mégis bekövetkeznek azok a történeti események, amelyeket e jelöl. Az e által jelölt történeti bizonyítékok azt foglalják össze, hogy egy próféta beteljesítette a megtestesülésre vonatkozó próféciákat, és ennek utólagos következményei és fennállnak (óriási csoda), és mindez csak egyszer és csak ezzel a prófétával történt meg. Ezek alapján feltenni, hogy nem történt meg a megtestesülés, szinte elképzelhetetlen, legyen ennek az esélye: P(e h&k) 1/1000. A fentiek alapján tehát 1/40+ 3/4 1/1000 }{{}}{{} 103/4000 4
5 Így végül a testetöltésre és egyben a feltámadásra kapott valószínűségünk: Hivatkozások P(h e&k) P(e h&k)p(h k) 1/10 1/4 103/ [Faz03] I. Fazekas. Valószínűségszámítás. mobidiák könyvtár, Debrecen, [Swi02] R. Swinburne. Introduction. In R. Swinburne, editor, Bayes s Theorem, pages British Academy, Oxford Univerity Press, [Swi03] R. Swinburne. A feltmámadás valószínűsége. Mérleg, (1), [Sza98] M. Szalai. Swinburne istenérvei. Magyar Filozófiai Szemle, 1,
Valószín ségszámítás és statisztika
Valószín ségszámítás és statisztika Informatika BSc, esti tagozat Backhausz Ágnes agnes@math.elte.hu fogadóóra: szerda 10-11 és 13-14, D 3-415 2018/2019. tavaszi félév Bevezetés A valószín ségszámítás
Példa a report dokumentumosztály használatára
Példa a report dokumentumosztály használatára Szerző neve évszám Tartalomjegyzék 1. Valószínűségszámítás 5 1.1. Események matematikai modellezése.............. 5 1.2. A valószínűség matematikai modellezése............
Miért téves az antropikus elv a kozmológiában?
Konferenciaelőadás, Magyar Pax Romana 47. kongresszusa, Győr, 2005. Miért téves az antropikus elv a kozmológiában? E. Szabó László MTA ELTE Elméleti Fizika Kutatócsoport ELTE, Tudománytörténet és Tudományfilozófia
1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség.
1. tétel Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. A valószínűségszámítás tárgya: véletlen tömegjelenségek vizsgálata. véletlen: a kísérlet kimenetelét
Bizonytalan tudás kezelése
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék Bizonytalan tudás kezelése Előadó: Előadás anyaga: Hullám Gábor Pataki Béla Dobrowiecki Tadeusz Valószínűségi
Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem.
Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Elemi esemény: a kísérlet egyes lehetséges egyes lehetséges kimenetelei.
BIOMATEMATIKA ELŐADÁS
BIOMATEMATIKA ELŐADÁS 7. Bevezetés a valószínűségszámításba Debreceni Egyetem, 2015 Dr. Bérczes Attila, Bertók Csanád A diasor tartalma 1 Bevezetés 2 Definíciók, tulajdonságok Példák Valószínűségi mező
Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,
// KURZUS: Matematika II. MODUL: Valószínűség-számítás 21. lecke: A feltételes valószínűség, események függetlensége Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,
Jármőtervezés és vizsgálat I. VALÓSZÍNŐSÉGSZÁMÍTÁSI ALAPFOGALMAK Dr. Márialigeti János
BUDAPESTI MŐSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM KÖZLEKEDÉSMÉRNÖKI KAR JÁRMŐELEMEK ÉS HAJTÁSOK TANSZÉK Jármőtervezés és vizsgálat I. VALÓSZÍNŐSÉGSZÁMÍTÁSI ALAPFOGALMAK Dr. Márialigeti János Budapest 2008
1. A kísérlet naiv fogalma. melyek közül a kísérlet minden végrehajtásakor pontosan egy következik be.
IX. ESEMÉNYEK, VALÓSZÍNŰSÉG IX.1. Események, a valószínűség bevezetése 1. A kísérlet naiv fogalma. Kísérlet nek nevezzük egy olyan jelenség előidézését vagy megfigyelését, amelynek kimenetelét az általunk
Matematikai alapok és valószínőségszámítás. Valószínőségszámítási alapok
Matematikai alapok és valószínőségszámítás Valószínőségszámítási alapok Bevezetés A tudományos életben vizsgálódunk pontosabb megfigyelés, elırejelzés, megértés reményében. Ha egy kísérletet végzünk, annak
Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 3. MA3-3 modul. A valószínűségszámítás elemei
Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof Dr Závoti József Matematika III 3 MA3-3 modul A valószínűségszámítás elemei SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról szóló 1999
Matematika III. 3. A valószínűségszámítás elemei Prof. Dr. Závoti, József
Matematika III. 3. A valószínűségszámítás elemei Prof. Dr. Závoti, József Matematika III. 3. : A valószínűségszámítás elemei Prof. Dr. Závoti, József Lektor : Bischof, Annamária Ez a modul a TÁMOP - 4.1.2-08/1/A-2009-0027
x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel:
Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel: Valószínűségi változó általános fogalma: A : R leképezést valószínűségi változónak nevezzük, ha : ( ) x, x R, x rögzített esetén esemény.
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen
Elméleti összefoglaló a Valószín ségszámítás kurzushoz
Elméleti összefoglaló a Valószín ségszámítás kurzushoz Véletlen kísérletek, események valószín sége Deníció. Egy véletlen kísérlet lehetséges eredményeit kimeneteleknek nevezzük. A kísérlet kimeneteleinek
4. Az A és B események egymást kizáró eseményeknek vagy idegen (diszjunkt)eseményeknek nevezzük, ha AB=O
1. Mit nevezünk elemi eseménynek és eseménytérnek? A kísérlet lehetséges kimeneteleit elemi eseményeknek nevezzük. Az adott kísélethez tartozó elemi események halmazát eseménytérnek nevezzük, jele: X 2.
Gazdasági matematika II. vizsgadolgozat megoldása A csoport
Gazdasági matematika II. vizsgadolgozat megoldása A csoport Definiálja az alábbi fogalmakat!. Egy eseménynek egy másik eseményre vonatkozó feltételes valószínűsége. ( pont) Az A esemény feltételes valószínűsége
Környezet statisztika
Környezet statisztika Permutáció, variáció, kombináció k számú golyót n számú urnába helyezve hányféle helykitöltés lehetséges, ha a golyókat helykitöltés Minden urnába akárhány golyó kerülhet (ismétléses)
Valószín ségszámítás. Survey statisztika mesterszak és földtudomány alapszak Backhausz Ágnes 2018/2019.
Valószín ségszámítás Survey statisztika mesterszak és földtudomány alapszak Backhausz Ágnes agnes@cs.elte.hu 2018/2019. szi félév A valószín ségszámítás kurzus céljai a statisztika megalapozása: a véletlen
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.15. Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza) alkotja az eseményteret. Esemény: az eseménytér részhalmazai.
ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül
A Borel Cantelli lemma és annak általánosítása. A valószínűségszámítás egyik fontos eredménye a Borel Cantelli lemma. Először informálisan ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az
Területi sor Kárpát medence Magyarország Nyugat-Európa
Területi sor Terület megnevezése Magyarok száma 2011.01.01. Kárpát medence 13 820 000 Magyarország 10 600 00 Nyugat-Európa 1 340 000 HIV prevalence (%) in adults in Africa, 2005 2.5 Daganatos halálozás
Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás
Matematikai alapok és valószínőségszámítás Valószínőségi eloszlások Binomiális eloszlás Bevezetés A tudományos életben megfigyeléseket teszünk, kísérleteket végzünk. Ezek többféle különbözı eredményre
Matematika III. 2. Eseményalgebra Prof. Dr. Závoti, József
Matematika III. 2. Eseményalgebra Prof. Dr. Závoti, József Matematika III. 2. : Eseményalgebra Prof. Dr. Závoti, József Lektor : Bischof, Annamária Ez a modul a TÁMOP - 4.1.2-08/1/A-2009-0027 Tananyagfejlesztéssel
Biomatematika 2 Orvosi biometria
Biomatematika 2 Orvosi biometria 2017.02.13. Populáció és minta jellemző adatai Hibaszámítás Valószínűség 1 Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza)
VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA
VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA A VALÓSZÍNŰSÉGI SZEMLÉLET ALAPOZÁSA 1-6. OSZTÁLY A biztos, a lehetetlen és a lehet, de nem biztos események megkülünböztetése Valószínűségi játékok, kísérletek események
Mi az adat? Az adat elemi ismeret. Az adatokból információkat
Mi az adat? Az adat elemi ismeret. Tények, fogalmak olyan megjelenési formája, amely alkalmas emberi eszközökkel történő értelmezésre, feldolgozásra, továbbításra. Az adatokból gondolkodás vagy gépi feldolgozás
Készítette: Fegyverneki Sándor
VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y
Szalai Miklós március 21. Jesenius kerekasztal-beszélgetés, Istenérvek és valószínűségszámítás
Szalai Miklós 2006. március 21. Jesenius kerekasztal-beszélgetés, Istenérvek és valószínűségszámítás Tisztelt Hallgatóság, kedves barátaim! Úgy gondolom, miután Kodácsy tanár úr bemutatott egy specifikusan
Valószínűségszámítás és statisztika a fizikában február 16.
számítás és statisztika a fizikában 2018. február 16. Technikai információk Palla Gergely / pallag@hal.elte.hu / ELTE TTK Biológiai Fizika Tanszék, Északi Tömb, 3.90. szoba Fogadó óra: hétfő, 16-18. Az
A valószínűségszámítás elemei
A valószínűségszámítás elemei Kísérletsorozatban az esemény relatív gyakorisága: k/n, ahol k az esemény bekövetkezésének abszolút gyakorisága, n a kísérletek száma. Pl. Jelenség: kockadobás Megfigyelés:
Valószín ségszámítás és statisztika
Valószín ségszámítás és statisztika Informatika BSc, esti tagozat Backhausz Ágnes agnes@cs.elte.hu 2016/2017. tavaszi félév Bevezetés Célok: véletlen folyamatok modellezése; kísérletekb l, felmérésekb
A maximum likelihood becslésről
A maximum likelihood becslésről Definíció Parametrikus becsléssel foglalkozunk. Adott egy modell, mellyel elképzeléseink szerint jól leírható a meghatározni kívánt rendszer. (A modell típusának és rendszámának
Kettőnél több csoport vizsgálata. Makara B. Gábor
Kettőnél több csoport vizsgálata Makara B. Gábor Három gyógytápszer elemzéséből az alábbi energia tartalom adatok származtak (kilokalória/adag egységben) Három gyógytápszer elemzésébô A B C 30 5 00 10
Gyakorlat. Szokol Patricia. September 24, 2018
Gyakorlat (Geometriai valószínűség, feltételes valószínűség) September 24, 2018 Geometriai valószínűség 1 Az A és B helységet 5 km hosszú telefonvezeték köti össze. A vezeték valahol meghibásodik. A meghibásodás
(Diszkrét idejű Markov-láncok állapotainak
(Diszkrét idejű Markov-láncok állapotainak osztályozása) March 21, 2019 Markov-láncok A Markov-láncok anaĺızise főként a folyamat lehetséges realizációi valószínűségeinek kiszámolásával foglalkozik. Ezekben
Feladatok és megoldások a 8. hétre Építőkari Matematika A3
Feladatok és megoldások a 8. hétre Építőkari Matematika A3 1. Oldjuk meg a következő differenciálegyenlet rendszert: x + 2y 3x + 4y = 2 sin t 2x + y + 2x y = cos t. (1 2. Oldjuk meg a következő differenciálegyenlet
Felte teles való szí nű se g
Felte teles való szí nű se g Szűk elméleti összefoglaló 1. P(A B) = P(AB) P(B) 2. 0 P(A B) 1 3. P(A A) = 1 4. P(A ) = 0 5. egymást kizáró események esetén: P( A I B) = P(A i B). A és B események függetlenek,
Least Squares becslés
Least Squares becslés A négyzetes hibafüggvény: i d i ( ) φx i A négyzetes hibafüggvény mellett a minimumot biztosító megoldás W=( d LS becslés A gradiens számítása és nullává tétele eredményeképp A megoldás
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:
Feladatok és megoldások az 1. sorozat Építőkari Matematika A3
Feladatok és megoldások az 1. sorozat Építőkari Matematika A3 1. Tegyük fel, hogy A és B egymást kölcsönösen kizáró események, melyekre P{A} = 0.3 és P{B} = 0.. Mi a valószínűsége, hogy (a A vagy B bekövetkezik;
24. tétel A valószínűségszámítás elemei. A valószínűség kiszámításának kombinatorikus modellje.
24. tétel valószíűségszámítás elemei. valószíűség kiszámításáak kombiatorikus modellje. GYORISÁG ÉS VLÓSZÍŰSÉG meyibe az egyes adatok a sokaságo belüli részaráyát adjuk meg (törtbe vagy százalékba), akkor
Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus. KOKI,
Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár PhD kurzus. KOKI, 2015.09.17. Mi a statisztika? A sokaság (a sok valami) feletti áttekintés megszerzése, a sokaságról való információszerzés eszköze.
Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 8. előadás Előadó: Dr. Ertsey Imre Minták alapján történő értékelések A statisztika foglalkozik. a tömegjelenségek vizsgálatával Bizonyos esetekben lehetetlen illetve célszerűtlen a teljes
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Valószínűségi hálók - következtetés Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade Következtetés
Valószínűségszámítás és Statisztika I. zh. 2014. november 10. - MEGOLDÁS
Valószínűségszámítás és Statisztika I. zh. 2014. november 10. - MEGOLDÁS 1. Kihasználva a hosszasan elhúzódó jó időt, kirándulást szeretnénk tenni az ország tíz legmagasabb csúcsa közül háromra az elkövetkezendő
Valószínűségszámítás és statisztika
Valószínűségszámítás és statisztika Programtervező informatikus szak esti képzés Varga László Valószínűségelméleti és Statisztika Tanszék Matematikai Intézet Természettudományi Kar Eötvös Loránd Tudományegyetem
Gyakorló feladatok a 2. dolgozathoz
Gyakorló feladatok a. dolgozathoz. Tíz darab tízforintost feldobunk. Mennyi annak a valószínűsége hogy vagy mindegyiken írást vagy mindegyiken fejet kapunk? 9. Egy kör alakú asztal mellett tízen ebédelnek:
Valószínűségi változók. Várható érték és szórás
Matematikai statisztika gyakorlat Valószínűségi változók. Várható érték és szórás Valószínűségi változók 2016. március 7-11. 1 / 13 Valószínűségi változók Legyen a (Ω, A, P) valószínűségi mező. Egy X :
Kettőnél több csoport vizsgálata. Makara B. Gábor MTA Kísérleti Orvostudományi Kutatóintézet
Kettőnél több csoport vizsgálata Makara B. Gábor MTA Kísérleti Orvostudományi Kutatóintézet Gyógytápszerek (kilokalória/adag) Három gyógytápszer A B C 30 5 00 10 05 08 40 45 03 50 35 190 Kérdések: 1. Van-e
Valószínűségszámítás összefoglaló
Statisztikai módszerek BMEGEVGAT Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:
Matematikai statisztika c. tárgy oktatásának célja és tematikája
Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:
Biometria az orvosi gyakorlatban. Számítógépes döntéstámogatás
SZDT-01 p. 1/23 Biometria az orvosi gyakorlatban Számítógépes döntéstámogatás Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Gyakorlat SZDT-01 p.
Valószínűségszámítás. Tómács Tibor. F, P ) egy valószínűségi mező, A P (A). Ha ϱ n az A gyakorisága, kísérletek száma, akkor minden ε. p(1 p) nε 2.
Tómács Tibor Valószínűségszámítás F, P egy valószínűségi mező, A P (A. Ha ϱ n az A gyakorisága, kísérletek száma, akkor minden ε én ( ϱ n P n p ε p(1 p nε 2. Matematikai és Informatikai Intézet Tómács
Bizonytalanság. Mesterséges intelligencia április 4.
Bizonytalanság Mesterséges intelligencia 2014. április 4. Bevezetés Eddig: logika, igaz/hamis Ha nem teljes a tudás A világ nem figyelhető meg közvetlenül Részleges tudás nem reprezentálható logikai eszközökkel
3. Egy szabályos dobókockával háromszor dobunk egymás után. Legyen A az az esemény, hogy
Valószínűségszámítás. zárthelyi dolgozat 009. október 5.. Egy osztályba 3-an járnak. Minden fizikaórán a a többi órától függetlenül a tanár kisorsol egy felelőt, véletlenszerűen, egyenletesen, azaz mindig
A Condorcet-paradoxon egy valószínűségi modellje
A Condorcet-paradoxon egy valószínűségi modellje Bozóki Sándor 1,2, Csató László 2, Temesi József 2 1 MTA SZTAKI; 2 Budapesti Corvinus Egyetem 2013. június 11. p. 1/24 Intranzitív dobókockák A valószínűségi
BME Nyílt Nap november 21.
Valószínűségszámítás, statisztika és valóság Néhány egyszerű példa Kói Tamás Budapesti Műszaki és Gazdaságtudományi Egyetem koitomi@math.bme.hu BME Nyílt Nap 2014. november 21. Matematikai modell Matematikai
Feladatok és megoldások a 9. hétre. 1. Egy szabályos kockával dobunk. Mennyi a valószínűsége, hogy 6-ost dobunk, ha tudjuk, hogy:
Feladatok és megoldások a 9. hétre Építőkari Matematika A3 1. Egy szabályos kockával dobunk. Mennyi a valószínűsége, hogy 6-ost dobunk, ha tudjuk, hogy: párosat dobunk? legalább 3-ast dobunk? legfeljebb
Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása
Matematikai alapok és valószínőségszámítás Statisztikai becslés Statisztikák eloszlása Mintavétel A statisztikában a cél, hogy az érdeklõdés tárgyát képezõ populáció bizonyos paramétereit a populációból
Elméleti összefoglaló a Sztochasztika alapjai kurzushoz
Elméleti összefoglaló a Sztochasztika alapjai kurzushoz 1. dolgozat Véletlen kísérletek, események valószín sége Deníció. Egy véletlen kísérlet lehetséges eredményeit kimeneteleknek nevezzük. A kísérlet
Valószínőségszámítás és statisztika elıadások Mérnök informatikus BSc szak MANB030, MALB030
Valószínőségszámítás és statisztika elıadások Mérnök informatikus BSc szak MANB030, MALB030 2. téma Feltételes valószínőség, függetlenség Példák feltételes valószínőségekre. Feltételes valószínőség definíciója.
A matematikai statisztika elemei
A matematikai statisztika elemei Mikó Teréz, dr. Szalkai Istvá szalkai@almos.ui-pao.hu Pao Egyetem, Veszprém 2014. március 23. 2 Tartalomjegyzék Tartalomjegyzék 3 Bevezetés................................
III. tehát feltéve, hogy P(B)>0 igazak a következők: (1) P( B)=0; (2) P(Ω B)=1; (3) ha C és D egymást kizáró események, akkor
(matematika I. év, napp.szoc.) VALÓSZÍNŰSÉGSZÁMÍTÁS: feltételes valószínűség, Bayes-tétel, események függetlensége ; 1. oldal (4-ből) 2005. október ELMÉLET: 1.) Analógia halmazok elemszáma és események
1. Hányféle sorrendben vonulhat ki a pályára egy focimeccsen a tizenegy kezdő játékos?
Valószínűségszámítás, földtudomány alapszak, 2015/2016. őszi félév 1. Hányféle sorrendben vonulhat ki a pályára egy focimeccsen a tizenegy kezdő játékos? 2. Két tizenhárom fős vízilabdacsapat mérkőzik
ALGORITMUSOK ÉS BONYOLULTSÁGELMÉLET Matematika MSc hallgatók számára. 11. Előadás
ALGORITMUSOK ÉS BONYOLULTSÁGELMÉLET Matematika MSc hallgatók számára 11. Előadás Előadó: Hajnal Péter Jegyzetelő: Hajnal Péter 2011. április 26. 1. Mahaney-tétel bizonyítása Emlékeztető. Mahaney-tétel
A valószínűségszámítás elemei
Alapfogalmak BIOSTATISZTIKA ÉS INFORMATIKA A valószínűségszámítás elemei Jelenség: minden, ami lényegében azonos feltételek mellett megismételhető, amivel kapcsolatban megfigyeléseket lehet végezni, lehet
1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása
HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat
ALÁÍRÁS NÉLKÜL A TESZT ÉRVÉNYTELEN!
A1 A2 A3 (8) A4 (12) A (40) B1 B2 B3 (15) B4 (11) B5 (14) Bónusz (100+10) Jegy NÉV (nyomtatott nagybetűvel) CSOPORT: ALÁÍRÁS: ALÁÍRÁS NÉLKÜL A TESZT ÉRVÉNYTELEN! 2011. december 29. Általános tudnivalók:
GRADUÁLIS BIOSTATISZTIKAI KURZUS február hó 22. Dr. Dinya Elek egyetemi docens
GRADUÁLIS BIOSTATISZTIKAI KURZUS 2012. február hó 22. Dr. Dinya Elek egyetemi docens Biometria fogalma The active pursuit of biological knowledge by quantitative methods Sir R. A. Fisher, 1948 BIOMETRIA
Good-Turing lefedés. Lang Zsolt
Good-Turing lefedés Lang Zsolt 2017.03.24. Bevezetés Fajok közösségét vizsgáljuk. Sok faj van, az egyedek száma gyakorlatilag végtelen. Az egyedekből véletlen mintát veszünk. Kérdés, a mintában van-e,
Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János
Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 12. Regresszió- és korrelációanaĺızis Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision
A matematikai feladatok és megoldások konvenciói
A matematikai feladatok és megoldások konvenciói Kozárné Fazekas Anna Kántor Sándor Matematika és Informatika Didaktikai Konferencia - Szatmárnémeti 2011. január 28-30. Konvenciók Mindenki által elfogadott
Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem
agy számok törvényei Statisztikai mintavétel Várható érték becslése Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem A mérés mint statisztikai mintavétel A méréssel az eloszlásfüggvénnyel
ESSZÉÍRÁS június
ESSZÉÍRÁS Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi
ELTE TáTK Közgazdaságtudományi Tanszék ESSZÉÍRÁS. Készítette: Reich Orsolya. Szakmai felelős: Wessely Anna június
ESSZÉÍRÁS ESSZÉÍRÁS Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék, az MTA Közgazdaságtudományi
1000 forintos adósságunkat, de csak 600 forintunk van. Egyetlen lehetőségünk, hogy a
A merész játékok stratégiája A következő problémával foglalkozunk: Tegyük fel, hogy feltétlenül ki kell fizetnünk 000 forintos adósságunkat, de csak 600 forintunk van. Egyetlen lehetőségünk, hogy a még
A VALÓSZÍNŰSÉGSZÁMÍTÁS ALAPJAI
TÓMÁCS TIBOR A VALÓSZÍNŰSÉGSZÁMÍTÁS ALAPJAI Második, javított kiadás EKF LÍCEUM KIADÓ, EGER 25 Lektor: Sztrik János egyetemi docens Megjelent az EKF Líceum Kiadó műszaki gondozásában A szedés a MiKTEX
Klinikai és Bírósági Alkalmazások Valószínűségszámítási Modellek BREUER-LÁBADY PÉTER
Klinikai és Bírósági Alkalmazások Valószínűségszámítási Modellek BREUER-LÁBADY PÉTER KLINIKAI ALKALMAZÁSOK GYÓGYSZER TESZTELÉS MIK LEHETNEK A PROBLÉMÁK? STATISZTIKAI ALAPKÖVEK GYÓGYULÁSI ESÉLYEK TARTALOM
Fejezet. Hogyan gondolkodnak a közgazdászok? Elmélet, modellalkotás, empirikus tesztelés, alkalmazások
Fejezet 2 Hogyan gondolkodnak a közgazdászok? Elmélet, modellalkotás, empirikus tesztelés, alkalmazások Terminológia Átváltás, alternatív költség, határ-, racionalitás, ösztönző, jószág, infláció, költség,
Gazdasági matematika II. vizsgadolgozat, megoldással,
Gazdasági matematika II. vizsgadolgozat, megoldással, levelező képzés Definiálja az alábbi fogalmakat! 1. Kvadratikus mátrix invertálhatósága és inverze. (4 pont) Egy A kvadratikus mátrixot invertálhatónak
Mérhetőség, σ-algebrák, Lebesgue Stieltjes-integrál, véletlen változók és eloszlásfüggvényeik
Mérhetőség, σ-algebrák, Lebesgue Stieltjes-integrál, véletlen változók és eloszlásfüggvényeik Az A halmazrendszer σ-algebra az Ω alaphalmazon, ha Ω A; A A A c A; A i A, i N, i N A i A. Az A halmazrendszer
Számítógépes döntéstámogatás OPTIMALIZÁLÁSI FELADATOK A SOLVER HASZNÁLATA
SZDT-04 p. 1/30 Számítógépes döntéstámogatás OPTIMALIZÁLÁSI FELADATOK A SOLVER HASZNÁLATA Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Előadás
Terminológia. Átváltás, alternatív költség, határ-, racionalitás, ösztönző, jószág, infláció, költség, kereslet, kínálat, piac, munkanélküliség
Hogyan gondolkodnak a közgazdászok? Elmélet, modellalkotás, empirikus tesztelés, alkalmazások Fejezet Terminológia Átváltás, alternatív költség, határ-, racionalitás, ösztönző, jószág, infláció, költség,
Hogyan gondolkodnak a közgazdászok? Elmélet, modellalkotás, empirikus tesztelés, alkalmazások
Fejezet 2 Hogyan gondolkodnak a közgazdászok? Elmélet, modellalkotás, empirikus tesztelés, alkalmazások Terminológia Átváltás, alternatív költség, határ-, racionalitás, ösztönző, jószág, infláció, költség,
Néhány kockadobással kapcsolatos feladat 1 P 6
Néhány kockadobással kapcsolatos feladat Feldobunk egy kockát. Az eseménytér: ; 2; ; ; ; Az összes esetek száma:. Feldobunk egy kockát. Mi a valószínűsége, hogy hatost dobunk? A kedvező esetek száma: (hatost
Követelmény a 7. évfolyamon félévkor matematikából
Követelmény a 7. évfolyamon félévkor matematikából Gondolkodási és megismerési módszerek Elemek halmazba rendezése több szempont alapján. Halmazok ábrázolása. A nyelv logikai elemeinek helyes használata.
Biológiai rendszerek modellellenőrzése bayesi megközelítésben
Biológiai rendszerek modellellenőrzése bayesi megközelítésben Gál Tamás Zoltán Szoftver verifikáció és validáció kiselőadás, 2013. ősz Forrás: Sumit K. Jha et al.: A Bayesian Approach to Model Checking
Pozitív intézményi légkör
Pozitív intézményi légkör Mitől más a keresztyén iskola? Írjon le három dolgot, amely ön szerint megkülönbözteti a keresztyén iskolákat más iskoláktól! Ossza meg gondolatait az ön mellett ülővel. A keresztyén
A biomatematika alapjai és a kapcsolódó feladatok megoldása számítógép segítségével Abonyi-Tóth Zsolt, 2005-2006 készült Harnos Andrea, Reiczigel Jenő zoológus előadásainak valamint Fodor János és Solymosi
Statisztika az orvoslásban, amikor élőlény és személy is vagyunk egyszerre
Statisztika az orvoslásban, amikor élőlény és személy is vagyunk egyszerre Kellermayer Miklós A Központi Statisztikai Hivatal Konferenciája Budapest 2017. október 18. 1 Miért én? A Klinikai Biokémia diszciplina
Villamosmérnök A4 2. gyakorlat ( ) Feltételes valószínűség, függetlenség
Villamosmérnök A4 2. gyakorlat (20. 09. 17.-1.) Feltételes valószínűség, függetlenség 1. Egy szabályos dobókockával dobunk. Mennyi annak a valószínűsége, hogy 6-ost dobunk, ha tudjuk, hogy (a) párosat
Messiási próféciák IV. évfolyam. I. félév
Messiási próféciák IV. évfolyam I. félév Tematika: 1. Bevezetés: A messiási jövendölések fogalma, jellegzetességeik, tanulmányozásuk, haszna, jelentősége. Két alapvető messiási jövendölés: Az ősevangélium
1. Homogén lineáris egyenletrendszer megoldástere
X HOMOGÉN LINEÁRIS EGYENLET- RENDSZEREK 1 Homogén lineáris egyenletrendszer megoldástere Homogén lineáris egyenletrendszer definíciója már szerepelt Olyan lineáris egyenletrendszert nevezünk homogénnek,
Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.
2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Valószínűségi hálók - alapok Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade Valószínűségi
Az első számjegyek Benford törvénye
Az első számjegyek Benford törvénye Frank Benford (1883-1948) A General Electric fizikusa Simon Newcomb (1835 1909) asztronómus 1. oldal 2. oldal A híres arizonai csekk sikkasztási eset http://www.aicpa.org/pubs/jofa/may1999/nigrini.htm
Matematika kisérettségi I. rész 45 perc NÉV:...
Matematika kisérettségi I. rész 45 perc NÉV:... 1. Az A halmaz elemei a háromnál nagyobb egyjegyű számok, a B halmaz elemei pedig a húsznál kisebb pozitív páratlan számok. Sorolja fel az halmaz elemeit!
Az ész természetéhez tartozik, hogy a dolgokat nem mint véletleneket, hanem mint szükségszerűeket szemléli (Spinoza: Etika, II. rész, 44.
Dr. Vincze Szilvia Az ész természetéhez tartozik, hogy a dolgokat nem mint véletleneket, hanem mint szükségszerűeket szemléli (Spinoza: Etika, II. rész, 44. tétel) Környezetünkben sok olyan jelenséget