|
|
- Teréz Vörös
- 9 évvel ezelőtt
- Látták:
Átírás
1 A biomatematika alapjai és a kapcsolódó feladatok megoldása számítógép segítségével Abonyi-Tóth Zsolt, készült Harnos Andrea, Reiczigel Jenő zoológus előadásainak valamint Fodor János és Solymosi Norbert tananyagainak a felhasználásával
2 Miért fontos a valószínűségszámítás és a statisztika? Mert el szeretnénk dönteni, hogy egy-egy konkrét esetben szerencsénk volt-e, pechünk volt-e, vagy épp a várható módon történt minden. o Ahogy odaértünk a megállóba, fél percen belül jött a busz. o Öt percet kellett várnunk a megállóban a buszra. Mert el szeretnénk dönteni, miért mennyit érdemes kockáztatni. o Minden második telefonáló 500 Ft-os könyvutalványt kap. A szerencsés nyertes pedig millió forinttal lesz gazdagabb. A hívás díja 800 Ft + ÁFA. o Melyik az a légitársaság, amelyikkel a legolcsóbban jutok el Londonba úgy, hogy nem késem le a koncertet?
3 Mert el szeretnénk dönteni, elhiggyünk-e valamit, amit olvasunk, vagy hogy észrevegyük, hol van benne a hiba. o A megkérdezettek 40%-a egyetért az Önkormányzat döntésével, 45%-a ellenzi azt, 0%-uk pedig nem nyilatkozott a kérdésről. o Az intelligenciatesztek során a gyerekek minden megyében jobb eredményt értek el az országos átlagnál. o A vizsgálati eredmények nem állnak ellentmondásban azzal a feltételezéssel, hogy az új és a hagyományos módszer esetén azonos a gyógyulási arány. Mert a vizsgálataink alapján olyan állításokat szeretnénk megfogalmazni, amelyek megfelelnek a valóságnak. o Hatásosabb-e az éppen tesztelt új gyógyszer? o Javítja-e a cukorbeteg kutyák állapotát a vizsgált táplálék-kiegészítő? o A májenzimszintek vizsgálatával előre megadható, hogy az állat reagál-e a gyógyszeres kezelésre?
4 Valószínűségszámítás Sok egyformán valószínű kimenetel esetén a kimenetelek számától függ egy esemény valószínűsége. kedvező esetek / összes esetek (néha nem éppen kedvező ) Példák: kockadobás : 6 szám, mind egyformán valószínű mindnek 6 a valószínűsége két kocka: 6 6 = 36 számpár mindegyiknek 36 a valószínűsége két kockán a két szám összege 0, annak 36 3 a valószínűsége (4+6, 5+5, 6+4) o Miért van a 4+6 és a 6+4 így is, úgy is, és az 5+5 csak egyszer?! tételhúzás (I. rész 9, II rész 8 tétel): 9 8 = 72 pár minden párnak a valósz. 72
5 Valószínűségi modellek Modellnek nevezzük azoknak a feltételezéseknek az együttesét, amelyek a keretet adják egy valószínűségszámítási vagy statisztikai probléma megoldásához, vagyis amelyeken a számolások alapulnak. Ezeket gyakran csak hallgatólagosan feltételezzük (azonban helyesebb, ha kimondjuk). Példa: Mennyi a valószínűsége, hogy egy pénzérmével egymás után négy fejet dobunk? Hallgatólagos feltételezések: az érme szabályos, azaz a fej valószínűsége minden egyes dobásnál 2 az egyes dobások eredménye egymástól független A feltételezéseken alapuló megoldás: = 6
6 Példa: Mennyi a valószínűsége, hogy négy nővér közül először a legidősebb megy férjhez, másodszor a második legidősebb, és így tovább? Hallgatólagos feltételezés: minden lehetséges sorrend egyformán valószínű A feltételezésen alapuló megoldás: 24 Realisztikus? Elfogadható? Ha már megvan a modell, a számítások nem nehezek (egy matematikus is segíthet), nehezebb egy valósághű modellt találni (abban a matematikus sem sokat tud segíteni).
7 A legfontosabb modell-típusok (hallgatólagos feltételezések) A klasszikus valószínűségi modell Feltesszük, hogy van néhány véges sok olyan esemény (atom, kimenetel, elemi esemény), amelyekből a kísérlettel kapcsolatos összes esemény felépíthető, feltesszük továbbá, hogy ezek mind egyenlően valószínűek. Lásd a fenti példákat (kockadobás, tételhúzás, sorrend). Gyakran szimmetria-megfontolások alapján választjuk ezt a modellt. Itt az esetek összeszámlálására a kombinatorika módszereit és eredményeit használjuk: klasszikus ~ elemi ~ kombinatorikus valószínűségszámítás.
8 A tapasztalati (empirikus) valószínűségi modell Sokszor megfigyeljük a történést vagy sokszor megismételjük a kísérletet, és az egyes eseményekhez a megfigyelt relatív gyakoriságuk szerint rendelünk hozzá valószínűségeket. Szubjektív valószínűségek Ha sem a klasszikus modell nem használható (mert semmi okunk nincs feltételezni, hogy egyenlő valószínűségű elemi események lennének a vizsgált folyamatban), sem pedig ismételt megfigyelésre nincs módunk (ilyen helyzetek például: tőzsdei döntések, állás elnyerésének, háború kitörésének esélyei stb.) akkor jobb híján kiindulhatunk az esélyek szubjektív megítéléséből is.
9 Kombinatorika Véges sok objektum (nem mindig egy halmaz elemei, néha egyenlők is lehetnek közöttük!) közül bizonyosak kiválasztása és/vagy sorba rendezése. Mindig gondolhatjuk úgy, hogy az objektumok természetes számok (hiszen megszámozhatjuk őket). Permutáció (csak sorba rendezés, az összes objektumot felhasználjuk) Ismétlés nélküli a permutáció, ha az objektumok mind különbözők. Ismétléses a permutáció, ha az objektumok között vannak azonosak. Példák: Az, 2, 3, 4, 5 számok egy permutációja: 2,, 5, 3, 4 (ismétlés nélküli) Az,, 2, 3, 4, 4 számok egy permutációja:, 2, 4,, 3, 4 (ismétléses)
10 Kombináció (csak kiválasztás, sorba rendezés nélkül) Ismétlés nélküli a kombináció, ha minden objektumot csak egyszer választhatunk ki. Ismétléses a kombináció, ha ugyanazt az objektumot többször is kiválaszthatjuk. Példák: az, 2,..., 0 számok egy harmadosztályú ismétlés nélküli kombinációja:, 5, 8 o az, 5, 8, az, 8, 5, az 5,, 8, az 5, 8,, a 8,, 5 és a 8, 5, ugyanaz a kombináció (mert ugyanazok a számok vannak kiválasztva) egy ötödosztályú ismétléses kombinációja: 3, 3, 6, 6, 9 o ugyanaz pl. a 3, 6, 9, 6, 3 is (ugyanazok a számok, mind ugyanannyiszor)
11 Variáció (kiválasztás és a kiválasztottak sorba rendezése, vagy sorban egymás utáni kiválasztás) Ismétlés nélküli a variáció, ha minden objektumot csak egyszer választhatunk. Ismétléses a variáció, ha ugyanazt az objektumot többször is kiválaszthatjuk. Példák: az, 2,..., 0 számok egy harmadosztályú ismétlés nélküli variációja:, 5, 8 o az, 5, 8, az, 8, 5, az 5,, 8, az 5, 8,, a 8,, 5 és a 8, 5, mind különböző variációk (bár a kiválasztás ugyanaz, a sorba rendezés más) egy ötödosztályú ismétléses variációja: 3, 3, 6, 6, 9 o a 3, 6, 9, 6, 3 nem azonos vele (ugyanazok a számok, de más a sorrend) FIGYELEM! Az angol szóhasználat más, ott a variációkat is permutációnak nevezik, és nem említik az ismétléses változatokat.
12 Állítás: n elem összes ismétlés nélküli permutációinak száma P n = n! Bizonyítás: (intuitív, matematikailag nem teljesen precíz a következőkre is ugyanez érvényes): Az első elem számára n hely közül választhatunk, a második elem számára bármelyiket is választottuk elsőre a megmaradó n- hely közül,... végül az n-ik elem számára már csak egyetlen szabad hely marad. Állítás: n elem összes ismétléses permutációinak száma, ha az elemek között n azonos, n 2 n! szintén azonos, de az előzőektől különböző, stb. található: Pn, n2, L, n = k n! n! K n! Bizonyítás: Ha mind az n elem különbözne, akkor n! számú permutációjuk volna. Azonban most mindazok a permutációk megegyeznek, ahol azonos elemek egymás között vannak permutálva, ezek száma pedig n! n 2!. 2 k
13 Állítás: n elem összes k-adosztályú ismétlés nélküli variációinak száma: V n, k = n! ( n k)! Bizonyítás: Az első helyre az n elem bármelyikét választhatjuk, a második helyre a megmaradó n- elem bármelyikét,... végül a k-ik helyre (n k+) elem közül választhatunk. Állítás: n elem összes k-adosztályú ismétléses variációinak száma: V = i n, k n k Bizonyítás: Ha sorban egymás után k-szor választunk, és az ismételhetőség miatt mind a k alkalommal mind az n elem választható, akkor az összes lehetőségek száma nn n=n k. Nyilvánvaló, hogy P n = V n, n. A zsebszámológépeken (mert a nyelvük angol) V n, k helyett Pn,k sőt, még gyakrabban npk vagy npr szerepel.
14 Állítás: n elem összes k-adosztályú ismétlés nélküli kombinációinak száma C n, k = n! ( n k)! k! Bizonyítás: V n, k = Cn, kpk, hiszen a variáció azt jelenti, hogy kiválasztunk k elemet és sorba rendezzük őket. A zsebszámológépeken C, helyett keressünk nck -t vagy ncr -t! nk
15 Állítás: C n, k = Pk, n k Bizonyítás: Modellezzük az n elem közül k darab kiválasztását úgy, hogy sorban felírjuk az n elemet, és mindegyik alá + vagy jelet írunk, aszerint, hogy választjuk, vagy nem. Tehát k db + jelet és (n k) db jelet használunk. Például: (n ) n Láthatóan egy ilyen jelsorozat kölcsönösen egyértelműen megfelel egy kiválasztásnak (a megfeleltetés oda-vissza egyértelmű). C n, k a lehetséges kiválasztások, Pk, n k a jelsorozatok száma, tehát egyenlők.
16 Állítás: n elem összes k-adosztályú ismétléses kombinációinak száma i C n, k = Cn+ k, k Bizonyítás vázlata: Minden ismétléses kombinációnak megfeleltetünk egy k db jelből és n db jelből álló jelsorozatot, például ha n = 5 (az elemek, 2, 3, 4, 5) és k = 8, akkor ~ ~ ~ stb. Ez kölcsönösen egyértelmű megfeleltetés, tehát ugyanannyian kell, hogy legyenek.
17 Binomiális együtthatók Egy másik megszokott jelölés és elnevezés a binomiális együttható C, -ra: nk n k (olvasd: n alatt a k ), Az elnevezés hátterében a binomiális tétel áll: n n ( a+ b) = k= 0 n a k k b n k
18 Számítógép Excel n!= FAKT(n) P = VARIÁCIÓK(n;n) n V n, k C n, k R = VARIÁCIÓK(n;k) = KOMBINÁCIÓK(n;k) n!= factorial(n) P = factorial(n) n V n, k C n, k = factorial(n)/factorial(n-k) = factorial(n)/(factorial(n-k)*factorial(k))
Biomatematika 2 Orvosi biometria
Biomatematika 2 Orvosi biometria 2017.02.13. Populáció és minta jellemző adatai Hibaszámítás Valószínűség 1 Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza)
VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA
VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA A VALÓSZÍNŰSÉGI SZEMLÉLET ALAPOZÁSA 1-6. OSZTÁLY A biztos, a lehetetlen és a lehet, de nem biztos események megkülünböztetése Valószínűségi játékok, kísérletek események
Definíció n egymástól megkülönböztethető elem egy sorrendjét az n elem egy (ismétlés nélküli) permutációjának nevezzük.
9. Kombinatorika 9.1. Permutációk n egymástól megkülönböztethető elem egy sorrendjét az n elem egy (ismétlés nélküli) permutációjának nevezzük. n elem ismétlés nélküli permutációinak száma: P n = =1 2
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.15. Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza) alkotja az eseményteret. Esemény: az eseménytér részhalmazai.
Feladatok és megoldások az 1. sorozat Építőkari Matematika A3
Feladatok és megoldások az 1. sorozat Építőkari Matematika A3 1. Tegyük fel, hogy A és B egymást kölcsönösen kizáró események, melyekre P{A} = 0.3 és P{B} = 0.. Mi a valószínűsége, hogy (a A vagy B bekövetkezik;
Diszkrét matematika 1.
Diszkrét matematika 1. 201. ősz 1. Diszkrét matematika 1. 1. előadás Mérai László diái alapján Komputeralgebra Tanszék 201. ősz Kombinatorika Diszkrét matematika 1. 201. ősz 2. Kombinatorika Kombinatorika
Diszkrét matematika 1.
Diszkrét matematika 1. 2017. ősz 1. Diszkrét matematika 1. 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra Tanszék
Feladatok és megoldások a 8. hétre Építőkari Matematika A3
Feladatok és megoldások a 8. hétre Építőkari Matematika A3 1. Oldjuk meg a következő differenciálegyenlet rendszert: x + 2y 3x + 4y = 2 sin t 2x + y + 2x y = cos t. (1 2. Oldjuk meg a következő differenciálegyenlet
1. A kísérlet naiv fogalma. melyek közül a kísérlet minden végrehajtásakor pontosan egy következik be.
IX. ESEMÉNYEK, VALÓSZÍNŰSÉG IX.1. Események, a valószínűség bevezetése 1. A kísérlet naiv fogalma. Kísérlet nek nevezzük egy olyan jelenség előidézését vagy megfigyelését, amelynek kimenetelét az általunk
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 7. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
24. tétel. Kombinatorika. A grá fok.
2009/2010 1 Huszk@ Jenő 24. tétel. Kombinatorika. A grá fok. 1.Kombinatorika A kombinatorika a véges halmazokkal foglalkozik. Olyan problémákat vizsgál, amelyek függetlenek a halmazok elemeinek mibenlététől.
Matematika A3 Valószínűségszámítás, 0. és 1. gyakorlat 2013/14. tavaszi félév
Matematika A3 Valószínűségszámítás, 0. és 1. gyakorlat 2013/14. tavaszi félév 1. Kombinatorikus módszer ismétlés nélküli ismétléses permutáció k 1!k 2!...k r! n futó beérkezésének sorrendje n golyót ennyiféleképpen
Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás
Matematikai alapok és valószínőségszámítás Valószínőségi eloszlások Binomiális eloszlás Bevezetés A tudományos életben megfigyeléseket teszünk, kísérleteket végzünk. Ezek többféle különbözı eredményre
Osztályozóvizsga követelményei
Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 11 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási
Klasszikus valószínűségi mező megoldás
Klasszikus valószínűségi mező megoldás Ha egy Kísérletnek csak véges sok kimenetele lehet, és az egyes kimeneteleknek, vagyis az elemi eseményeknek azonos a valószínűségük, akkor a kísérelttel kapcsolatos
Valószínűségszámítás összefoglaló
Statisztikai módszerek BMEGEVGAT Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:
1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség.
1. tétel Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. A valószínűségszámítás tárgya: véletlen tömegjelenségek vizsgálata. véletlen: a kísérlet kimenetelét
Szerencsejátékok. Elméleti háttér
Szerencsejátékok A következőekben a Szerencsejáték Zrt. által adott játékokat szeretném megvizsgálni. Kiszámolom az egyes lehetőségeknek a valószínűségét, illetve azt, hogy mennyi szelvényt kell ahhoz
Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 1. MA3-1 modul. Kombinatorika
Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematika III. 1. MA3-1 modul Kombinatorika SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról szóló 1999. évi LXXVI.
Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,
// KURZUS: Matematika II. MODUL: Valószínűség-számítás 16. lecke: Kombinatorika (alapfeladatok) Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás, 3.1.
Matematika A4 I. gyakorlat megoldás
Matematika A I. gyakorlat megoldás 1. Kombinatorikus módszer ismétlés nélküli ismétléses permutáció n! n! k 1!k 2!...k r! n futó beérkezésének sorrendje n golyót ennyiféleképpen állíthatunk sorba, ha k
7! (7 2)! = 7! 5! = 7 6 5! 5 = = ből 4 elem A lehetőségek száma megegyezik az 5 elem negyedosztályú variációjának számával:
Kombinatorika Variáció - megoldások 1. Hány kétjegyű szám képezhető a 2, 3, 5, 6, 7, 8, 9 számjegyekből. ha minden számjegyet csak egyszer használhatunk fel? A lehetőségek száma annyi, mint amennyi 7 elem
Környezet statisztika
Környezet statisztika Permutáció, variáció, kombináció k számú golyót n számú urnába helyezve hányféle helykitöltés lehetséges, ha a golyókat helykitöltés Minden urnába akárhány golyó kerülhet (ismétléses)
Matematika tanmenet 11. évfolyam (középszintű csoport)
Matematika tanmenet 11. évfolyam (középszintű csoport) Műveltségi terület: MATEMATIKA Iskola, osztályok: Vetési Albert Gimnázium, 11.A, 11.B, 11.D (alap) Tantárgy: MATEMATIKA Heti óraszám: 4 óra Készítették:
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.22. Valószínűségi változó Véletlentől függő számértékeket (értékek sokasága) felvevő változókat valószínűségi változóknak nevezzük(jelölés: ξ, η, x). (pl. x =
Kombinatorika gyakorló feladatok
Kombinatorika gyakorló feladatok Egyszerűbb gyakorló feladatok 1. Három tanuló reggel az iskola bejáratánál hányféle sorrendben lépheti át a küszöböt? P = 3 2 1 = 6. 3 2. Hány különböző négyjegyű számot
Néhány kockadobással kapcsolatos feladat 1 P 6
Néhány kockadobással kapcsolatos feladat Feldobunk egy kockát. Az eseménytér: ; 2; ; ; ; Az összes esetek száma:. Feldobunk egy kockát. Mi a valószínűsége, hogy hatost dobunk? A kedvező esetek száma: (hatost
Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 8. előadás Előadó: Dr. Ertsey Imre Minták alapján történő értékelések A statisztika foglalkozik. a tömegjelenségek vizsgálatával Bizonyos esetekben lehetetlen illetve célszerűtlen a teljes
8. GYAKORLÓ FELADATSOR MEGOLDÁSA. (b) amelyiknek mindegyik számjegye különböző, valamint a második számjegy a 2-es?
8. GYAKORLÓ FELADATSOR MEGOLDÁSA 1. Az 1, 2,,,, 6 számjegyekből hány hatjegyű számot alkothatunk, (a) amelyiknek mindegyik számjegye különböző? (b) amelyiknek mindegyik számjegye különböző, valamint a
A valószínűségszámítás elemei
A valószínűségszámítás elemei Kísérletsorozatban az esemény relatív gyakorisága: k/n, ahol k az esemény bekövetkezésének abszolút gyakorisága, n a kísérletek száma. Pl. Jelenség: kockadobás Megfigyelés:
Valószín ségszámítás. Survey statisztika mesterszak és földtudomány alapszak Backhausz Ágnes 2018/2019.
Valószín ségszámítás Survey statisztika mesterszak és földtudomány alapszak Backhausz Ágnes agnes@cs.elte.hu 2018/2019. szi félév A valószín ségszámítás kurzus céljai a statisztika megalapozása: a véletlen
BIOMATEMATIKA ELŐADÁS
BIOMATEMATIKA ELŐADÁS 7. Bevezetés a valószínűségszámításba Debreceni Egyetem, 2015 Dr. Bérczes Attila, Bertók Csanád A diasor tartalma 1 Bevezetés 2 Definíciók, tulajdonságok Példák Valószínűségi mező
Valószínűségszámítás és statisztika a fizikában február 16.
számítás és statisztika a fizikában 2018. február 16. Technikai információk Palla Gergely / pallag@hal.elte.hu / ELTE TTK Biológiai Fizika Tanszék, Északi Tömb, 3.90. szoba Fogadó óra: hétfő, 16-18. Az
A valószínűségszámítás elemei
Alapfogalmak BIOSTATISZTIKA ÉS INFORMATIKA A valószínűségszámítás elemei Jelenség: minden, ami lényegében azonos feltételek mellett megismételhető, amivel kapcsolatban megfigyeléseket lehet végezni, lehet
NT Matematika 11. (Heuréka) Tanmenetjavaslat
NT-17302 Matematika 11. (Heuréka) Tanmenetjavaslat A Dr. Gerőcs László Számadó László Matematika 11. tankönyv a Heuréka-sorozat harmadik tagja. Ebben a segédanyagban ehhez a könyvhöz a tizenegyedikes tananyag
Matematika A3 Valószínűségszámítás, 6. gyakorlat 2013/14. tavaszi félév
Matematika A3 Valószínűségszámítás, 6. gyakorlat 2013/14. tavaszi félév 1. A várható érték és a szórás transzformációja 1. Ha egy valószínűségi változóhoz hozzáadunk ötöt, mínusz ötöt, egy b konstanst,
Azaz 56 7 = 49 darab 8 jegyű szám készíthető a megadott számjegyekből.
1 Kombináció, variáció, permutáció 1. Hányféleképpen rakhatunk be 6 levelet 1 rekeszbe, ha a levelek között nem teszünk különbséget és egy rekeszbe maximum egy levelet teszünk? Mivel egy rekeszbe legfeljebb
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen
Normális eloszlás tesztje
Valószínűség, pontbecslés, konfidenciaintervallum Normális eloszlás tesztje Kolmogorov-Szmirnov vagy Wilk-Shapiro próba. R-funkció: shapiro.test(vektor) balra ferde eloszlás jobbra ferde eloszlás balra
FPI matek szakkör 8. évf. 4. szakkör órai feladatok megoldásokkal. 4. szakkör, október. 20. Az órai feladatok megoldása
4. szakkör, 2004. október. 20. Az órai feladatok megoldása Most csak három önmagában nem nehéz feladatot kapsz, és a feladatot magadnak kell általánosítani, szisztematikusan adatot gyűjteni, általános
Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a
Kabos: Statisztika II. t-próba 9.1 Egymintás z-próba Ha ismert a doboz szórása de nem ismerjük a doboz várhatóértékét, akkor a H 0 : a doboz várhatóértéke = egy rögzített érték hipotézisről úgy döntünk,
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 6. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam
Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam 1. félév Gondolkozás, számolás - halmazok, műveletek halmazokkal, intervallumok - racionális számok, műveletek racionális számokkal, zárójel
Matematika 11. évfolyam
Matematika 11. évfolyam Tanmenet Másodfokúra visszavezethető magasabb rendű egyenletek, másodfokú egyenletrendszerek 1. Másodfokú egyenletek (ismétlés) 2. Másodfokú egyenletrendszerek (behelyettesítő módszer)
Matematikai alapok és valószínőségszámítás. Valószínőségszámítási alapok
Matematikai alapok és valószínőségszámítás Valószínőségszámítási alapok Bevezetés A tudományos életben vizsgálódunk pontosabb megfigyelés, elırejelzés, megértés reményében. Ha egy kísérletet végzünk, annak
Kombinatorika - kidolgozott típuspéldák
Kombinatorika - kidolgozott típuspéldák az összes dolgot sorba rakjuk minden dolog különböző ismétlés nélküli permutáció Hányféleképpen lehet sorba rakni n különböző dolgot? P=1 2... (n-1) n=n! például:
TANMENET. a matematika tantárgy tanításához 11.E osztályok számára
Az iskola fejbélyegzője TANMENET a matematika tantárgy tanításához 11.E osztályok számára Készítette: Természettudományi Munkaközösség matematikát tanító tanárai Készült: a gimnáziumi tanterv alapján Használatos
BME Nyílt Nap november 21.
Valószínűségszámítás, statisztika és valóság Néhány egyszerű példa Kói Tamás Budapesti Műszaki és Gazdaságtudományi Egyetem koitomi@math.bme.hu BME Nyílt Nap 2014. november 21. Matematikai modell Matematikai
Ittfoglalomösszea legfontosabbtudnivalókat, részleteka honlapon, illetvea gyakorlatvezetőtől is kaptok információkat.
1 Ittfoglalomösszea legfontosabbtudnivalókat, részleteka honlapon, illetvea gyakorlatvezetőtől is kaptok információkat. A statisztika tanulásához a legtöbb infomrációkat az előadásokon és számítógépes
1. tétel Halmazok és halmazok számossága. Halmazműveletek és logikai műveletek kapcsolata.
1. tétel Halmazok és halmazok számossága. Halmazműveletek és logikai műveletek kapcsolata. HLMZOK halmaz axiomatikus fogalom, nincs definíciója. benne van valami a halmazban szintén axiomatikus fogalom,
Matematika III. 2. Eseményalgebra Prof. Dr. Závoti, József
Matematika III. 2. Eseményalgebra Prof. Dr. Závoti, József Matematika III. 2. : Eseményalgebra Prof. Dr. Závoti, József Lektor : Bischof, Annamária Ez a modul a TÁMOP - 4.1.2-08/1/A-2009-0027 Tananyagfejlesztéssel
Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 3. MA3-3 modul. A valószínűségszámítás elemei
Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof Dr Závoti József Matematika III 3 MA3-3 modul A valószínűségszámítás elemei SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról szóló 1999
Matematika III. 3. A valószínűségszámítás elemei Prof. Dr. Závoti, József
Matematika III. 3. A valószínűségszámítás elemei Prof. Dr. Závoti, József Matematika III. 3. : A valószínűségszámítás elemei Prof. Dr. Závoti, József Lektor : Bischof, Annamária Ez a modul a TÁMOP - 4.1.2-08/1/A-2009-0027
Valószínűségi változók. Várható érték és szórás
Matematikai statisztika gyakorlat Valószínűségi változók. Várható érték és szórás Valószínűségi változók 2016. március 7-11. 1 / 13 Valószínűségi változók Legyen a (Ω, A, P) valószínűségi mező. Egy X :
semelyik kivett golyót nem tesszük vissza később az urnába. Hányféle színsorrendben tehetjük ezt meg?
VIII. KOMBINATORIKA VIII.1. Kombinatorikai alapfeladatok 1. Példa. Egy urnában egy piros golyó P, egy fehér golyó F és egy zöld golyó Z van. Egymás után kihúzzuk a három golyót, semelyik kivett golyót
K O M B I N A T O R I K A P e r m u t á c i ó k, k o m b i n á c i ó k, v a r i á c i ó k
K O M B I N A T O R I K A P e r m u t á c i ó k, k o m b i n á c i ó k, v a r i á c i ó k. Az 1,, 3,, elemeknek hány permutációja van, amelynek harmadik jegye 1- es? Írjuk fel őket! Annyi ahányféleképpen
Gazdasági matematika II. tanmenet
Gazdasági matematika II. tanmenet Mádi-Nagy Gergely A hivatkozásokban az alábbi tankönyvekre utalunk: T: Tóth Irén (szerk.): Operációkutatás I., Nemzeti Tankönyvkiadó 1987. Cs: Csernyák László (szerk.):
Példa a report dokumentumosztály használatára
Példa a report dokumentumosztály használatára Szerző neve évszám Tartalomjegyzék 1. Valószínűségszámítás 5 1.1. Események matematikai modellezése.............. 5 1.2. A valószínűség matematikai modellezése............
Kombinatorikai algoritmusok. (Horváth Gyula és Szlávi Péter előadásai felhasználásával)
Kombinatorikai algoritmusok (Horváth Gyula és Szlávi Péter előadásai felhasználásával) Kombinatorikai algoritmusok A kombinatorika: egy véges halmaz elemeinek valamilyen szabály alapján történő csoportosításával,
Mintavétel fogalmai STATISZTIKA, BIOMETRIA. Mintavételi hiba. Statisztikai adatgyűjtés. Nem véletlenen alapuló kiválasztás
STATISZTIKA, BIOMETRIA. Előadás Mintavétel, mintavételi technikák, adatbázis Mintavétel fogalmai A mintavételt meg kell tervezni A sokaság elemei: X, X X N, lehet véges és végtelen Mintaelemek: x, x x
Valószín ségszámítás és statisztika
Valószín ségszámítás és statisztika Informatika BSc, esti tagozat Backhausz Ágnes agnes@math.elte.hu fogadóóra: szerda 10-11 és 13-14, D 3-415 2018/2019. tavaszi félév Bevezetés A valószín ségszámítás
Kombinatorikai algoritmusok
Kombinatorikai algoritmusok (Horváth Gyula és Szlávi Péter előadásai felhasználásával) Kombinatorikai algoritmusok A kombinatorika: egy véges halmaz elemeinek valamilyen szabály alapján történő csoportosításával,
1. Kombinatorikai bevezetés
1. Kombinatorikai bevezetés 1.1. Permutációk Adott n különböző elem ismétlés nélküli permutációján az elemek egy meghatározott sorrendjét értjük. Az n különböző elem összes permutációinak számát P n -nel
3. Egy szabályos dobókockával háromszor dobunk egymás után. Legyen A az az esemény, hogy
Valószínűségszámítás. zárthelyi dolgozat 009. október 5.. Egy osztályba 3-an járnak. Minden fizikaórán a a többi órától függetlenül a tanár kisorsol egy felelőt, véletlenszerűen, egyenletesen, azaz mindig
Pl.: hányféleképpen lehet egy n elemű halmazból k elemű részhalmazt kiválasztani, n tárgyat hányféleképpen lehet szétosztani k személy között stb.?
Dr. Vicze Szilvia A kombiatorika a véges halmazokkal foglalkozik. A véges halmazokkal kapcsolatba számos olya probléma vethető fel, amely függetle a halmazok elemeitől. Pl.: háyféleképpe lehet egy elemű
Játék a szavakkal. Ismétléses nélküli kombináció: n különböző elem közül választunk ki k darabot úgy, hogy egy elemet csak egyszer
Játék a szavakkal A következőekben néhány szóképzéssel kapcsolatos feladatot szeretnék bemutatni, melyek során látni fogjuk, hogy egy ábrából hányféleképpen olvashatunk ki egy adott szót, vagy néhány betűből
Gazdasági matematika II. vizsgadolgozat megoldása A csoport
Gazdasági matematika II. vizsgadolgozat megoldása A csoport Definiálja az alábbi fogalmakat!. Egy eseménynek egy másik eseményre vonatkozó feltételes valószínűsége. ( pont) Az A esemény feltételes valószínűsége
Kombinatorika jegyzet és feladatgyűjtemény
Kombinatorika jegyzet és feladatgyűjtemény Király Balázs, Tóth László Pécsi Tudományegyetem 2011 2 Lektor: Kátai Imre egyetemi tanár, az MTA rendes tagja Tartalomjegyzék Előszó 5 I. Jegyzet 7 I.1. Permutációk,
Adatszerkezetek II. 10. előadás
Adatszerkezetek II. 10. előadás Kombinatorikai algoritmusok A kombinatorika: egy véges halmaz elemeinek valamilyen szabály alapján történő csoportosításával, kiválasztásával, sorrendbe rakásával foglalkozik
Minimum követelmények matematika tantárgyból 11. évfolyamon
Minimum követelmények matematika tantárgyból. évfolyamon A hatványozás általánosítása pozitív alap esetén racionális kitevőre. Műveletek hatványokkal. A, a 0 függvény. Az eponenciális függvény. Vizsgálata
TANMENET. a matematika tantárgy tanításához 10. E.osztályok számára
Az iskola fejbélyegzője TANMENET a matematika tantárgy tanításához 10. E.osztályok számára Készítette: Természettudományi Munkaközösség matematikát tanító tanárai Készült: a gimnáziumi tanterv alapján
Klasszikus valószínűségszámítás
Klasszikus valószínűségi mező 1) Egy építőanyag raktárba vasúton és teherautón szállítanak árut. Legyen az A esemény az, amikor egy napon vasúti szállítás van, B esemény jelentse azt, hogy teherautón van
Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7
A = {1; 3; 5; 7; 9} A B = {3; 5; 7} A/B = {1; 9} Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 Azonos alapú hatványokat
Eseményalgebra, kombinatorika
Eseméyalgebra, kombiatorika Eseméyalgebra Defiíció. Véletle kísérletek evezük mide olya megfigyelést, melyek több kimeetele lehetséges, és a véletletől függ, (azaz az általuk figyelembevett feltételek
10. Valószínűségszámítás
. Valószínűségszámítás.. Események A valószínűségszámítás nagyon leegyszerűsítve események bekövetkezésének valószínűségével foglalkozik. Példák: Ha egy játékban egy dobókockával dobunk, akkor a kockadobás
36 0,3. Mo.: 36 0,19. Mo.: 36 0,14. Mo.: 32 = 0,9375 32 = 0,8125 32 = 0,40625. Mo.: 32 = 0,25
Valószínűségszámítás I. Kombinatorikus valószínűségszámítás. BKSS 4... Egy szabályos dobókockát feldobva mennyi annak a valószínűsége, hogy a -ost dobunk; 0. b legalább 5-öt dobunk; 0, c nem az -est dobjuk;
Óra A tanítási óra anyaga Ismeretek, kulcsfogalmak/fogalmak 1. Év eleji szervezési feladatok 2.
MATEMATIKA ÉRETTSÉGI ELŐKÉSZTŐ 11. évfolyam Óra A tanítási óra anyaga Ismeretek, 1. Év eleji szervezési feladatok 2. A hatványozásról tanultak ismétlése, feladatok az n- edik gyök fogalmára, azonosságaira
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:
Halmazelméleti alapfogalmak
Halmazelméleti alapfogalmak halmaz (sokaság) jól meghatározott, megkülönböztetett dolgok (tárgyak, fogalmak, stb.) összessége. - halmaz alapfogalom. z azt jelenti, hogy csak példákon keresztül magyarázzuk,
Matematika tanmenet 10. osztály (heti 3 óra) A gyökvonás 14 óra
Matematika tanmenet 10. osztály (heti 3 óra) Tankönyv: Ábrahám Gábor Dr. Kosztolányiné Nagy Erzsébet Tóth Julianna: Matematika 10. Példatárak: Fuksz Éva Riener Ferenc: É rettségi feladatgyűjtemény matematikából
Elméleti összefoglaló a Valószín ségszámítás kurzushoz
Elméleti összefoglaló a Valószín ségszámítás kurzushoz Véletlen kísérletek, események valószín sége Deníció. Egy véletlen kísérlet lehetséges eredményeit kimeneteleknek nevezzük. A kísérlet kimeneteleinek
A matematikai feladatok és megoldások konvenciói
A matematikai feladatok és megoldások konvenciói Kozárné Fazekas Anna Kántor Sándor Matematika és Informatika Didaktikai Konferencia - Szatmárnémeti 2011. január 28-30. Konvenciók Mindenki által elfogadott
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I. 4 IV. FÜGGVÉNYEk 1. LEkÉPEZÉSEk, függvények Definíció Legyen és két halmaz. Egy függvény -ből -ba egy olyan szabály, amely minden elemhez pontosan egy elemet rendel hozzá. Az
15. LINEÁRIS EGYENLETRENDSZEREK
15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a
Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból
Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 9. évfolyam I. Halmazok 1. Alapfogalmak, jelölések 2. Halmaz, részhalmaz fogalma, részhalmazok száma, jelölések 3. Nevezetes számhalmazok (N,
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,
Országos Középiskolai Tanulmányi Verseny 2009/2010 Matematika I. kategória (SZAKKÖZÉPISKOLA) 2. forduló feladatainak megoldása
Oktatási Hivatal Országos Középiskolai Tanulmányi Verseny / Matematika I. kategória (SZAKKÖZÉPISKOLA) 2. forduló feladatainak megoldása. Oldja meg a valós számok legbővebb részhalmazán a egyenlőtlenséget!
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Statisztika
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Statisztika A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 2016 / tanév
9. évfolyam I. Halmazok Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 2016 / 2017. tanév 1. Halmaz, részhalmaz fogalma, részhalmazok száma, jelölések 2. Intervallumok 3. Halmazműveletek
1. FELADATSOR MEGOLDÁSAI. = 6. Ezek a sorozatok a következők: ab, ac, ba, bc, ca, cb.
1. FELADATSOR MEGOLDÁSAI Elméleti áttekintés Ismétlés nélküli variáció. Egy n elemű halmazból képezhető k elemű sorozatok száma, ha a sorozatok nem tartalmaznak ismétlődést n! (1 = n (n 1... (n k (n k
Mi az adat? Az adat elemi ismeret. Az adatokból információkat
Mi az adat? Az adat elemi ismeret. Tények, fogalmak olyan megjelenési formája, amely alkalmas emberi eszközökkel történő értelmezésre, feldolgozásra, továbbításra. Az adatokból gondolkodás vagy gépi feldolgozás
1. Feladatsor. I. rész
. feladatsor. Feladatsor I. rész. Mely x valós számokra lesz ebben a sorrendben a cos x, a sinx és a tg x egy mértani sorozat három egymást követő tagja?... (). Egy rombusz egyik átlója 0 cm, beírható
Tanmenet a évf. fakultációs csoport MATEMATIKA tantárgyának tanításához
ciklus óra óra anyaga, tartalma 1 1. Év eleji szervezési feladatok, bemutatkozás Hatvány, gyök, logaritmus (40 óra) 2. Ismétlés: hatványozás 3. Ismétlés: gyökvonás 4. Értelmezési tartomány vizsgálata 2
TANTÁRGYI PROGRAM Matematikai alapok 2. útmutató
BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok 2. útmutató 2015/2016. tanév I. félév Tantárgyi program Tantárgy megnevezése Tantárgy jellege/típusa:
KOMBINATORIKA ELŐADÁS osztatlan matematika tanár hallgatók számára. Szita formula
KOMBINATORIKA ELŐADÁS osztatlan matematka tanár hallgatók számára Szta formula Előadó: Hajnal Péter 2015. 1. Bevezető példák 1. Feladat. Hány olyan sorbaállítása van a a, b, c, d, e} halmaznak, amelyben
SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA
1 SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA Heti óraszám: 3 Éves óraszám: 37 x 3 = 111 A tanmenet 101 óra beosztását tartalmazza. A dolgozatok írása és javítása 10 órát foglal
Vári Péter-Rábainé Szabó Annamária-Szepesi Ildikó-Szabó Vilmos-Takács Szabolcs KOMPETENCIAMÉRÉS 2004
Vári Péter-Rábainé Szabó Annamária-Szepesi Ildikó-Szabó Vilmos-Takács Szabolcs KOMPETENCIAMÉRÉS 2004 2005 Budapest Értékelési Központ SuliNova Kht. 2 Országos Kompetenciamérés 2004 Tartalom 1. Bevezetés...4
1. Alapfogalmak Algoritmus Számítási probléma Specifikáció Algoritmusok futási ideje
1. Alapfogalmak 1.1. Algoritmus Az algoritmus olyan elemi műveletekből kompozíciós szabályok szerint felépített összetett művelet, amelyet megadott feltételt teljesítő bemeneti adatra végrehajtva, a megkívánt
Az információelmélet alapjai, biológiai alkalmazások. 1. A logaritmusfüggvény és azonosságai
Az információelmélet alapjai, biológiai alkalmazások 1. A logaritmusfüggvény és azonosságai 2 k = N log 2 N = k Például 2 3 = 8 log 2 8 = 3 10 4 = 10000 log 10 10000 = 4 log 2 2 = 1 log 2 1 = 0 log 2 0
Készítette: Fegyverneki Sándor
VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y