HALMAZOK. A racionális számok halmazát olyan számok alkotják, amelyek felírhatók b. jele:. A racionális számok halmazának végtelen sok eleme van.
|
|
- Zsuzsanna Szalai
- 6 évvel ezelőtt
- Látták:
Átírás
1 HALMAZOK Tanulási cél Halmazok megadása, halmazműveletek megismerése és alkalmazása, halmazok ábrázolása Venn diagramon. Motivációs példa Egy fogyasztó pénzegység jövedelmet fordít két termék, x és y vásárlására. Az x termék egységára 1000 pénzegység, az y ára 000 pénzegység. Hogyan változik a költségvetési egyenes és a költségvetési halmaz, ha a fogyasztó pénzjövedelme növekszik 5 százalékkal? Elméleti összefoglaló A halmaz a matematikában alapfogalom (nem definiáljuk). Ha megpróbálnám a halmaz fogalmát körül írni, akkor azt mondanám, hogy bizonyos dolgok összessége. A halmazba tartozó dolgokat a halmaz elemeinek mondjuk. A halmazokat általában nagy betűkkel jelöljük. NEVEZETES SZÁMHALMAZOK A természetes számok halmazát az 1,,3,4,... számok alkotják. A természetes számok halmazának jele:. A természetes számok halmazának végtelen sok eleme van. 1,,3,4,... Az egész számok halmazát a -4,-3,-,-1,0,1,,3,4,... számok alkotják. Az egész számok halmazának jele:. Az egész számok halmazának végtelen sok eleme van.... 4, 3,, 1,0,1,,3, 4,... A racionális számok halmazát olyan számok alkotják, amelyek felírhatók b a alakban, ahol a, b és b 0. Például: 4 ;,47 ;,3. A racionális számok halmazának jele:. A racionális számok halmazának végtelen sok eleme van. Az irracionális számok halmazát a végtelen nem szakaszos tizedes törtek alkotják. Például: 3, Látható, hogy mindig egyel több nullát írtunk az ötösök közé. Az így kapott szám biztosan végtelen nem szakaszos tizedes tört. Az irracionális számok halmazának jele: *. A irracionális számok halmazának végtelen sok eleme van. A racionális és az irracionális számok együtt alkotják a valós számok halmazát. A valós számok halmazának jele:. A halmazt a következő módon adhatjuk meg: felsoroljuk az elemeit két kapcsos zárójel közé írva 1
2 A B 3, 4,5,6,7,8 eper, alma, barack az elemek tulajdonságainak megadásával C x : 1 x 5 A C halmazt a 1,0,1,,3, 4 egész számok alkotják. D x : x 8 A D halmazt a 8,9,10,11,1,... természetes számok alkotják. E x : x Az E halmazt olyan természetes számok alkotnák, amelyek kisebbek, mint mínusz kettő. Ilyen természetes szám nincs. Ha egy halmaznak véges sok eleme van, akkor azt véges halmaznak nevezzük. Ha végtelen sok eleme van, akkor végtelen halmaznak. Azt a halmazt, amelynek egyáltalán nincs eleme üres halmaznak nevezzük. Az üres halmaz jele: vagy. A példaként megadott halmazok számossága: A, B, C véges halmazok D végtelen halmaz E üres halmaz Ha egy elem a halmazhoz tartozik, azt jellel jelöljük. Ha nem tartozik a halmazhoz, azt jellel jelöljük. 8 A (8 eleme az A halmaznak) 9 C (9 nem eleme a C halmaznak) Fontos megjegyezni, hogy egy halmazban az elemek sorrendje nem számít. a, b, c b, a, c a, c, b. Két halmaz egyenlő, ha elemeik azonosak. Eszerint az A halmazokat, azok egymás közti viszonyait, műveleteit Venn-diagramok segítségével tudjuk szemléltetni. Az A halmazt a B halmaz részhalmazának nevezzük, ha az A halmaz minden eleme B halmaznak is eleme. Jelölés: A B. A Bábrázolása Venn-diagrammal 1. ábra HALMAZMŰVELETEK
3 Az A és B halmaz uniójának nevezzük azoknak az elemeknek a halmazát, amelyek elemei az A vagy a B halmaznak. Jelölés: A B. A Bábrázolása Venn-diagrammal. ábra AA A. Bármely halmaz önmagával vett uniója önmaga. A A. Bármely halmaz üres halmazzal vett uniója önmaga. A B B A. Kommutatív (felcserélhető) tulajdonság. A B C A B C A B C. Asszociatív (csoportosítható) tulajdonság. Az A és B halmaz metszetének nevezzük azoknak az elemeknek a halmazát, amelyek elemei az A és a B halmaznak. Jelölés: A B. A Bábrázolása Venn-diagrammal 3. ábra AA A. Bármely halmaz önmagával vett metszete önmaga. A. Bármely halmaz üres halmazzal vett metszete üres halmaz. A B B A. Kommutatív (felcserélhető) tulajdonság. A B C A B C A B C. Asszociatív (csoportosítható) tulajdonság. Halmazok uniójára és metszetére teljesül a disztributív tulajdonság. Az unió disztributivitása a metszetre nézve: AB C A B A C A metszet disztributivitása az unióra nézve: AB C A B A C Az A és B halmaz különbségét az A halmaznak azok az elemei alkotják, amelyek nem elemei a B halmaznak. Jelölés: A\ B. A\ Bábrázolása Venn-diagrammal 3 4. ábra
4 A\ A. Bármely halmazból önmagát kivonva üres halmazt kapunk. A\ A. Bármely halmazból az üres halmazt kivonva önmagát kapjuk. A\ B B \ A. A kivonás nem kommutatív (felcserélhető) tulajdonság. A kivonás nem asszociatív (csoportosítható) tulajdonság. Ha az A halmaz részhalmaza H halmaznak, akkor az A halmaz H halmazra vonatkozó komplementerhalmazát (kiegészítő halmazát) a H halmaz azon elemei alkotják, amelyek nincsenek benne az A halmazban. Jelölés: A. A H halmazt alaphalmaznak nevezzük. Tehát: A H \ A A ábrázolása Venn-diagrammal 5. ábra Tetszőleges A és B halmazra igazak az alábbi összefüggések: A B A B. (De Morgan azonosságok) A B A B és Kidolgozott feladatok: 1. feladat Legyen A 1,,3, 4,10,11,1,16, B 1,3,5, 6, 7,11,1 és C 1,,5,8,9,1,15 meg a A B \ C halmazt!. Határozza Először meghatározzuk az A B halmazt. Mivel a metszetben azok az elemek vannak, AB 1,3,11,1. A kivonást úgy amelyek mindkét halmazban benne vannak, ezért végezzük el, hogy az A B halmaz elemei közül elhagyjuk azokat, amelyek a C halmaznak AB \ C 3,11. is elemei, vagyis az 1 és 1 elemeket. Így. feladat Legyen A x : x 3 5x 0 és B x : x 11 4 AB, A B, A\ B és B\A halmazokat!. Határozza meg a Először meghatározzuk az A halmaz elemeit. Az egyenletet az egész számok halmazán oldjuk meg. 4
5 x 3 x x 5x0 5 0 Az egyenlőség pontosan akkor teljesül, ha x 0 vagy 5 x. Tehát 5,0,5 A. Meghatározzuk a B halmaz elemeit. Olyan természetes számokat keresünk, amelyekre x Ez pontosan akkor teljesül, ha: 4 x 11 4 hozzáadunk 11-et 7 x 15 elosztjuk -vel 3,5 x 7,5 Tehát B 4,5,6,7. Az A B halmazba azok az elemek tartoznak, amelyek legalább az egyik halmazba A B 5,0,4,5,6,7. beletartoznak, így Az A B halmazba azok az elemek tartoznak, amelyek mind a kettő halmazba beletartoznak, így AB 5. Az A\ B halmazba az A halmaz azon elemei tartoznak, amelyek nincsenek a B halmazban, tehát A\ B 5,0. A B\ A halmazba a B halmaz azon elemei tartoznak, amelyek nincsenek az A halmazban, tehát B\ A 4,6,7. 3. feladat x 8 Legyen A x : B x : x Határozza meg a A \ C B halmazt!, és C x : 7 3x 8. Először meghatározzuk az A halmaz elemeit. Az egyenlőtlenséget a természetes számok halmazán oldjuk meg. x 8 5 x 8 10 x 18 x 9 Tehát A 1,,3,4,5,6,7,8,9. 5
6 Most meghatározzuk a B halmaz elemeit. Olyan egész számokat keresünk, amelyekre 9 5 x. Ez éppen akkor teljesül, ha: x 9 5 vagy x 9 5 x4 vagy x14 Vagyis B 4,14. A C halmaz elemeit olyan egész számok alkotják, amelyek teljesítik a 7 3x 8 egyenlőtlenséget. 7 3x 8 3x 15 x 5 A C 6,7,8,9,10,... halmaznak végtelen sok eleme van. Az A\ C halmazt azok az elemek alkotják amelyek az A halmazba beletartoznak, de a C halmazba nem. A\ C 1,,3,4,5 Az A \ C B halmazba azok az elemek tartoznak, amelyek elemei A\ Chalmaznak vagy a B halmaznak. Így kapjuk, hogy A \ C B 1,,3, 4,5,14 4. feladat. Legyen A x : x x 1 0 és B x : x 3 7 AB, A B, A\ B és B\A halmazokat!. Határozza meg a Először meghatározzuk az A halmaz elemeit. A másodfokú egyenlőtlenséget a valós számok halmazán oldjuk meg. x x1 0 Nézzük az x x 1, 1, f x x x 1 függvényt és határozzuk meg a zérushelyeit az b b 4ac képlet segítségével. a Ábrázoljuk a függvényt., vagyis a függvény zérushelyei a 3 és a 4. 6
7 6. ábra Az egyenlőtlenség megoldásai azok a valós számok, ahol a függvényérték kisebb mint nulla (a A 3, 4. függvény x tengely alatti része) vagy nulla. Az ábrából látható, hogy Meghatározzuk a B halmaz elemeit. Olyan valós számokat keresünk, amelyekre x 3 7 Ez éppen akkor teljesül, ha x 3 7 vagy x 3 7 x 10 vagy x 4 x 5 vagy x Tehát B, 5,. 7. ábra Az A B halmazba azok az elemek tartoznak, amelyek vagy az A vagy a B halmazba A B, 5 3,. beletartoznak, így Az A B halmazba azok az elemek tartoznak, amelyek mind a kettő halmazba beletartoznak, AB, 4. így Az A\ B halmazba az A halmaz azon elemei tartoznak, amelyek nincsenek a B halmazban, tehát A\ B 3,. 7
8 A B\ A halmazba a B halmaz azon elemei tartoznak, amelyek nincsenek az A halmazban, tehát B\ A, 5 4,. 5. feladat Határozza meg az A x : x x 0 0 komplementerhalmazát! halmaz valós számok halmazára vonatkozó Először határozzuk meg az A halmazt, amit olyan valós számok alkotnak, amelyekre teljesül az x x 0 0 egyenlőtlenség. Vegyük az x 1, f x x x 0 függvényt és határozzuk meg a zérushelyeit A függvény zérushelyei 5 és 4. Ábrázoljuk a függvényt. 8. ábra Az egyenlőtlenség megoldásai azok a valós számok, ahol a függvényérték nagyobb mint nulla A 5, 4. (a függvény x tengely feletti része). Az ábrából látható, hogy Az A halmaz valós számok halmazára vonatkozó komplementerhalmaza A R \ A. Tehát azokat a valós számokat keressük, amelyek nincsenek benne az A halmazban. A, \ 5,4, 54, 8
9 9. ábra 6. feladat Legyen 5x 7 A x : x 3x 4 0 és B x :8 3. Határozza meg az A B halmaz valós számok halmazára vonatkozó komplementerhalmazát! Először határozzuk meg az A halmazt, amit olyan valós számok alkotnak, amelyekre teljesül az x 3x 4 0 egyenlőtlenség. Vegyük az x 1, f x x 3x 4 függvényt és határozzuk meg a zérushelyeit A függvény zérushelyei 1 és 4. Ábrázoljuk a függvényt. 10. ábra Az egyenlőtlenség megoldásai azok a valós számok, ahol a függvényérték kisebb mint nulla (a A 1,4. függvény x tengely alatti része), vagy nulla. Az ábrából látható, hogy Most határozzuk meg a B halmazt, amely olyan valós számokból áll, amelyekre teljesül az alábbi egyenlőtlenség. 9
10 5x x 7 6 5x 9 6 5x 15 x 3 Tehát B 3,. A A Bhalmazba azok a valós számok tartoznak, amelyek vagy az A halmaznak vagy a B A B 1, halmaznak elemei. 11. ábra Az A B halmaz valós számok halmazára vonatkozó komplementerhalmaza A B R \ A B. Tehát azokat a valós számokat keressük, amelyek nincsenek benne az A B halmazban., \ 1,, 1 A B 1. ábra 7. feladat Legyenek,, halmazt! A B C tetszőleges halmazok. Ábrázolja Venn-diagramon a B \ C A B C Ha semmilyen információnk nincs a halmazokról, akkor azt kell feltételezni, hogy mindhárom halmazna 10
11 k vannak olyan elemei, amelyek a másik két halmazban nincsenek benne, továbbá bármely két halmaz metszetének vannak olyan elemei, amelyek a harmadik halmazhoz nem tartoznak hozzá és végül a három halmaz metszete sem üres. Ezért a következő ábrából indulunk ki. 13. ábra Ábrázoljuk először a B\ C halmazt. Ide a B halmaznak azok az elemei tartoznak, amelyek nem elemei az A halmaznak. 14. ábra Ábrázoljuk a AB C halmazt. Ide azok az elemek tartoznak, amelyek maid a három halmaznak elemei. 15. ábra Végül ennek a két halmaznak az unióját kell venni. Tehát az B \ C A B C halmaz: 11
12 16. ábra 8. feladat Legyenek A, B, C tetszőleges halmazok. Igazolja Venn-diagram segítségével a következő egyenlőséget! A \ C B \ C A B \ C Ábrázoljuk az A\ C és B\ C halmazokat. A\ C B\ C 17.ábra Az egyenlőség bal oldala az A \ C B \ C halmaz. 18. ábra 19. ábra 1
13 Ábrázoljuk az A B halmazt. 0. ábra Az egyenlőség jobb oldala a A B \ C halmaz. 1. ábra Mivel az egyenlet bal és jobb oldala megegyezik, ezért az egyenlőség teljesül. 13
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I. 1 I. HALmAZOk 1. JELÖLÉSEk A halmaz fogalmát tulajdonságait gyakran használjuk a matematikában. A halmazt nem definiáljuk, ezt alapfogalomnak tekintjük. Ez nem szokatlan, hiszen
Halmazelmélet. 1. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Halmazelmélet p. 1/1
Halmazelmélet 1. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Halmazelmélet p. 1/1 A halmaz fogalma, jelölések A halmaz fogalmát a matematikában nem definiáljuk, tulajdonságaival
Egy halmazt elemei megadásával tekintünk ismertnek. Az elemeket felsorolással,vagy ha lehet a rájuk jellemző közös tulajdonság megadásával adunk meg.
Halmazelmélet A matematikai halmazelmélet megalapítója Georg Cantor (1845 1918) matematikus. Cantor Oroszországban született, de életét Németországban töltötte. Egy halmazt elemei megadásával tekintünk
1. tétel Halmazok és halmazok számossága. Halmazműveletek és logikai műveletek kapcsolata.
1. tétel Halmazok és halmazok számossága. Halmazműveletek és logikai műveletek kapcsolata. HLMZOK halmaz axiomatikus fogalom, nincs definíciója. benne van valami a halmazban szintén axiomatikus fogalom,
1. Halmazok, számhalmazok, alapműveletek
1. Halmazok, számhalmazok, alapműveletek I. Nulladik ZH-ban láttuk: 1. Határozza meg az (A B)\C halmaz elemszámát, ha A tartalmazza az összes 19-nél kisebb természetes számot, továbbá B a prímszámok halmaza
Dr. Vincze Szilvia;
2014. szeptember 17. és 19. Dr. Vincze Szilvia; vincze@agr.unideb.hu https://portal.agr.unideb.hu/oktatok/drvinczeszilvia/oktatas/oktatott_targyak/index/index.html 2010/2011-es tanév I. féléves tematika
2011. szeptember 14. Dr. Vincze Szilvia;
2011. szeptember 14. Dr. Vincze Szilvia; vincze@fin.unideb.hu https://portal.agr.unideb.hu/oktatok/drvinczeszilvia Első pillantásra hihetetlennek tűnik, hogy egy olyan tiszta és érzelmektől mentes tudomány,
KISLEXIKON : HALMAZOK, SZÁMHALMAZOK, PONTHALMAZOK. Tárgymutató: I.
Matematika érettségi kislexikon I. 1 Huszk@ Jenő I. \ \ KISLEXIKON : HLMZOK, SZÁMHLMZOK, PONTHLMZOK Tárgymutató: I. oldal sorszám téma oldal sorszám téma 3 12 Halmazok ábrázolása 4 14 Halmazok metszete
Készítette: Ernyei Kitti. Halmazok
Halmazok Jelölések: A halmazok jele általában nyomtatott nagybetű: A, B, C Az x eleme az A halmaznak: Az x nem eleme az A halmaznak: Az A halmaz az a, b, c elemekből áll: A halmazban egy elemet csak egyszer
Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé.
HA 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) HA 2 Halmazok HA 3 Megjegyzések A halmaz, az elem és az eleme fogalmakat nem definiáljuk, hanem alapfogalmaknak
Az értékelés a következők szerint történik: 0-4 elégtelen 5-6 elégséges 7 közepes 8 jó 9-10 jeles. A szóbeli vizsga várható időpontja
2016/17 I. félév MATEMATIKA szóbeli vizsga 1 A szóbeli vizsga kötelező eleme a félév teljesítésének, tehát azok a diákok is vizsgáznak, akik a többi számonkérést teljesítették. A szóbeli vizsgán az alább
Halmazelméleti alapfogalmak
Halmazelméleti alapfogalmak halmaz (sokaság) jól meghatározott, megkülönböztetett dolgok (tárgyak, fogalmak, stb.) összessége. - halmaz alapfogalom. z azt jelenti, hogy csak példákon keresztül magyarázzuk,
1. fogalom. Add meg az összeadásban szereplő számok elnevezéseit! Milyen tulajdonságai vannak az összeadásnak? Hogyan ellenőrizzük az összeadást?
1. fogalom Add meg az összeadásban szereplő számok 73 + 19 = 92 összeadandók (tagok) összeg Összeadandók (tagok): amiket összeadunk. Összeg: az összeadás eredménye. Milyen tulajdonságai vannak az összeadásnak?
HALMAZOK TULAJDONSÁGAI,
Halmazok definíciója, megadása HALMAZOK TULAJDONSÁGAI, 1. A következő definíciók közül melyek határoznak meg egyértelműen egy-egy halmazt? a) A: a csoport tanulói b) B: Magyarország városai ma c) C: Pilinszky
Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1
Halmazok 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 2 A fejezet legfontosabb elemei Halmaz megadási módjai Halmazok közti műveletek (metszet,
2) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont)
(11/1) Függvények 1 1) Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon! (pont) ) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont) 3) Ábrázolja + 1 - függvényt a [ ;] -on! (3pont)
Itt és a továbbiakban a számhalmazokra az alábbi jelöléseket használjuk:
1. Halmazok, relációk, függvények 1.A. Halmazok A halmaz bizonyos jól meghatározott dolgok (tárgyak, fogalmak), a halmaz elemeinek az összessége. Azt, hogy az a elem hozzátartozik az A halmazhoz így jelöljük:
Typotex Kiadó. Bevezetés
Bevezetés A bennünket körülvevő világ leírásához ősidők óta számokat is alkalmazunk. Tekintsük át a számfogalom kiépülésének logikai-történeti folyamatát, amely minden valószínűség szerint a legkorábban
1. Ábrázolja az f(x)= x-4 függvényt a [ 2;10 ] intervallumon! (2 pont) 2. Írja fel az alábbi lineáris függvény grafikonjának egyenletét!
Függvények 1 1. Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon!. Írja fel az alábbi lineáris függvény grafikonjának egyenletét! 3. Ábrázolja + 1 - függvényt a [ ;] -on! 4. Az f függvényt a valós
Másodfokú egyenletek, egyenlőtlenségek
Másodfokú egyenletek, egyenlőtlenségek A másodfokú egyenlet grafikus megoldása Példa1. Ábrázold az f(x) = x + 1x + 16 függvényt, majd olvasd le az ábráról az alábbi egyenlet megoldását: x + 1x + 16 = 0.
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata
1. előadás: Halmazelmélet, számfogalom, teljes
1. előadás: Halmazelmélet, számfogalom, teljes indukció Szabó Szilárd Halmazok Halmaz: alapfogalom, bizonyos elemek (matematikai objektumok) összessége. Egy halmaz akkor adott, ha minden objektumról eldönthető,
Halmaz: alapfogalom, bizonyos elemek (matematikai objektumok) Egy halmaz akkor adott, ha minden objektumról eldönthető, hogy
1. előadás: Halmazelmélet Szabó Szilárd Halmazok Halmaz: alapfogalom, bizonyos elemek (matematikai objektumok) összessége. Egy halmaz akkor adott, ha minden objektumról eldönthető, hogy hozzátartozik-e,
Egyenletek, egyenlőtlenségek grafikus megoldása TK. II. kötet 25. old. 3. feladat
Egyenletek, egyenlőtlenségek grafikus megoldása TK. II. kötet. old.. feladat a. lépés: Az egyenlet bal oldalának ábrázolása függvényként.. lépés: Az egyenlet bal oldalának ábrázolása függvényként.. lépés:
Egyenletek, egyenlőtlenségek V.
Egyenletek, egyenlőtlenségek V. DEFINÍCIÓ: (Másodfokú egyenlet) Az ax + bx + c = 0 alakban felírható egyenletet (a, b, c R; a 0), ahol x a változó, másodfokú egyenletnek nevezzük. TÉTEL: Az ax + bx + c
függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0(
FÜGGVÉNYEK 1. (008. okt., 14. fel, 5+7 pont) Fogalmazza meg, hogy az f : R R, f ( x) x 1 függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0( x) x függvény grafikonjából! Ábrázolja
Másodfokú egyenletek, egyenlőtlenségek
Másodfokú egyenletek, egyenlőtlenségek A másodfokú egyenlet grafikus megoldása Példa1. Ábrázold az f(x) = x 1x 16 függvényt, majd olvasd le az ábráról az alábbi egyenlet megoldását: x 1x 16 =. 1. lépés:
Matematika 10 Másodfokú egyenletek. matematika és fizika szakos középiskolai tanár. > o < 2015. szeptember 27.
Matematika 10 Másodfokú egyenletek Juhász László matematika és fizika szakos középiskolai tanár > o < 2015. szeptember 27. copyright: c Juhász László Ennek a könyvnek a használatát szerzői jog védi. A
Matematika pótvizsga témakörök 9. V
Matematika pótvizsga témakörök 9. V 1. Halmazok, műveletek halmazokkal halmaz, halmaz eleme halmazok egyenlősége véges, végtelen halmaz halmazok jelölése, megadása természetes számok egész számok racionális
Szé12/1/N és Szé12/1/E osztály matematika minimumkérdések a javítóvizsgára
Szé1/1/N és Szé1/1/E osztály matematika minimumkérdések a javítóvizsgára Halmazelmélet Halmaz, részhalmaz, végtelen halmaz, üres halmaz, halmaz megadása, halmazműveletek (metszet, unió, különbség, komplementer),
Egyenletek, egyenletrendszerek, egyenlőtlenségek Megoldások
) Egyenletek, egyenletrendszerek, egyenlőtlenségek - megoldások Egyenletek, egyenletrendszerek, egyenlőtlenségek Megoldások a) Oldja meg a valós számok halmazán az alábbi egyenletet! = 6 (5 pont) b) Oldja
Abszolútértékes egyenlôtlenségek
Abszolútértékes egyenlôtlenségek 575. a) $, $ ; b) < - vagy $, # - vagy > 4. 5 576. a) =, =- 6, 5 =, =-, 7 =, 4 = 5; b) nincs megoldás;! c), = - ; d) =-. Abszolútértékes egyenlôtlenségek 577. a) - # #,
1. Halmazok, halmazműveletek. Nevezetes ponthalmazok a síkban és a térben. (x eleme az A halmaznak, x az A halmazhoz tartozik),
1. Halmazok, halmazműveletek. Nevezetes ponthalmazok a síkban és a térben Halmazok A halmaz a matematikában nem definiált fogalom. A halmazt alapfogalomnak tekintjük, nem tudjuk egyszerűbb fogalmakkal
Matematikai logika és halmazelmélet
Matematikai logika és halmazelmélet Wettl Ferenc előadása alapján 2015-09-07 Wettl Ferenc előadása alapján Matematikai logika és halmazelmélet 2015-09-07 1 / 21 Tartalom 1 Matematikai kijelentések szerkezete
Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak
Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak Halmazok Halmazok egyenlősége Részhalmaz, valódi részhalmaz Üres halmaz Véges és végtelen halmaz Halmazműveletek (unió, metszet,
2017/2018. Matematika 9.K
2017/2018. Matematika 9.K Matematika javítóvizsga 2018. augusztus szóbeli 3 rövidebb (feladat, definíció, tétel) és 3 hosszabb feladat megoldása a 30 perces felkészülési idő alatt a megoldás ismertetése
Racionális számok: Azok a számok, amelyek felírhatók két egész szám hányadosaként ( p q
Szóbeli tételek matematikából 1. tétel 1/a Számhalmazok definíciója, jele (természetes számok, egész számok, racionális számok, valós számok) Természetes számok: A pozitív egész számok és a 0. Jele: N
Analízis előadás és gyakorlat vázlat
Analízis előadás és gyakorlat vázlat Készült a PTE TTK GI szakos hallgatóinak Király Balázs 2010-11. I. Félév 2 1. fejezet Számhalmazok és tulajdonságaik 1.1. Nevezetes számhalmazok ➀ a) jelölése: N b)
Intergrált Intenzív Matematika Érettségi
. Adott a mátri, determináns determináns, ahol,, d Számítsd ki:. b) Igazold, hogy a b c. Adott a az 6 0 egyenlet megoldásai. a). c) Számítsd ki a d determináns értékét. d c a b determináns, ahol abc,,.
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!
Matematika alapjai; Feladatok
Matematika alapjai; Feladatok 1. Hét 1. Tekintsük a,, \ műveleteket. Melyek lesznek a.) kommutativok b.) asszociativak c.) disztributívak-e a, műveletek? Melyik melyikre? 2. Fejezzük ki a műveletet a \
MATEMATIKA TAGOZAT 5-8. BEVEZETŐ. 5. évfolyam
BEVEZETŐ Ez a helyi tanterv a kerettanterv Emelet matematika A változata alapján készült. Az emelt oktatás során olyan tanulóknak kívánunk magasabb szintű ismerteket nyújtani, akik matematikából átlag
b) Ábrázolja ugyanabban a koordinátarendszerben a g függvényt! (2 pont) c) Oldja meg az ( x ) 2
1) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) b) c) ( ) ) Határozza meg az 1. feladatban megadott, ; intervallumon
Matematika 8. osztály
ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Hat évfolyamos Matematika 8. osztály I. rész: Algebra Készítette: Balázs Ádám Budapest, 2018 2. Tartalomjegyzék Tartalomjegyzék I. rész: Algebra................................
First Prev Next Last Go Back Full Screen Close Quit. Matematika I
Matematika I (Analízis) Készítette: Horváth Gábor Kötelező irodalom: Ács László, Gáspár Csaba: Analízis 1 Oktatási segédanyagok és a tantárgyi követelményrendszer megtalálható a http://rs1.szif.hu/ horvathg/horvathg.html
Algebrai egész kifejezések (polinomok)
Algebrai egész kifejezések (polinomok) Betűk használata a matematikában Feladat Mekkora a 107m 68m oldalhosszúságú téglalap alakú focipála kerülete, területe? a = 107 m b = 68 m Terület T = a b = 107m
Halmazok, intervallumok
Halmazok, intervallumok Alapfogalmak (nem definiált fogalmak): Halmaz, elem, eleme. Jelölés: x A (ejtsd: az x eleme az A halmaznak). Halmaz megadása: A vizsgálatok során mindig feltesszük, hogy a figyelembe
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x
Hozzárendelés, lineáris függvény
Hozzárendelés, lineáris függvény Feladat 1 A ménesben a lovak száma és a lábaik száma közötti összefüggést vizsgáljuk. Hány lába van 0; 1; 2; 3; 5; 7... lónak? Készíts értéktáblázatot, és ábrázold derékszögű
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Országos Középiskolai Tanulmányi Verseny 2009/2010 Matematika I. kategória (SZAKKÖZÉPISKOLA) 2. forduló feladatainak megoldása
Oktatási Hivatal Országos Középiskolai Tanulmányi Verseny / Matematika I. kategória (SZAKKÖZÉPISKOLA) 2. forduló feladatainak megoldása. Oldja meg a valós számok legbővebb részhalmazán a egyenlőtlenséget!
Halmazok; a matematikai logika elemei 1.1. A halmaz fogalma; jelölések
1 Halmazok; a matematikai logika elemei 1.1. A halmaz fogalma; jelölések A matematikában alapfogalmaknak tekintjük azokat a fogalmakat, amelyeket nem határozunk meg, nem definiálunk más fogalmak segítségével
Függvények Megoldások
Függvények Megoldások ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x x b) x x + c) x ( x + ) b) Az x függvény
Az emelt szintű érettségi vizsgán előforduló tananyagokat zölddel és apró betűvel jelöltük.
5 Jelmagyarázat Az A pont és az e egyenes távolsága: d(a; e) vagy Ae Az A és B pont távolsága: AB vagy AB vagy d(a; B) Az A és B pont összekötő egyenese: e(a; B) Az f 1 és f 2 egyenesek szöge: ( f1; f2)
1. A polinom fogalma. Számolás formális kifejezésekkel. Feladat Oldjuk meg az x2 + x + 1 x + 1. = x egyenletet.
1. A polinom fogalma Számolás formális kifejezésekkel. Feladat Oldjuk meg az x2 + x + 1 x + 1 = x egyenletet. Megoldás x + 1-gyel átszorozva x 2 + x + 1 = x 2 + x. Innen 1 = 0. Ez ellentmondás, így az
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Matematika 11. osztály
ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Humán tagozat Matematika 11. osztály I. rész: Hatvány, gyök, logaritmus Készítette: Balázs Ádám Budapest, 018 . Tartalomjegyzék Tartalomjegyzék
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Abszolútértékes és gyökös kifejezések
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval
Diszkrét matematika HALMAZALGEBRA. Halmazalgebra
Halmazalgebra Ebben a fejezetben összefoglaljuk a halmazokról tanult középiskolai ismeretanyagot, és néhány érdekességgel, módszerrel ki is egészítjük. A halmaz alapfogalom. Mondhatjuk, hogy tárgyak, fogalmak,
ÍRÁSBELI BELSŐ VIZSGA MATEMATIKA 8. évfolyam reál tagozat Az írásbeli vizsga gyakorlati és elméleti feladatai a következő témakörökből származnak.
ÍRÁSBELI BELSŐ VIZSGA MATEMATIKA 8. évfolyam reál tagozat Az írásbeli vizsga gyakorlati és elméleti feladatai a következő témakörökből származnak. Időtartam: 60 perc 1. Halmazműveletek konkrét halmazokkal.
MATEMATIK A 9. évfolyam. 1. modul: HALMAZOK KÉSZÍTETTE: LÖVEY ÉVA
MATEMATIK A 9. évfolyam 1. modul: HALMAZOK KÉSZÍTETTE: LÖVEY ÉVA Matematika A 9. évfolyam. 1. modul: HALMAZOK Tanári útmutató 2 A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok Halmazokkal
I. Halmazok. 1. A halmazokról általában
I. Halmazok A halmaz a matematika fontos fogalma. Ismételjük át azt, amit már tudunk róla! Egészítsük is ki az eddig tanultakat! 1. A halmazokról általában A matematikában a halmazt alapfogalomnak tekintjük.
1. A komplex számok definíciója
1. A komplex számok definíciója A számkör bővítése Tétel Nincs olyan n természetes szám, melyre n + 3 = 1. Bizonyítás Ha n természetes szám, akkor n+3 3. Ezért bevezettük a negatív számokat, közöttük van
HALMAZOK TULAJDONSÁGAI,
Halmazok definíciója, megadása HALMAZOK TULAJDONSÁGAI,. A következő definíciók közül melyek határoznak meg egyértelműen egy-egy halmazt? a) A:= { a csoport tanulói b) B:= { Magyarország városai ma c) C:=
2017/2018. Matematika 9.K
2017/2018. Matematika 9.K Egész éves dolgozat szükséges felszerelés: toll, ceruza, radír, vonalzó, körző, számológép 2 órás, 4 jegyet ér 2018. május 28. hétfő 1-2. óra A312 terem Aki hiányzik, a következő
A valós számok halmaza
VA 1 A valós számok halmaza VA 2 A valós számok halmazának axiómarendszere és alapvető tulajdonságai Definíció Az R halmazt a valós számok halmazának nevezzük, ha teljesíti a következő axiómarendszerben
6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban?
6. Függvények I. Nulladik ZH-ban láttuk: 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? f x g x cos x h x x ( ) sin x (A) Az f és a h. (B) Mindhárom. (C) Csak az f.
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.
Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:
TANMENET 2015/16. Készítette: KOVÁCS ILONA, Felhasználja: Juhász Orsolya
Tantárgy: Matematika Osztály: 10. B Készítette: KOVÁCS ILONA, Felhasználja: Juhász Orsolya Vetési Albert Gimnázium, Veszprém Heti óraszám: 3 Éves óraszám: 108 Tankönyv: Hajdu Sándor Czeglédy István Hajdu
Függvény fogalma, jelölések 15
DOLGO[Z]ZATOK 9.. 1. Függvény fogalma, jelölések 1 1. Az alábbi hozzárendelések közül melyek függvények? a) A magyarországi megyékhez hozzárendeljük a székhelyüket. b) Az egész számokhoz hozzárendeljük
Mátrixalgebra Optimumszámítás
Mátrixalgebra Optimumszámítás Ábrahám István Mátrixalgebra Optimumszámítás Egyszerűen, érthetően A könyv megjelenését a Nemzeti Kulturális Alap támogatta. c Ábrahám István, Typotex, Budapest, 2015 Engedély
I. Egyenlet fogalma, algebrai megoldása
11 modul: EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA 6 I Egyenlet fogalma, algebrai megoldása Módszertani megjegyzés: Az egyenletek alaphalmazát, értelmezési tartományát később vezetjük be, a törtes egyenletekkel
Tanmenet a Matematika 10. tankönyvhöz
Tanmenet a Matematika 10. tankönyvhöz (111 óra, 148 óra, 185 óra) A tanmenetben olyan órafelosztást adunk, amely alkalmazható mind a középszintû képzés (heti 3 vagy heti 4 óra), mind az emelt szintû képzés
Egyenletek, egyenlőtlenségek VII.
Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós
6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének
6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük
Diszkrét matematika II., 8. előadás. Vektorterek
1 Diszkrét matematika II., 8. előadás Vektorterek Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2007.??? Vektorterek Legyen T egy test (pl. R, Q, F p ). Definíció.
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 1. estis képzés 2017. ősz 1. Diszkrét matematika 1. estis képzés 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
2) = 0 ahol x 1 és x 2 az ax 2 + bx + c = 0 ( a,b, c R és a 0 )
Fogalom gyűjtemény Abszcissza: az x tengely Abszolút értékes egyenletek: azok az egyenletek, amelyekben abszolút érték jel szerepel. Abszolútérték-függvény: egy elemi egyváltozós valós függvény, mely minden
MATEMATIKA TANMENET. 9. osztály. 4 óra/hét. Budapest, 2014. szeptember
MATEMATIKA TANMENET 9. osztály 4 óra/hét Budapest, 2014. szeptember 2 Évi óraszám: 144 óra Heti óraszám: 4 óra Ismerkedés, év elejei feladatok, szintfelmérő írása 2 óra I. Kombinatorika, halmazok 13 óra
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I. 4 IV. FÜGGVÉNYEk 1. LEkÉPEZÉSEk, függvények Definíció Legyen és két halmaz. Egy függvény -ből -ba egy olyan szabály, amely minden elemhez pontosan egy elemet rendel hozzá. Az
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 6. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
TANMENET. Matematika
Bethlen Gábor Református Gimnázium és Szathmáry Kollégium 6800 Hódmezővásárhely, Szőnyi utca 2. Telefon: +36-62-241-703 www.bgrg.hu OM: 029736 TANMENET Matematika 2016/2017 9. B tagozat Összeállította:
2014. szeptember 24. és 26. Dr. Vincze Szilvia
2014. szeptember 24. és 26. Dr. Vincze Szilvia Mind a hétköznapi, mind a tudományos életben gyakran előfordul, hogy bizonyos halmazok elemei között kapcsolat figyelhető meg. A kapcsolat fogalmának matematikai
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 4-6. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet takach november 30.
1 Diszkrét matematika I, 12 előadás Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach 2005 november 30 Vektorok Definíció Egy tetszőleges n pozitív egész számra n-komponensű
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
Struktúra nélküli adatszerkezetek
Struktúra nélküli adatszerkezetek Homogén adatszerkezetek (minden adatelem azonos típusú) osztályozása Struktúra nélküli (Nincs kapcsolat az adatelemek között.) Halmaz Multihalmaz Asszociatív 20:24 1 A
Diszkrét matematika I.
Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 2. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Matematikai logika Diszkrét matematika I. középszint
Bevezetés. 1. fejezet. Algebrai feladatok. Feladatok
. fejezet Bevezetés Algebrai feladatok J. A számok gyakran használt halmazaira a következ jelöléseket vezetjük be: N a nemnegatív egész számok, N + a pozitív egész számok, Z az egész számok, Q a racionális
1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont)
1. tétel 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója cm. Mekkora a háromszög átfogója? (4 pont). Adott az ábrán két vektor. Rajzolja meg a b, a b és az a b vektorokat! (6 pont)
Matematika III. 2. Eseményalgebra Prof. Dr. Závoti, József
Matematika III. 2. Eseményalgebra Prof. Dr. Závoti, József Matematika III. 2. : Eseményalgebra Prof. Dr. Závoti, József Lektor : Bischof, Annamária Ez a modul a TÁMOP - 4.1.2-08/1/A-2009-0027 Tananyagfejlesztéssel
Trigonometria Megoldások. 1) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( )
Trigonometria Megoldások Trigonometria - megoldások ) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( ) akkor a háromszög egyenlő szárú vagy derékszögű!
MATEMATIKA EMELT SZINTŰ SZÓBELI VIZSGA TÉMAKÖREI (TÉTELEK) 2005
2005 1. * Halmazok, halmazműveletek, nevezetes ponthalmazok 2. Számhalmazok, halmazok számossága 3. Hatványozás, hatványfüggvény 4. Gyökvonás, gyökfüggvény 5. A logaritmus. Az exponenciális és a logaritmus
Matematika A1a Analízis
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Vektorok StKis, EIC 2019-02-12 Wettl Ferenc ALGEBRA
MATEMATIKA ÉRETTSÉGI október 19. KÖZÉPSZINT
MATEMATIKA ÉRETTSÉGI 010. október 19. KÖZÉPSZINT 1) Adott az A és B halmaz: Aa; b; c; d, B a; b; d; e; f felsorolásával az A I.. Adja meg elemeik B és A B halmazokat! A B a; b; d A B a; b; c; d; e; f Összesen:
Diszkrét matematika 1. középszint
Diszkrét matematika 1. középszint 2017. sz 1. Diszkrét matematika 1. középszint 3. el adás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Vektorok, mátrixok, lineáris egyenletrendszerek
a Matematika mérnököknek I. című tárgyhoz Vektorok, mátrixok, lineáris egyenletrendszerek Vektorok A rendezett valós számpárokat kétdimenziós valós vektoroknak nevezzük. Jelölésükre latin kisbetűket használunk.
egyenlőtlenségnek kell teljesülnie.
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval