Egyenletek, egyenlőtlenségek V.
|
|
- Klaudia Vinczené
- 7 évvel ezelőtt
- Látták:
Átírás
1 Egyenletek, egyenlőtlenségek V. DEFINÍCIÓ: (Másodfokú egyenlet) Az ax + bx + c = 0 alakban felírható egyenletet (a, b, c R; a 0), ahol x a változó, másodfokú egyenletnek nevezzük. TÉTEL: Az ax + bx + c = 0 másodfokú egyenlet valós gyökei a következő megoldó képlettel adhatóak meg: x 1, = b ± b 4ac. a Megjegyzés: Az ax + bx + c polinomban az a - t a polinom főegyütthatójának nevezzük. Amennyiben b = 0, vagy c = 0, akkor hiányos másodfokú egyenletről beszélünk. Mivel az egyenletet beszorozhatjuk, eloszthatjuk egy tetszőleges számmal, ezért a megoldóképlet felírása előtt célszerű megvizsgálnunk, hogy az egyenlet egyszerűbb alakra hozható - e. Az egyenletet célszerű úgy rendezni, hogy az x együtthatója pozitív legyen. A megoldóképlet használata során, ha a négyzetgyök értéke egy irracionális szám, akkor kerekített értékkel számolunk tovább. A megoldóképlet használata során, ha a négyzetgyök alatt 0 áll, akkor egy megoldása lesz az egyenletnek, ha pedig a négyzetgyök alatt egy negatív szám áll, akkor nem lesz megoldása az egyenletnek. Az egyenletek megoldására vannak további módszerek is (pl.: behelyettesítjük az alaphalmaz elemeit; szorzattá alakítunk, s egy szorzat értéke akkor nulla, ha valamelyik tényezője nulla; ábrázoljuk grafikusan a függvény képét teljes négyzetté alakítással), de ezek sokszor körülményesek és nem mindig alkalmazhatóak. Másodfokú függvény szélsőértéke: A szélsőérték meghatározásához előbb teljes négyzetté kell alakítanunk a másodfokú kifejezést: f(x) = ax + bx + c = a [(x + b a ) b 4a ] + c = a (x + b 1 a ) b 4a + c. Ha az a > 0, akkor a függvény képe egy felfelé nyíló parabola, így a szélsőérték minimum, ha az a < 0, akkor a függvény képe egy lefelé nyíló parabola, így a szélsőérték maximum. A szélsőérték helye x = b b, az értéke pedig y = + c. a 4a
2 1. Oldd meg a következő egyenleteket szorzattá alakítással! (Alaphalmaz: R) a) x + 7x + 10 = 0 b) x + x 4 = 0 Megoldás: A szorzattá alakításhoz úgy kell szétbontanunk az egyenlet tagjait, hogy ki tudjunk emelni bizonyos elemeket. a) x + 7x + 10 = 0 Alakítsuk át az egyenlet bal oldalát a következő módon: x + 7x + 10 = x + x + 5x + 10 = x (x + ) + 5 (x + ) = (x + ) (x + 5) Az egyenlet tehát felírható a következő alakban is: (x + ) (x + 5) = 0. Egy szorzat értéke akkor 0, ha valamelyik tényezője 0. Ezek alapján az egyenlet megoldásai a következők lesznek: x + = 0 x 1 = x + 5 = 0 x = 5 b) x + x 4 = 0 Alakítsuk át az egyenlet bal oldalát a következő módon: x + x 4 = (x + x 1) = (x + 4x 3x 1) = = [x (x + 4) 3 (x + 4)] = (x + 4) (x 3) Az egyenlet tehát felírható a következő alakban is: (x + 4) (x 3) = 0. Egy szorzat értéke akkor 0, ha valamelyik tényezője 0. Ezek alapján az egyenlet megoldásai a következők lesznek: x + 4 = 0 x 1 = 4 x 3 = 0 x = 3
3 . Oldd meg grafikusan a következő egyenleteket! (Alaphalmaz: R) a) x + 8x + 6 = 0 b) x 3x + = 0 Megoldás: Ahhoz, hogy az egyenlet bal oldalát ábrázolni tudjuk, át kell alakítanunk úgy, hogy az x függvény transzformációját kapjuk. Ehhez az első két tagot teljes négyzetté kell alakítanunk. a) x + 8x + 6 = 0 Alakítsuk teljes négyzetté az egyenlet bal oldalát a következő módon: x + 8x + 6 = (x + 4x + 3) = [(x + ) 4 + 3] = [(x + ) 1] = = (x + ). Az egyenlet tehát felírható a következő alakban is: (x + ) = 0. Ábrázoljuk az egyenlet bal oldalát a másodfokú függvény transzformációjaként: Az ábráról leolvasható a függvény x tengellyel vett két metszéspontja, s ezek az egyenlet megoldásai: x 1 = 3 és x = 1. 3
4 b) x 3x + = 0 Alakítsuk teljes négyzetté az egyenlet bal oldalát a következő módon: x 3x + = (x 3 ) = (x 3 ) 1 4 Az egyenlet tehát felírható a következő alakban is: (x 3 ) 1 4 = 0. Ábrázoljuk az egyenlet bal oldalát a másodfokú függvény transzformációjaként: Az ábráról leolvasható a függvény x tengellyel vett két metszéspontja, s ezek az egyenlet megoldásai: x 1 = 1 és x =. 4
5 3. Oldd meg a következő hiányos egyenleteket! (Alaphalmaz: R) a) x 11 = 0 b) 5x 0x = 0 Megoldás: a) x 11 = 0 A megoldás megkapható a megoldóképlet segítségével is, ekkor az egyenlet alapján a következő értékeket kapjuk: a = 1; b = 0; c = 11. Mivel az egyenlet hiányos (b = 0), ezért célszerű egy rövidebb megoldást alkalmazni. Rendezzük úgy az egyenletet, hogy csak x maradjon az egyik oldalon: x = 11 x 1 = 11 és x = 11. b) 5x 0 = 0 A megoldás megkapható a megoldóképlet segítségével is, ekkor az egyenlet alapján a következő értékeket kapjuk: a = 5; b = 0; c = 0. Mivel az egyenlet hiányos (c = 0), ezért célszerű egy rövidebb megoldást alkalmazni. Alakítsuk szorzattá az egyenlet bal oldalát kiemeléssel: 5x (x 4) = 0 Egy szorzat értéke akkor 0, ha valamelyik tényezője 0. 5x = 0 x 1 = 0 x 4 = 0 x = 4 5
6 4. Oldd meg a következő egyenleteket! (Alaphalmaz: R) a) 8x 8 = 1x b) 3 x 1 x = 5 c) (x + 1) (x ) = x + x 8 d) ( 8x + x ) + 6x 8 = (1 3x) + (1 + 5) (1 5) Megoldás: A megoldóképlet felírása előtt az egyenletet 0 - ra kell redukálnunk. a) 8x 8 = 1x x + 3x = 0 Az egyenlet alapján a következő értékeket kapjuk: a = ; b = 3; c =. x 1, = 3 ± 3 4 ( ) = 3 ± 5 4 = 3 ± 5 4 x 1 = = 4 = 1 és x = = b) 3 x 1 5 x = 10x 3x 30 = 0 Az egyenlet alapján a következő értékeket kapjuk: a = 10; b = 3; c = 10. x 1, = ( 3) ± ( 3) 4 10 ( 30) 10 = 3 ± = 3 ± 34,77 0 x 1 = ,77 0 1,89 és x = 3 34,77 0 1,59 6
7 c) (x + 1) (x ) = x + x 8 x 4x + x = x + x 8 x 5x + 6 = 0 Az egyenlet alapján a következő értékeket kapjuk: a = 1; b = 5; c = 6. x 1, = ( 5) ± ( 5) = 5 ± 1 = 5 ± 1 x 1 = = 6 = 3 és x = 5 1 = d) ( 8x + x ) + 6x 8 = (1 3x) + (1 + 5) (1 5) 4x + x + 6x 8 = 1 6x + 9x x 10x + 5 = 0 Az egyenlet alapján a következő értékeket kapjuk: a = 1; b = 10; c = 5. x 1, = ( 10) ± ( 10) = 10 ± 0 = 10 ± 0 Ezek alapján az egyenlet megoldása a következő: x = 10 = 5 5. Oldd meg a következő törtes egyenleteket! (Alaphalmaz: R) a) b) 8x 5 x + 5 x + 4 x 4 = 4 3x x + + x 4 x + 4 = 64 x 16 a) b) x x 4 + x x x + x = 0 x 8 = 4x x 10 x 6 x 16x
8 Megoldás: Törtes egyenletnél először feltételt kell írnunk: a nevező értéke nem lehet 0, mert a 0 val való osztást nem értelmezzük. Ezt követően az egyenlet megoldásához közös nevezőre kell hoznunk a törteket, melynek meghatározásához először a nevezőket szorzattá kell alakítanunk. Ezután a közös nevezővel való beszorzással eltüntethetjük a törteket, s rendezés után megoldhatjuk az egyenletet. Végül a kapott megoldást ellenőriznünk kell, hogy megfelel - e a feltételnek. a) 8x 5 3x + 10 = 4 x + 5 3x + Feltétel: x x 5 3x + 0 x 3 Az egyenlet megoldása: (8x 5) (3x + ) (x + 5) (3x + ) = 4 (3x + 10) (x + 5) (x + 5) (3x + ) (8x 5) (3x + ) = 4 (x + 5) (3x + ) (3x + 10) (x + 5) 4x + 16x 15x 10 = 4x + 16x + 60x x 15x 0x 50 6x 45x = 0 x (6x 45) = 0 Egy szorzat értéke akkor 0, ha valamelyik tényezője 0. x 1 = 0 6x 45 = 0 x = 15 Mindkét eredmény megfelel a feltételnek. 8
9 b) x + 4 x 4 + x 4 x + 4 = 64 x 16 Feltétel: x 4 0 x 4 x x 4 x 16 0 (x 4) (x + 4) 0 x 4 és x 4 Az egyenlet megoldása: x x 4 = 64 x 4 x + 4 (x 4) (x + 4) (x + 4) (x + 4) (x 4) (x + 4) + (x 4) (x 4) (x 4) (x + 4) = 64 (x 4) (x + 4) (x + 4) (x + 4) + (x 4) (x 4) = 64 x + 8x x 8x + 16 = 64 x + 3 = 64 x = 16 x 1 = 4 és x = 4. Mivel egyik eredmény sem felel meg a feltételnek, így nincs megoldása az egyenletnek. c) x 4 = 0 x 4 x x x + x Feltétel: x 4 0 (x ) (x + ) 0 x és x x x 0 x ( x) 0 x 0 és x x + x 0 x (x + ) 0 x 0 és x 9
10 Az egyenlet megoldása: x 4 = 0 (x ) (x + ) x ( x) x (x + ) 1 + x 4 = 0 (x ) (x + ) x (x ) x (x + ) x x + (x 4) (x ) + = 0 x (x ) (x + ) x (x ) (x + ) x (x ) (x + ) x (x + ) + (x 4) (x ) = 0 x x + x x 4x + 8 = 0 x 5x + 6 = 0 Az egyenlet alapján a következő értékeket kapjuk: a = 1; b = 5; c = 6. x 1, = ( 5) ± ( 5) = 5 ± 1 = 5 ± 1 x 1 = = 6 = 3 és x = 5 1 = 4 =. Mivel az x nem felel meg a feltételnek, így az egyenlet megoldása: x = 3. d) x 8 = x 10 x 6 4x x 16x + 60 Feltétel: x 10 0 x 10 x 6 0 x 6 x 16x (x 6) (x 10) 0 x 6 és x 10 10
11 Az egyenlet megoldása: x 8 = x 10 x 6 4x (x 6) (x 10) x (x 6) (x 6) (x 10) 8 (x 10) (x 6) (x 10) = 4x (x 6) (x 10) x (x 6) 8 (x 10) = 4x x 6x 8x + 80 = 4x x 18x + 80 = 0 Az egyenlet alapján a következő értékeket kapjuk: a = 1; b = 18; c = 80. x 1, = ( 18) ± ( 18) = 18 ± 4 = 18 ± x 1 = 18 + = 0 = 10 és x = 18 = 16 = 8 Mivel az x 1 nem felel meg a feltételnek, így az egyenlet megoldása: x = 8. 11
Másodfokú egyenletek, egyenlőtlenségek
Másodfokú egyenletek, egyenlőtlenségek A másodfokú egyenlet grafikus megoldása Példa1. Ábrázold az f(x) = x + 1x + 16 függvényt, majd olvasd le az ábráról az alábbi egyenlet megoldását: x + 1x + 16 = 0.
Másodfokú egyenletek, egyenlőtlenségek
Másodfokú egyenletek, egyenlőtlenségek A másodfokú egyenlet grafikus megoldása Példa1. Ábrázold az f(x) = x 1x 16 függvényt, majd olvasd le az ábráról az alábbi egyenlet megoldását: x 1x 16 =. 1. lépés:
Egyenletek, egyenlőtlenségek VII.
Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. Oldd meg a következő egyenleteket! (Alaphalmaz: Z) a) (x 1) (x + 1) 7x + 1 = x (4 + x) + 2 b) 1 2 [5 (x 1) (1 + 2x) 2 4x] = (7 x) x c) 2 (x + 5) (x 2) 2 + (x + 1) 2 = 6 (2x + 1) d) 6 (x 8)
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. Oldd meg a következő egyenleteket! (Alaphalmaz: R) a) log 4 (x ) = 3 b) lg (x 4) = lg (8x 10) c) log x + log 3 = log 15 d) log x 0x log x 5 = e) log 3 (x 1) = log 3 4 f) log 5 x = 4 g) lg
Matematika 10 Másodfokú egyenletek. matematika és fizika szakos középiskolai tanár. > o < 2015. szeptember 27.
Matematika 10 Másodfokú egyenletek Juhász László matematika és fizika szakos középiskolai tanár > o < 2015. szeptember 27. copyright: c Juhász László Ennek a könyvnek a használatát szerzői jog védi. A
GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN
GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN ELTE TáTK Közgazdaságtudományi Tanszék Gazdaságmatematika középhaladó szinten MÁSODFOKÚ EGYENLETEK ÉS EGYENLŽTLENSÉGEK Készítette: Gábor Szakmai felel s: Gábor
20. tétel A kör és a parabola a koordinátasíkon, egyenessel való kölcsönös helyzetük. Másodfokú egyenlőtlenségek.
. tétel A kör és a parabola a koordinátasíkon, egyenessel való kölcsönös helyzetük. Másodfokú egyenlőtlenségek. Először megadom a síkbeli definíciójukat, mert ez alapján vezetjük le az egyenletüket. Alakzat
8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II.
8 Egyenletek, egyenlőtlenségek, egyenletrendszerek II Elméleti összefoglaló Az a + b+ c, a egyenletet másodfokú egyenletnek nevezzük A D b ac kifejezést az egyenlet diszkriminánsának nevezzük Ha D >, az
Nagy András. Feladatok a logaritmus témaköréhez 11. osztály 2010.
Nagy András Feladatok a logaritmus témaköréhez. osztály 00. Feladatok a logaritmus témaköréhez. osztály ) Írd fel a következő egyenlőségeket hatványalakban! a) log 9 = b) log 4 = - c) log 7 = d) lg 0 =
Egyenletek, egyenlőtlenségek X.
Egyenletek, egyenlőtlenségek X. DEFINÍCIÓ: (Logaritmus) Ha egy pozitív valós számot adott, 1 - től különböző pozitív alapú hatvány alakban írunk fel, akkor ennek a hatványnak a kitevőjét logaritmusnak
3. Egyenletek, egyenletrendszerek, egyenlőtlenségek
. Egyenletek, egyenletrendszerek, egyenlőtlenségek I. Nulladik ZH-ban láttuk: 1. Mennyi a 2x 2 8x 5 = 0 egyenlet gyökeinek a szorzata? (A) 10 (B) 2 (C) 2,5 (D) 4 (E) ezek egyike sem Megoldás I.: BME 2011.
Magasabbfokú egyenletek
86 Magasabbfokú egyenletek Magasabbfokú egyenletek 5 90 a) =! ; b) =! ; c) = 5, 9 a) Legyen = y Új egyenletünk: y - 5y+ = 0 Ennek gyökei: y=, y= Tehát egyenletünk gyökei:, =!,, =! b) Új egyenletünk: y
Feladatok a logaritmus témaköréhez 11. osztály, középszint
TÁMOP-4-08/-009-00 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a logaritmus témaköréhez osztály, középszint Vasvár, 00 május összeállította: Nagy
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások. 1. Az alábbi hozzárendelések közül melyik függvény? Válaszod indokold!
Megoldások 1. Az alábbi hozzárendelések közül melyik függvény? Válaszod indokold! A: Minden emberhez hozzárendeljük a munkahelyének nevét. B: Minden valós számhoz hozzárendeljük az ellentettjét. C: Minden
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. Oldd meg a következő exponenciális egyenletrendszereket! (Alaphalmaz: R) 5 3 x 2 2 y = 7 2 3 x + 2 y = 10 7 x+1 6 y+3 = 1 6 y+2 7 x = 5 (6 y + 1) c) 25 (5 x ) y = 1 3 y 27 x = 3 Megoldás:
Egyenletek, egyenletrendszerek, egyenlőtlenségek Megoldások
) Egyenletek, egyenletrendszerek, egyenlőtlenségek - megoldások Egyenletek, egyenletrendszerek, egyenlőtlenségek Megoldások a) Oldja meg a valós számok halmazán az alábbi egyenletet! = 6 (5 pont) b) Oldja
6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének
6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük
2. Algebrai átalakítások
I. Nulladik ZH-ban láttuk: 2. Algebrai átalakítások 1. Mi az alábbi kifejezés legegyszerűbb alakja a változó lehetséges értékei esetén? (A) x + 1 x 1 (x 1)(x 2 + 3x + 2) (1 x 2 )(x + 2) (B) 1 (C) 2 (D)
Abszolútértékes és gyökös kifejezések Megoldások
Abszolútértékes és gyökös kifejezések Megoldások ) Igazolja, hogy az alábbi négy egyenlet közül az a) és b) jelű egyenletnek pontosan egy megoldása van, a c) és d) jelű egyenletnek viszont nincs megoldása
Trigonometria Megoldások. 1) Oldja meg a következő egyenletet a valós számok halmazán! (12 pont) Megoldás:
Trigonometria Megoldások ) Oldja meg a következő egyenletet a valós számok halmazán! cos + cos = sin ( pont) sin cos + = + = ( ) cos cos cos (+ pont) cos + cos = 0 A másodfokú egyenlet megoldóképletével
ALGEBRAI KIFEJEZÉSEK, EGYENLETEK
ALGEBRAI KIFEJEZÉSEK, EGYENLETEK AZ ALGEBRAI KIFEJEZÉS FOGALMÁNAK KIALAKÍTÁSA (7-9. OSZTÁLY) Racionális algebrai kifejezés (betűs kifejezés): betűket és számokat a négy alapművelet véges sokszori alkalmazásával
a) A logaritmus értelmezése alapján: x 8 0 ( x 2 2 vagy x 2 2) (1 pont) Egy szorzat értéke pontosan akkor 0, ha valamelyik szorzótényező 0.
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval
I. Egyenlet fogalma, algebrai megoldása
11 modul: EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA 6 I Egyenlet fogalma, algebrai megoldása Módszertani megjegyzés: Az egyenletek alaphalmazát, értelmezési tartományát később vezetjük be, a törtes egyenletekkel
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval
Irracionális egyenletek, egyenlôtlenségek
9 Irracionális egyenletek, egyenlôtlenségek Irracionális egyenletek, egyenlôtlenségek Irracionális egyenletek /I a) Az egyenlet bal oldala a nemnegatív számok halmazán, a jobb oldal minden valós szám esetén
FÜGGVÉNYEK. A derékszögű koordináta-rendszer
FÜGGVÉNYEK A derékszögű koordináta-rendszer Az. jelzőszámot az x tengelyről, a 2. jelzőszámot az y tengelyről olvassuk le. Pl.: A(-3;-) B(3;2) O(0;0) II. síknegyed I. síknegyed A (0; 0) koordinátájú pontot
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
MATEMATIKA A 10. évfolyam
MATEMATIKA A 10. évfolyam 7. modul Négyzetgyökös egyenletek Készítette: Gidófalvi Zsuzsa Matematika A 10. évfolyam 7. modul: Négyzetgyökös egyenletek Tanári útmutató A modul célja Időkeret Ajánlott korosztály
Exponenciális és logaritmikus kifejezések Megoldások
Eponenciális és logaritmikus kifejezések - megoldások Eponenciális és logaritmikus kifejezések Megoldások ) Igazolja, hogy az alábbi négy egyenlet közül az a) és jelű egyenletnek pontosan egy megoldása
6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban?
6. Függvények I. Nulladik ZH-ban láttuk: 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? f x g x cos x h x x ( ) sin x (A) Az f és a h. (B) Mindhárom. (C) Csak az f.
Egyenletek, egyenlőtlenségek, egyenletrendszerek I.
Egyenletek, egyenlőtlenségek, egyenletrendszerek I. DEFINÍCIÓ: (Nyitott mondat) Az olyan állítást, amelyben az alany helyén változó szerepel, nyitott mondatnak nevezzük. A nyitott mondatba írt változót
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Paraméter
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Paraméter A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Szögfüggvények értékei megoldás
Szögfüggvények értékei megoldás 1. Számítsd ki az alábbi szögfüggvények értékeit! (a) cos 585 (f) cos ( 00 ) (k) sin ( 50 ) (p) sin (u) cos 11 (b) cos 00 (g) cos 90 (l) sin 510 (q) sin 8 (v) cos 9 (c)
MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 11B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA
MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 09. 01. kezdete: Oldal/összes: 1/5 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA
Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7
A = {1; 3; 5; 7; 9} A B = {3; 5; 7} A/B = {1; 9} Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 Azonos alapú hatványokat
Négyzetgyökös egyenletek. x A négyzetgyök értéke nem lehet negatív! R
Négyzetgyökös egyenletek. Oldja meg a következő egyenleteteket a valós számok halmazán! a.) 6 b.) 6 c.) 5 6 /( ) ÉT : 6 6 7 Bo. : 7 6 6 A négyzetgyök értéke nem lehet negatív! R 5 0 Vonjuk össze, amit
2) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont)
(11/1) Függvények 1 1) Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon! (pont) ) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont) 3) Ábrázolja + 1 - függvényt a [ ;] -on! (3pont)
Függvények Megoldások
Függvények Megoldások ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x x b) x x + c) x ( x + ) b) Az x függvény
1.1. Alapfogalmak. Vektor: R 2 beli elemek vektorok. Pl.: (2, 3) egy olyan vektor aminek a kezdo pontja a (0, 0) pont és a végpontja a
1. 1. hét 1.1. Alapfogalmak Vektor: R 2 beli elemek vektorok. Pl.: (2, 3) egy olyan vektor aminek a kezdo pontja a (0, 0) pont és a végpontja a (2, 3) Egyenes normál vektora egy pontban: egy olyan vektor
Komplex számok. Wettl Ferenc előadása alapján Wettl Ferenc előadása alapján Komplex számok / 18
Komplex számok Wettl Ferenc előadása alapján 2015.09.23. Wettl Ferenc előadása alapján Komplex számok 2015.09.23. 1 / 18 Tartalom 1 Számok A számfogalom bővülése 2 Algebrai alak Trigonometrikus alak Egységgyökök
Függvények december 6. Határozza meg a következő határértékeket! 1. Feladat: x 0 7x 15 x ) = lim. Megoldás: lim. 2. Feladat: lim.
Függvények 05. december 6. Határozza meg a következő határértékeket!. Feladat: ( + 7 5 ) ( + 7 5 ) ( + 0 ). Feladat: ( + 7 5 ) ( + 7 5 ) ( + 0) 3. Feladat: ( + 0 7 5 ) 4. Feladat: ( + 0 7 5 ) ( + 7 0 5
2017/2018. Matematika 9.K
2017/2018. Matematika 9.K Matematika javítóvizsga 2018. augusztus szóbeli 3 rövidebb (feladat, definíció, tétel) és 3 hosszabb feladat megoldása a 30 perces felkészülési idő alatt a megoldás ismertetése
First Prev Next Last Go Back Full Screen Close Quit. Matematika I
Matematika I (Analízis) Készítette: Horváth Gábor Kötelező irodalom: Ács László, Gáspár Csaba: Analízis 1 Oktatási segédanyagok és a tantárgyi követelményrendszer megtalálható a http://rs1.szif.hu/ horvathg/horvathg.html
egyenlőtlenségnek kell teljesülnie.
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval
Matematika javítóvizsga témakörök 10.B (kompetencia alapú )
Matematika javítóvizsga témakörök 10.B (kompetencia alapú ) 1. A négyzetgyök fogalma, a négyzetgyökvonás művelete 2. A négyzetgyökvonás azonosságai 3. Műveletek négyzetgyökökkel 4. A nevező gyöktelenítése
1. Ábrázolja az f(x)= x-4 függvényt a [ 2;10 ] intervallumon! (2 pont) 2. Írja fel az alábbi lineáris függvény grafikonjának egyenletét!
Függvények 1 1. Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon!. Írja fel az alábbi lineáris függvény grafikonjának egyenletét! 3. Ábrázolja + 1 - függvényt a [ ;] -on! 4. Az f függvényt a valós
Függvények július 13. f(x) = 1 x+x 2 f() = 1 ()+() 2 f(f(x)) = 1 (1 x+x 2 )+(1 x+x 2 ) 2 Rendezés után kapjuk, hogy:
Függvények 015. július 1. 1. Feladat: Határozza meg a következ összetett függvényeket! f(x) = cos x + x g(x) = x f(g(x)) =? g(f(x)) =? Megoldás: Összetett függvény el állításához a küls függvényben a független
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 016. ősz 1. Diszkrét matematika 1. középszint 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Hiányos másodfokú egyenletek. x 8x 0 4. A másodfokú egyenlet megoldóképlete
Hiányos másodfokú egyenletek Oldjuk meg a következő egyenleteket a valós számok halmazán! 1. = 0 /:. = 8 /:. 8 0 4. 4 4 0 A másodfokú egyenlet megoldóképlete A másodfokú egyenletek általános alakja: a
függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0(
FÜGGVÉNYEK 1. (008. okt., 14. fel, 5+7 pont) Fogalmazza meg, hogy az f : R R, f ( x) x 1 függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0( x) x függvény grafikonjából! Ábrázolja
: s s t 2 s t. m m m. e f e f. a a ab a b c. a c b ac. 5. Végezzük el a kijelölt m veleteket a változók lehetséges értékei mellett!
nomosztással a megoldást visszavezethetjük egy alacsonyabb fokú egyenlet megoldására Mivel a 4 6 8 6 egyenletben az együtthatók összege 6 8 6 ezért az egyenletnek gyöke az (mert esetén a kifejezés helyettesítési
Németh László Matematikaverseny április 16. A osztályosok feladatainak javítókulcsa
Németh László Matematikaverseny 007. április 16. A 9-10. osztályosok feladatainak javítókulcsa Feladatok csak 9. osztályosoknak 1. feladat a) Vegyük észre, hogy 7 + 5 felírható 1 + 3 + 6 + alakban, így
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. estis képzés 2017. ősz 1. Diszkrét matematika 1. estis képzés 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Függvények július 13. Határozza meg a következ határértékeket! 1. Feladat: x 0 7x 15 x ) = lim. x 7 x 15 x ) = (2 + 0) = lim.
Függvények 205. július 3. Határozza meg a következ határértékeket!. Feladat: 2. Feladat: 3. Feladat: 4. Feladat: (2 + 7 5 ) (2 + 7 5 ) (2 + 0 ) (2 + 7 5 ) (2 + 7 5 ) (2 + 0) (2 + 0 7 5 ) (2 + 0 7 5 ) (2
Egyenletek, egyenlőtlenségek grafikus megoldása TK. II. kötet 25. old. 3. feladat
Egyenletek, egyenlőtlenségek grafikus megoldása TK. II. kötet. old.. feladat a. lépés: Az egyenlet bal oldalának ábrázolása függvényként.. lépés: Az egyenlet bal oldalának ábrázolása függvényként.. lépés:
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata
Komplex számok. Wettl Ferenc Wettl Ferenc () Komplex számok / 9
Komplex számok Wettl Ferenc 2010-09-10 Wettl Ferenc () Komplex számok 2010-09-10 1 / 9 Tartalom 1 Számok Egy kis történelem A megoldóképlet egy speciális esetre Lehet számolni negatív szám gyökével Műveletek
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok II.
Sorozatok II. DEFINÍCIÓ: (Mértani sorozat) Az (a n ) valós számsorozatot mértani sorozatnak nevezzük, ha van olyan valós szám, amellyel a sorozat bármely tagját megszorozva a következő tagot kapjuk. Jelöléssel:
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Matematika 8. osztály
ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Hat évfolyamos Matematika 8. osztály I. rész: Algebra Készítette: Balázs Ádám Budapest, 2018 2. Tartalomjegyzék Tartalomjegyzék I. rész: Algebra................................
9. Tétel Els - és másodfokú egyenl tlenségek. Pozitív számok nevezetes közepei, ezek felhasználása széls érték-feladatok megoldásában
9. Tétel Els - és másodfokú egyenl tlenségek. Pozitív számok nevezetes közepei, ezek felhasználása széls érték-feladatok megoldásában Bevezet : A témakörben els - és másodfokú egyenl tlenségek megoldásának
y + a y + b y = r(x),
Definíció 1 A másodrendű, állandó együtthatós, lineáris differenciálegyenletek általános alakja y + a y + b y = r(x), ( ) ahol a és b valós számok, r(x) pedig adott függvény. Ha az r(x) függvény az azonosan
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
3 2 Fordítsuk le ezt a feladatot a matematika nyelvére:
10.A osztály: A másodfokú egyenlet Összeállította:Keszeg Attila 1 1 A másodfokú egyenlet és függvény 1.1 Bevezetés Ebben a tanévben már megismerkedtünk különböző egyenletmegoldási módszerekkel, ezt követően
9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás:
9. Trigonometria I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! x = cos 150 ; y = sin 5 ; z = tg ( 60 ) (A) z < x < y (B) x < y < z (C) y < x < z (D) z < y
HALMAZOK. A racionális számok halmazát olyan számok alkotják, amelyek felírhatók b. jele:. A racionális számok halmazának végtelen sok eleme van.
HALMAZOK Tanulási cél Halmazok megadása, halmazműveletek megismerése és alkalmazása, halmazok ábrázolása Venn diagramon. Motivációs példa Egy fogyasztó 80 000 pénzegység jövedelmet fordít két termék, x
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Eponenciális és Logaritmikus kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szoálhatnak fontos információval
2017/2018. Matematika 9.K
2017/2018. Matematika 9.K Egész éves dolgozat szükséges felszerelés: toll, ceruza, radír, vonalzó, körző, számológép 2 órás, 4 jegyet ér 2018. május 28. hétfő 1-2. óra A312 terem Aki hiányzik, a következő
7. Egyenletek, egyenlőtlenségek, egyenletrendszerek I.
7. Egyenletek, egyenlőtlenségek, egyenletrendszerek I. I. Elméleti összefoglaló Egyenlet Az egyenlet két oldalát függvénynek tekintjük: f(x) = g(x). Az f és g függvények értelmezési tartományának közös
karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja
Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja 1.Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus
Vektorok és koordinátageometria
Vektorok és koordinátageometria Vektorral kapcsolatos alapfogalmak http://zanza.tv/matematika/geometria/vektorok-bevezetese Definíció: Ha egy szakasz két végpontját megkülönböztetjük egymástól oly módon,
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Algebra
Algebra Műveletek tulajdonságai: kommutativitás (felcserélhetőség): a b = b a; a b = b a asszociativitás (átcsoportosíthatóság): (a b) c = a (b c); a (b c) = (a b) c disztributivitás (széttagolhatóság):
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Eponenciális és Logaritmikus kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos
Matematika 11. osztály
ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Humán tagozat Matematika 11. osztály I. rész: Hatvány, gyök, logaritmus Készítette: Balázs Ádám Budapest, 018 . Tartalomjegyzék Tartalomjegyzék
MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 10.B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA
MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 09. 01. kezdete: Oldal/összes: 1/7 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA
First Prev Next Last Go Back Full Screen Close Quit. Komplex számok (2)
2. előadás Komplex számok (2) 1. A a + bi (a, b) kölcsönösen egyértelmű megfeleltetés lehetővé teszi, hogy a komplex számokat a sík pontjaival, illetve helyvektoraival ábrázoljuk. A derékszögű koordináta
Összefoglaló feladatgy jtemény matematikából nemcsak felvételiz knek
Univerzita J. Selyeho - Selye János Egyetem Ekonomická fakulta - Gazdaságtudományi Kar Összefoglaló feladatgy jtemény matematikából nemcsak felvételiz knek Árki Zuzana Csiba Peter Fehér Zoltán Tóth János
Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai 1.
Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai.). Feladat. Határozzuk meg az alábbi integrálokat: a) x x + dx d) xe x dx b) c)
10. Koordinátageometria
I. Nulladik ZH-ban láttuk: 0. Koordinátageometria. Melyek azok a P x; y pontok, amelyek koordinátái kielégítik az Ábrázolja a megoldáshalmazt a koordináta-síkon! x y x 0 egyenlőtlenséget? ELTE 00. szeptember
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Abszolútértékes és gyökös kifejezések
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval
pontos értékét! 4 pont
DOLGO[Z]ZATOK 10. kifejezést, és adjuk meg az értelmezé-. Írjuk fel gyökjel nélkül a si tartományát! 9x 1x1 3. Határozzuk meg azt az x valós számot, amelyre igaz, hogy x 1!. Határozzuk meg a következő
Törtes egyenlőtlenségek
Törtes egyenlőtlenségek Egy tört értéke akkor pozitív, ha a számláló és a nevező egyező előjelű. Egy tört értéke akkor negatív, ha a számlálója és a nevezője ellentétes (különböző) előjelű. 1. Oldja meg
Abszolútértékes egyenlôtlenségek
Abszolútértékes egyenlôtlenségek 575. a) $, $ ; b) < - vagy $, # - vagy > 4. 5 576. a) =, =- 6, 5 =, =-, 7 =, 4 = 5; b) nincs megoldás;! c), = - ; d) =-. Abszolútértékes egyenlôtlenségek 577. a) - # #,
I. A négyzetgyökvonás
Definíció: Négyzetgyök a ( a : a a 0 I. A négyzetgyökvonás a ) jelenti azt a nem negatív számot, amelynek a négyzete a. a 0 b : b b R A négyzetgyök-függvény értéke is csak nem negatív lehet. Ha a b-t abszolút
Trigonometria Megoldások. 1) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( )
Trigonometria Megoldások Trigonometria - megoldások ) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( ) akkor a háromszög egyenlő szárú vagy derékszögű!
Hódmezővásárhelyi Városi Matematikaverseny április 14. A osztályosok feladatainak javítókulcsa
Hódmezővásárhelyi Városi Matematikaverseny 2003. április 14. A 11-12. osztályosok feladatainak javítókulcsa 1. feladat Egy számtani sorozatot az első eleme és különbsége egyértelműen meghatározza, azt
2016/2017. Matematika 9.Kny
2016/2017. Matematika 9.Kny Gondolkodási módszerek 1. Számhalmazok: N, Z, Q, Q*, R a számhalmazok kapcsolata, halmazábra 2. Ponthalmazok: o 4. oldal K I. fejezet: 172-178., 180-185., 191. feladat távolsággal
Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit
Határozatlan integrál () First Prev Next Last Go Back Full Screen Close Quit 1. Az összetett függvények integrálására szolgáló egyik módszer a helyettesítéssel való integrálás. Az idevonatkozó tétel pontos
2016/2017. Matematika 9.Kny
2016/2017. Matematika 9.Kny Gondolkodási módszerek 1. Számhalmazok: N, Z, Q, Q*, R a számhalmazok kapcsolata, halmazábra 2. Ponthalmazok: o 5. oldal K I. fejezet: 172-178., 180-185., 191. feladat távolsággal
Megoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) 1. Számítsd ki a következő kifejezések pontos értékét!
Megoldások. Számítsd ki a következő kifejezések pontos értékét! 8 8 ( ) ( ) ( ) Használjuk a gyökvonás azonosságait. 0 8 8 8 8 8 8 ( ) ( ) ( ) 0 8 . Határozd meg a következő kifejezések értelmezési tartományát!
P ÓTVIZSGA F ELKÉSZÍTŐ FÜZETEK UNIÓS RENDSZERŰ PÓTVIZSGÁHOZ. 9. osztályosoknak SZAKKÖZÉP
J UHÁSZ I STVÁN P ÓTVIZSGA F ELKÉSZÍTŐ FÜZETEK UNIÓS RENDSZERŰ PÓTVIZSGÁHOZ T é m a k ö r ö k é s p r ó b a f e l a d a t s o r 9. osztályosoknak SZAKKÖZÉP 1. oldal 9. OSZTÁLYOS PÓTVIZSGA TÉMAKÖRÖK: I.
Hatványozás. A hatványozás azonosságai
Hatványozás Definíció: a 0 = 1, ahol a R, azaz bármely szám nulladik hatványa mindig 1. a 1 = a, ahol a R, azaz bármely szám első hatványa önmaga a n = a a a, ahol a R, n N + n darab 3 4 = 3 3 3 3 = 84
Módszertani megjegyzés: A kikötés az osztás műveletéhez kötődik. A jobb megértés miatt célszerű egy-két példát mu-
. modul: ELSŐFOKÚ TÖRTES EGYENLETEK A következő órákon olyan egyenletekkel foglalkozunk, amelyek nevezőjében ismeretlen található. Ha a tört nevezőjében ismeretlen van, akkor kikötést kell tennünk: az
Tétel: A háromszög belső szögeinek összege: 180
Tétel: A háromszög belső szögeinek összege: 180 Bizonyítás: legyenek az ABC háromszög belső szögei α, β, γ. Húzzunk a C csúcson át párhuzamost AB-vel. A C csúcsnál keletkezett egyenesszöget a háromszög
Matematika A2 vizsga mgeoldása június 4.
Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont
Másodfokú egyenletek. 2. Ábrázoljuk és jellemezzük a következő,a valós számok halmazán értelmezett függvényeket!
Másodfokú egyenletek 1. Alakítsuk teljes négyzetté a következő kifejezéseket! a.) - 4 + 4 b.) - 6 + 8 c.) + 8 - d.) - 4 + 9 e.) - + 8 - f.) - - 4 + 3 g.) + 8-5 h.) - 4 + 3 i.) -3 + 6 + 1. Ábrázoljuk és
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. Oldd meg a következő egyenletet: cos (3x π 3 ) = 1 2! A koszinusz függvény az első és a negyedik negyedben pozitív. Táblázati érték (hegyesszög): 1 2 60 = π 3 Ezek alapján felírhatjuk az