Nagyordó, Omega, Theta, Kisordó
|
|
- Domokos Bakos
- 9 évvel ezelőtt
- Látták:
Átírás
1 A növekedés nagyságrendje, számosság Logika és számításelmélet, 6. gyakorlat 2009/10 II. félév Számításelmélet (6. gyakorlat) A növekedés nagyságrendje, számosság 2009/10 II. félév 1 / 1
2 Nagyordó, Omega, Theta, Kisordó Nagyordó, Omega, Theta Legyenek f, g : N R + függvények, ahol N a természetes számok, R + pedig a nemnegatív valós számok halmaza. Azt mondjuk, hogy f legfeljebb olyan gyorsan nő mint g (jelölése: f (n) = O(g(n)); ejtsd: f (n) = nagyordó g(n)) ha létezik olyan c > 0 szám és N N, hogy f (n) c g(n) minden n N számra. Az f (n) = Ω(g(n)) jelöli azt, hogy g(n) = O(f (n)) teljesül, és f (n) = Θ(g(n)) jelöli azt, hogy f (n) = O(g(n)) és f (n) = Ω(g(n)) is teljesül. Kiordó Legyenek f, g : N R + függvények. f (n) = o(g(n)) (ejtsd: f (n) = kisordó g(n)), ha f (n)/g(n) 0. Számításelmélet (6. gyakorlat) A növekedés nagyságrendje, számosság 2009/10 II. félév 2 / 1
3 Észrevételek: f (n)/g(n) 0 minden c > 0 esetén létezik N N, hogy minden n N esetén f (n) c g(n) f (n) = o(g(n)) f (n) = O(g(n)). f (n) = o(g(n)) f (n) Ω(g(n)). Ha f (n) = O(g(n)) és g(n) = O(h(n)) akkor f (n) = O(h(n)). Számításelmélet (6. gyakorlat) A növekedés nagyságrendje, számosság 2009/10 II. félév 3 / 1
4 Polinomok és exponenciális függvények 7. Feladat: Lássuk be a következő álĺıtásokat! 1. x > 1-re x 2 x. Teljes indukcióval könnyen bizonyítható, hogy n n. Létezik n N : n x n + 1. x n n 2 x. 2. Ha c > 1, akkor n 1, n > n 1 : c n 2. ε := c 1 > 0. c n = (1 + ε) n = ( ) n 0 1 n ε 0 + ( n 1) 1 n 1 ε = 1 + nε + δ, ahol δ Ha c > 1 és k N akkor n k = O(c n ). Legyen n 1 az előző küszöb. n > n 1 k esetén n k = n1 kkk ( n n 1 k )k n1 kkk 2 n n 1 k k n1 kkk c n n n 1 1 = n1 kkk c n. 4. Legyen p(n) egy pozitív főegyütthatójú k-adfokú polinom. Ekkor p(n) = O(n k ). p(n) = a k n k + + a 1 n + a 0. a k > 0. p(n) (a k + 1)n k, ha n N, valamely N N-re. Ugyanis (a k + 1)n k p(n) = n k 1 (1 a k 1 n a 0 1 ) +. n k Számításelmélet (6. gyakorlat) A növekedés nagyságrendje, számosság 2009/10 II. félév 4 / 1
5 5. Minden p(n) polinomra és c > 1 konstansra p(n) = O(c n ). p(n) = O(n k ), ahol k p(n) foka. n k = O(c n ), tehát p(n) = O(c n ). 6. Minden p(n) polinomra és c > 1 konstansra p(n) Ω(c n ). Indirekt, tfh. létezik d 1 > 0 és N 1 N, hogy n N 1 -re c n d 1 p(n). Legyen c 1 olyan, hogy 1 < c 1 < c. Ekkor létezik d 2 > 0 és N 2 N, hogy n N 2 -re p(n) d 2 c n 1. Tehát n max N 1, N 2 -re c n d 1 p(n) d 1 d 2 c n 1. Azaz ( c c 1 ) n d 1 d 2, ami ellentmondás. Tehát azt kaptuk, hogy: Minden polinomiális függvény lassabban nő, mint bármely exponenciális függvény. Általánosabban: Legyen f : N R + egy + -hez tartó függvény, p egy pozitív főegyütthatójú polinom és c > 1, ekkor p(f (n)) lassabban nő, mint c f (n). Számításelmélet (6. gyakorlat) A növekedés nagyságrendje, számosság 2009/10 II. félév 5 / 1
6 Feladat 7. Feladat: Melyek igazak az alábbi álĺıtások közül? 1 5n 7 = O(n 7 ), Igen. 2 n log 100 n = o(n 2 ), Igen. 3 n 2 = O(n log 100 n), Nem. 4 1 = o(100), Nem. 5 1 = o(n), Igen. 6 4 n = O(2 n ), Nem. 7 2 n = o(4 n ), Igen. 8 4 n = 2 Θ(n), Igen. 9 (n + 1) 3 = n 3 + n 2 + O(n). Nem. Számításelmélet (6. gyakorlat) A növekedés nagyságrendje, számosság 2009/10 II. félév 6 / 1
7 Feladat 7. Feladat: Melyik igaz? f (n) = O(g(n)), f (n) = Ω(g(n)), f (n) = Θ(g(n)) minden függvénypárra döntsük el. (A logaritmus 2-es alapú.) n!, log n!, n 3, 100 n, log n, n log n, n log n. Megoldás: Teljes indukcióval n 6-ra könnyen látható, hogy (felhasználva, hogy (1 + 1/n) n e): ( n 3 )n < n! < ( n 2 )n. log n! = Θ(n log n), n log n = O(n 3 ), n log n Ω(n 3 ), n 3 = O(2 100 log n ), n 3 Ω(2 100 log n ), log n = O(n log n ), log n Ω(n log n ), n log n = O(100 n ), n log n Ω(100 n ), 100 n = O(n!), 100 n Ω(n!). Számításelmélet (6. gyakorlat) A növekedés nagyságrendje, számosság 2009/10 II. félév 7 / 1
8 Feladat 7. Feladat: Mit mondhatunk arról az f függvényről, melyre f (1) = 1, f (2) = 10, és f (3) = 100? 1 f (n) = O(10 n ), 2 f (n) = 10 O(n), 3 Egyik fenti álĺıtás sem igaz minden esetben. Megoldás: A harmadik a helyes, nem mondhatunk semmit egy függvény viselkedéséről nagy n-ekre a kezdőértékek alapján. 7. Feladat: Létezik-e olyan p(n) polinom, melyre az alábbi függvények O(p(n)) nagyságrendűek? 1 n!, 2 3 ( n 100), ( n n/100). Megoldás: 1. Nem, n! ( n 3 )n. 2. Igen, ( ) n 100 n !. 3. Nem, ( ) n n/100 = n n/100. n/100 n 1 n/ n/100+1 Számításelmélet (6. gyakorlat) A növekedés nagyságrendje, számosság 2009/10 II. félév 8 / 1
9 Számosság Számításelmélet (6. gyakorlat) A növekedés nagyságrendje, számosság 2009/10 II. félév 9 / 1
10 Számosság Egy A halmazhoz hozzárendeljük az ő ( A -al jelölt) számosságát. A számosság fogalmával az a célunk, hogy mondhassuk egy halmazról, hogy több, kevesebb vagy ugyananny eleme van mint egy másik halmaznek. Ez különösen akkor probléma, ha a halmazoknak végtelen sok elemük van. Számosság A és B halmazoknak megegyezik a számossága, ha létezik bijekció köztük. Jelölése: A = B. A számossága legalább annyi, mint B számossága, ha van B-ből injekció A-ba. Jelölése: A B. A számossága határozottan nagyobb, mint B számossága, ha van B-ből injekció A-ba, de bijeció nincs. Jelölése: A > B. Cantor-Bernstein tétel Ha A-ból B-be van injekció és B-ből A-ba is van, akkor A és B között bijekció is van. Számításelmélet (6. gyakorlat) A növekedés nagyságrendje, számosság 2009/10 II. félév 10 / 1
11 Számosság Feladatok 7. Feladat: Melyik nagyobb? N vagy Z? Megoldás: Megegyezik a számosságuk Feladat: Melyik nagyobb? N vagy N N? Megoldás: Megegyezik a számosságuk. 6 Számításelmélet (6. gyakorlat) A növekedés nagyságrendje, számosság 2009/10 II. félév 11 / 1
12 7. Feladat: Melyik nagyobb? N vagy Q? Megoldás: Megegyezik a számosságuk. N Q, ezért N Q. Q + := { p q p N+, q N +, a tört nem egyszerűsíthető}. Q := { p q p N+, q N +, a tört nem egyszerűsíthető}. Q + = Q. p q Q+ (p, q) N N injektív, tehát Q + N N = N. Legyen Q + = {a 1, a 2, a 3..., }, Q = {b 1, b 2, b 3..., }, ekkor Q = {0, a 1, b 1, a 2, b 2, a 3, b 3,...} Megszámlálhatóan végtelen számosság N számosságát megszámlálhatóan végtelennek nevezzük. Számításelmélet (6. gyakorlat) A növekedés nagyságrendje, számosság 2009/10 II. félév 12 / 1
13 Számosság Feladatok 7. Feladat: Melyik több? 1 R 2 [0, 1] 3 az egységsugarú körvonal pontjainak száma 4 [0, 1] [0, 1]. Megoldás: tg(π(x 1 2 )) (0,1) : (0, 1) R bijekció (0, 1) és R között. (sin ϕ, cos ϕ) ϕ 2π. bijekció az egységsugarú körvonal pontjai és [0, 1) között. Legyen (a n ) n N + { egy olyan sorozat, melyre a 1 = 0 és lim a i (0, 1), pl. a i = a i+1 ha x = a i (i N + ). f (x) = 2 i x ha x {a i i N + egy bijekció [0, 1) és } (0, 1) között. Hasonlóan megadható egy bijekció [0, 1] és [0, 1) között. Számításelmélet (6. gyakorlat) A növekedés nagyságrendje, számosság 2009/10 II. félév 13 / 1
14 Számosság Feladatok 7. Feladat: Mennyi van belőle? 1 véges hosszú bináris szavak 2 megszámlálhatóan végtelen hosszúságú bináris szavak 3 véges, bináris szavakból álló nyelvek Megoldás: A véges hosszú bináris szavakat felsoroló algoritmus adható: ε,0,1,00,01,10,11,000,001,010,011,100,101,110,111,0000,... Tehát számossága megszámlálhatóan végtelen. Természetes bijekció van 2 és 3 között: Soroljuk fel a bináris szavakat. Egy nyelvhez rendeljük azt a megszámlálhatóan végtelen hosszúságú bináris szót, melynek 1 az i. bitje, ha benne van az i. szó, 0 ha nem. 2 és 3 számosszága nagyobb, mint megszámlálható. (És megegyezik R -el.) Continuum számosság R számosságát continuumnak nevezzük. Számításelmélet (6. gyakorlat) A növekedés nagyságrendje, számosság 2009/10 II. félév 14 / 1
15 Cantor-féle átlós módszer Jelölje H a megszámlálhatóan végtelen hosszúságú bináris szavak halmazát. Álĺıtás: H > N H N : H 0 := {(1, 0, 0, 0,...), (0, 1, 0, 0,...), (0, 0, 1, 0,...),...} H, és H 0 = N. Indirekt tegyük fel, hogy H = N. Ez azt jelenti, hogy bijekcióba lehet álĺıtani H elemeit N elemeivel, azaz H = {u i i N} = {u 1, u 2,...} a H elemeinek egy felsorolása (a természetes számokkal való megindexelése). Legyen u i = (u i,1, u i,2,..., u i,j,...), ahol minden i, j N-re u i,j {0, 1}. Tekintsük az u = {u 1,1, u 2,2,..., u i,i,...) megszámlálhatóan végtelen hosszúságú bináris szót, ahol b 0, ha b = 1 és 1, ha b = 0. Mivel, minden megszámlálhatóan végtelen hosszúságú bináris szó fel van sorolva, ezért létezik olyan k N, melyre u = u k. Ekkor u k.bitje u k,k (így jelöltük u k k. bitjét), másrészt u k,k (így definiáltuk u-t). De ez nem lehetséges, tehát az a feltevésünk, hogy H = N hamis. Számításelmélet (6. gyakorlat) A növekedés nagyságrendje, számosság 2009/10 II. félév 15 / 1
1. Alapfogalmak Algoritmus Számítási probléma Specifikáció Algoritmusok futási ideje
1. Alapfogalmak 1.1. Algoritmus Az algoritmus olyan elemi műveletekből kompozíciós szabályok szerint felépített összetett művelet, amelyet megadott feltételt teljesítő bemeneti adatra végrehajtva, a megkívánt
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I. 4 IV. FÜGGVÉNYEk 1. LEkÉPEZÉSEk, függvények Definíció Legyen és két halmaz. Egy függvény -ből -ba egy olyan szabály, amely minden elemhez pontosan egy elemet rendel hozzá. Az
Függvények növekedési korlátainak jellemzése
17 Függvények növekedési korlátainak jellemzése A jellemzés jól bevált eszközei az Ω, O, Θ, o és ω jelölések. Mivel az igények általában nemnegatívak, ezért az alábbi meghatározásokban mindenütt feltesszük,
A félév során előkerülő témakörök
A félév során előkerülő témakörök rekurzív algoritmusok rendező algoritmusok alapvető adattípusok, adatszerkezetek, és kapcsolódó algoritmusok dinamikus programozás mohó algoritmusok gráf algoritmusok
Nagyságrendek. Kiegészítő anyag az Algoritmuselmélet tárgyhoz. Friedl Katalin BME SZIT február 1.
Nagyságrendek Kiegészítő anyag az Algoritmuselmélet tárgyhoz (a Rónyai Ivanyos Szabó: Algoritmusok könyv mellé) Friedl Katalin BME SZIT friedl@cs.bme.hu 018. február 1. Az O, Ω, Θ jelölések Az algoritmusok
Specifikáció. B logikai formula, a bemeneti feltétel, K logikai formula, a kimeneti feltétel, A az algoritmus, amelyre az állítás vonatkozik.
Algoritmus Az algoritmus olyan elemi műveletekből kompozíciós szabályok szerint felépített összetett művelet, amelyet megadott feltételt teljesítő bemeneti adatra végrehajtva, a megkívánt kimeneti adatot
2. Logika gyakorlat Függvények és a teljes indukció
2. Logika gyakorlat Függvények és a teljes indukció Folláth János Debreceni Egyetem - Informatika Kar 2012/13. I. félév Áttekintés 1 Függvények Relációk Halmazok 2 Természetes számok Formulák Definíció
A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex
A sorozat fogalma Definíció. A természetes számok N halmazán értelmezett függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet a valós számok halmaza, valós számsorozatról beszélünk, mígha az
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 8. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Specifikáció. B logikai formula, a bemeneti feltétel, K logikai formula, a kimeneti feltétel, A az algoritmus, amelyre az állítás vonatkozik.
Algoritmus Az algoritmus olyan elemi műveletekből kompozíciós szabályok szerint felépített összetett művelet, amelyet megadott feltételt teljesítő bemeneti adatra végrehajtva, a megkívánt kimeneti adatot
HALMAZELMÉLET feladatsor 1.
HALMAZELMÉLET feladatsor 1. Egy (H,, ) algebrai struktúra háló, ha (H, ) és (H, ) kommutatív félcsoport, és teljesül az ún. elnyelési tulajdonság: A, B H: A (A B) = A, A (A B) = A. A (H,, ) háló korlátos,
Funkcionálanalízis. n=1. n=1. x n y n. n=1
Funkcionálanalízis 2011/12 tavaszi félév - 2. előadás 1.4. Lényeges alap-terek, példák Sorozat terek (Folytatás.) C: konvergens sorozatok tere. A tér pontjai sorozatok: x = (x n ). Ezen belül C 0 a nullsorozatok
DiMat II Végtelen halmazok
DiMat II Végtelen halmazok Czirbusz Sándor 2014. február 16. 1. fejezet A kiválasztási axióma. Ismétlés. 1. Deníció (Kiválasztási függvény) Legyen {X i, i I} nemüres halmazok egy indexelt családja. Egy
Logika és számításelmélet. 7. előadás
Logika és számításelmélet 7. előadás Elérhetőség, fóliasorok, ajánlott irodalom Előadó: Kolonits Gábor Elérhetőség: 2-708, kolomax@inf.elte.hu Előadások innen tölthetők le: www.cs.elte.hu/ tichlerk Ajánlott
Leképezések. Leképezések tulajdonságai. Számosságok.
Leképezések Leképezések tulajdonságai. Számosságok. 1. Leképezések tulajdonságai A továbbiakban legyen A és B két tetszőleges halmaz. Idézzünk fel néhány definíciót. 1. Definíció (Emlékeztető). Relációknak
Algoritmusok Tervezése. 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás
Algoritmusok Tervezése 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás Mi az algoritmus? Lépések sorozata egy feladat elvégzéséhez (legáltalánosabban) Informálisan algoritmusnak nevezünk bármilyen jól definiált
First Prev Next Last Go Back Full Screen Close Quit
Valós függvények (2) (Határérték) 1. A a R szám δ > 0 sugarú környezete az (a δ, a + δ) nyílt intervallum. Ezután a valós számokat, a számegyenesen való ábrázolhatóságuk miatt, pontoknak is fogjuk hívni.
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 3. estis képzés 2016. ősz 1. Diszkrét matematika 3. estis képzés 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Deníciók és tételek a beugró vizsgára
Deníciók és tételek a beugró vizsgára (a szóbeli viszgázás jogáért) Utolsó módosítás: 2008. december 2. 2 Bevezetés Számítási problémának nevezünk egy olyan, a matematika nyelvén megfogalmazott kérdést,
Matematika alapjai; Feladatok
Matematika alapjai; Feladatok 1. Hét 1. Tekintsük a,, \ műveleteket. Melyek lesznek a.) kommutativok b.) asszociativak c.) disztributívak-e a, műveletek? Melyik melyikre? 2. Fejezzük ki a műveletet a \
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 7. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
minden x D esetén, akkor x 0 -at a függvény maximumhelyének mondjuk, f(x 0 )-at pedig az (abszolút) maximumértékének.
Függvények határértéke és folytonossága Egy f: D R R függvényt korlátosnak nevezünk, ha a függvényértékek halmaza korlátos. Ha f(x) f(x 0 ) teljesül minden x D esetén, akkor x 0 -at a függvény maximumhelyének
Bonyolultságelmélet. Monday 26 th September, 2016, 18:28
Bonyolultságelmélet Monday 26 th September, 2016, 18:28 A kurzus teljesítési követelményei 2 Gyakorlat Három kisdolgozat 6 6 pontért kb. a 4., 7. és 10. gyakorlaton Egy nagydolgozat 28 pontért utolsó héten
HHF0CX. k darab halmaz sorbarendezésének a lehetősége k! Így adódik az alábbi képlet:
Gábor Miklós HHF0CX 5.7-16. Vegyük úgy, hogy a feleségek akkor vannak a helyükön, ha a saját férjeikkel táncolnak. Ekkor már látszik, hogy azon esetek száma, amikor senki sem táncol a saját férjével, megegyezik
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Bonyolultságelmélet. Monday 26 th September, 2016, 18:27. Bonyolultságelmélet
Monday 26 th September, 2016, 18:27 A kurzus teljesítési követelményei Gyakorlat Három kisdolgozat 6 6 pontért kb. a 4., 7. és 10. gyakorlaton Egy nagydolgozat 28 pontért utolsó héten előadáson Pontszám:
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.
2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az
Analízis I. Vizsgatételsor
Analízis I. Vizsgatételsor Programtervező Informatikus szak 2008-2009. 2. félév Készítette: Szabó Zoltán SZZNACI.ELTE zotyo@bolyaimk.hu v.0.6 RC 004 Forrás: Oláh Gábor: ANALÍZIS I.-II. VIZSGATÉTELSOR 2006-2007-/2
Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1
Halmazok 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 2 A fejezet legfontosabb elemei Halmaz megadási módjai Halmazok közti műveletek (metszet,
Analízis I. beugró vizsgakérdések
Analízis I. beugró vizsgakérdések Programtervező Informatikus szak 2008-2009. 2. félév Készítette: Szabó Zoltán SZZNACI.ELTE zotyo@bolyaimk.hu v1.7 Forrás: Dr. Weisz Ferenc: Prog. Mat. 2006-2007 definíciók
f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva
6. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 6.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási
Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé.
HA 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) HA 2 Halmazok HA 3 Megjegyzések A halmaz, az elem és az eleme fogalmakat nem definiáljuk, hanem alapfogalmaknak
Diszkrét matematika 2.
Diszkrét matematika 2. 2018. november 23. 1. Diszkrét matematika 2. 9. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. november 23. Diszkrét matematika
Ordó, omega, theta, rekurzió :15 11:45. Megoldás. A nagyságrendi sorra tekintve nyilvánvalóan igaz pl., hogy: 1
Algoritmuselmélet 1. gyakorlat megoldások Gyakorlatvezető: Engedy Balázs Ordó, omega, theta, rekurzió 01.0.08. 10:15 11:45 Bemelegítés 1. Az f(n) = O(g(n)) jelölés egyenletnek tekinthető-e? Mi fejezi ki
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 3. estis képzés 2016. ősz 1. Diszkrét matematika 3. estis képzés 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Valószínűségi változók. Várható érték és szórás
Matematikai statisztika gyakorlat Valószínűségi változók. Várható érték és szórás Valószínűségi változók 2016. március 7-11. 1 / 13 Valószínűségi változók Legyen a (Ω, A, P) valószínűségi mező. Egy X :
Alapfogalmak, valós számok Sorozatok, határérték Függvények határértéke, folytonosság A differenciálszámítás Függvénydiszkusszió Otthoni munka
Pintér Miklós miklos.pinter@uni-corvinus.hu Ősz Alapfogalmak Halmazok Definíció Legyen A egy tetszőleges halmaz, ekkor x A (x / A) jelentése: x (nem) eleme A-nak. A B (A B) jelentése: A (valódi) részhalmaza
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 3. estis képzés 2016. ősz 1. Diszkrét matematika 3. estis képzés 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
definiálunk. Legyen egy konfiguráció, ahol és. A következő három esetet különböztetjük meg. 1. Ha, akkor 2. Ha, akkor, ahol, ha, és egyébként.
Számításelmélet Kiszámítási problémának nevezünk egy olyan, a matematika nyelvén megfogalmazott kérdést, amire számítógéppel szeretnénk megadni a választ. (A matematika nyelvén precízen megfogalmazott
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. ősz 1. Diszkrét matematika 2.C szakirány 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.
Algoritmuselmélet. Függvények nagyságrendje, elágazás és korlátozás, dinamikus programozás. Katona Gyula Y.
Algoritmuselmélet Függvények nagyságrendje, elágazás és korlátozás, dinamikus programozás Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem
Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás.
Prímszámok A (pozitív) prímszámok sorozata a következő: 2, 3, 5, 7, 11, 13, 17, 19,... 1. Tétel. Végtelen sok prímszám van. Első bizonyítás. (Euklidész) Tegyük fel, hogy állításunk nem igaz, tehát véges
Egyváltozós függvények 1.
Egyváltozós függvények 1. Filip Ferdinánd filip.ferdinand@bgk.uni-obuda.hu siva.banki.hu/jegyzetek 015 szeptember 1. Filip Ferdinánd 015 szeptember 1. Egyváltozós függvények 1. 1 / 5 Az el adás vázlata
Diszkrét matematika I. gyakorlat
Vizsgafeladatok megoldása 2012. december 5. Tartalom Teljes feladatsor #1 1 Teljes feladatsor #1 2 Teljes feladatsor #2 3 Teljes feladatsor #3 4 Teljes feladatsor #4 5 Válogatott feladatok 6 Végső bölcsesség
Gyakorló feladatok I.
Gyakorló feladatok I. (Függvények határértéke és folytonossága) Analízis 2. (A,B, C szakirány, keresztfélév) Programtervező informatikus szak 2013-2014. tanév tavaszi félév Összeállította: Szili László
Tartalomjegyzék. Tartalomjegyzék Valós változós valós értékű függvények... 2
Tartalomjegyzék Tartalomjegyzék... Valós változós valós értékű függvények... Hatványfüggvények:... Páratlan gyökfüggvények:... Páros gyökfüggvények... Törtkitevős függvények (gyökfüggvények hatványai)...
Logika és számításelmélet. 7. előadás
Logika és számításelmélet 7. előadás Elérhetőség, fóliasorok, ajánlott irodalom Előadó: Tichler Krisztián Elérhetőség: 2-708, ktichler@inf.elte.hu Előadások itt lesznek: www.cs.elte.hu/ tichlerk Elérhetőség,
26. MINIMÁLIS KÖLTSÉGŰ UTAK MINDEN CSÚCSPÁRRA
26. MINIMÁLIS KÖLTSÉGŰ UTAK MINDEN CSÚCSPÁRRA Az előző két fejezetben tárgyalt feladat általánosításaként a gráfban található összes csúcspárra szeretnénk meghatározni a legkisebb költségű utat. A probléma
2014. szeptember 24. és 26. Dr. Vincze Szilvia
2014. szeptember 24. és 26. Dr. Vincze Szilvia Mind a hétköznapi, mind a tudományos életben gyakran előfordul, hogy bizonyos halmazok elemei között kapcsolat figyelhető meg. A kapcsolat fogalmának matematikai
SHk rövidítéssel fogunk hivatkozni.
Nevezetes függvény-határértékek Az alábbiakban a k sorszámú függvény-határértékek)re az FHk rövidítéssel, a kompozíció határértékéről szóló első, illetve második tételre a KL1, illetve a KL rövidítéssel,
dr. Szalkai István Pannon Egyetem, Veszprém, Matematika Tanszék november 3.
Számosságok dr. Szalkai István Pannon Egyetem, Veszprém, Matematika Tanszék 2008. november 3. ### Szamoss1www.tex, 2008.09.28. Ebben a rövid jegyzetben els½osorban a végtelen halmazok méretét, elemeinek
Számsorok. 1. Definíció. Legyen adott valós számoknak egy (a n ) n=1 = (a 1, a 2,..., a n,...) végtelen sorozata. Az. a n
Számsorok 1. Definíció. Legyen adott valós számoknak egy (a n ) = (a 1, a 2,..., a n,...) végtelen sorozata. Az végtelen összeget végtelen számsornak (sornak) nevezzük. Az a n számot a sor n-edik tagjának
Számítógép hálózatok, osztott rendszerek 2009
Számítógép hálózatok, osztott rendszerek 2009 1: Bevezetés: Internet, rétegmodell Alapok: aszimptótika, gráfok 1 Az előadáshoz Előadás: Hétfő 10:00 12:00 óra Gyakorlat: Hétfő 14:00-16:00 óra Honlap: http://people.inf.elte.hu/lukovszki/courses/0910nwmsc
1: Bevezetés: Internet, rétegmodell Alapok: aszimptótika, gráfok. HálózatokII, 2007
Hálózatok II 2007 1: Bevezetés: Internet, rétegmodell Alapok: aszimptótika, gráfok 1 Az előadáshoz Előadás: Szerda 17:00 18:30 Gyakorlat: nincs Vizsga írásbeli Honlap: http://people.inf.elte.hu/lukovszki/courses/g/07nwii
Mérhetőség, σ-algebrák, Lebesgue Stieltjes-integrál, véletlen változók és eloszlásfüggvényeik
Mérhetőség, σ-algebrák, Lebesgue Stieltjes-integrál, véletlen változók és eloszlásfüggvényeik Az A halmazrendszer σ-algebra az Ω alaphalmazon, ha Ω A; A A A c A; A i A, i N, i N A i A. Az A halmazrendszer
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2016. tavasz 1. Diszkrét matematika 2. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül
A Borel Cantelli lemma és annak általánosítása. A valószínűségszámítás egyik fontos eredménye a Borel Cantelli lemma. Először informálisan ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az
f(x) a (x x 0 )-t használjuk.
5. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 5.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag
VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag 2018/19 1. félév Függvények határértéke 1. Bizonyítsuk be definíció alapján a következőket! (a) lim x 2 3x+1 5x+4 = 1 2 (b) lim x 4 x 16 x 2 4x = 2
Algoritmusok bonyolultsága
Algoritmusok bonyolultsága 9. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm 1 / 18 Közelítő algoritmusok ládapakolás (bin packing) Adott n tárgy (s i tömeggel) és végtelen sok 1 kapacitású láda
Differenciál és integrálszámítás diszkréten
Differenciál és integrálszámítás diszkréten Páles Zsolt Debreceni Egyetem, Matematikai Intézet MAFIÓK, Békéscsaba, 010. augusztus 4-6. Páles Zsolt (Debreceni Egyetem) Diff. és int.-számítás diszkréten
Kiegészítő részelőadás 1. Az algoritmusok hatékonyságának mérése
Kiegészítő részelőadás 1. Az algoritmusok hatékonyságának mérése Dr. Kallós Gábor 2014 2015 1 Az Ordó jelölés Azt mondjuk, hogy az f(n) függvény eleme az Ordó(g(n)) halmaznak, ha van olyan c konstans (c
Készítette: Fegyverneki Sándor
VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y
Logika es sz am ıt aselm elet I. r esz Logika Negyedik el oad as 1/26
1/26 Logika és számításelmélet I. rész Logika Negyedik előadás Tartalom 2/26 Az elsőrendű logika szemantikája Formulák és formulahalmazok szemantikus tulajdonságai Elsőrendű logikai nyelv interpretációja
Dr. Tóth László Hány osztója van egy adott számnak? 2008. április
Hány osztója van egy adott számnak? Hány osztója van egy adott számnak? Dr. Tóth László http://www.ttk.pte.hu/matek/ltoth előadásanyag, Pécsi Tudományegyetem, TTK 2008. április. Bevezetés Lehetséges válaszok:
Algoritmuselmélet. Függvények nagyságrendje, elágazás és korlátozás, dinamikus programozás. Katona Gyula Y.
Algoritmuselmélet Függvények nagyságrendje, elágazás és korlátozás, dinamikus programozás Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 4-6. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Diszkrét matematika gyakorlat 1. ZH október 10. α csoport
Diszkrét matematika gyakorlat 1. ZH 2016. október 10. α csoport 1. Feladat. (5 pont) Adja meg az α 1 β szorzatrelációt, amennyiben ahol A {1, 2, 3, 4}. α {(1, 2), (1, 3), (2, 1), (3, 1), (3, 4), (4, 4)}
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2015. tavasz 1. Diszkrét matematika 2.C szakirány 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu Komputeralgebra Tanszék 2015. tavasz Gráfelmélet Diszkrét
Matematikai logika és halmazelmélet
Matematikai logika és halmazelmélet Wettl Ferenc előadása alapján 2015-09-07 Wettl Ferenc előadása alapján Matematikai logika és halmazelmélet 2015-09-07 1 / 21 Tartalom 1 Matematikai kijelentések szerkezete
A digitális számítás elmélete
A digitális számítás elmélete 8. előadás ápr. 16. Turing gépek és nyelvtanok A nyelvosztályok áttekintése Turing gépek és a természetes számokon értelmezett függvények Áttekintés Dominó Bizonyítások: L
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Számításelmélet. Második előadás
Számításelmélet Második előadás Többszalagos Turing-gép Turing-gép k (konstans) számú szalaggal A szalagok mindegyike rendelkezik egy független író / olvasó fejjel A bemenet az első szalagra kerül, a többi
Dr. Schuster György február / 32
Algoritmusok és magvalósítások Dr. Schuster György OE-KVK-MAI schuster.gyorgy@kvk.uni-obuda.hu 2015. február 10. 2015. február 10. 1 / 32 Algoritmus Alapfogalmak Algoritmus Definíció Algoritmuson olyan
Diszkrét matematika 1. estis képzés
Diszkrét matematika 1. estis képzés 2019. tavasz 1. Diszkrét matematika 1. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
A Borda-szavazás Nash-implementálható értelmezési tartományai
A Borda-szavazás Nash-implementálható értelmezési tartományai Tasnádi Attila 2007. június 8. Alapfogalmak Jelölések: X az alternatívák véges nem üres halmaza (q = X ). Alapfogalmak Jelölések: X az alternatívák
Biomatematika 4. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János
Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 4. Függvények II. Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date: September
2. Reprezentáció-függvények, Erdős-Fuchs tétel
2. Reprezentáció-függvények, Erdős-Fuchs tétel A kör-probléma a következőképpen is megközelíthető: Jelölje S a négyzetszámok halmazát. Jelölje r S (n) azt az értéket, ahány féleképpen n felírható két pozitív
Analízis. 11 12. évfolyam. Szerkesztette: Surányi László. 2015. július 5.
Analízis 11 12. évfolyam Szerkesztette: Surányi László 2015. július 5. Technikai munkák (MatKönyv project, TEX programozás, PHP programozás, tördelés...) Dénes Balázs, Grósz Dániel, Hraskó András, Kalló
Online migrációs ütemezési modellek
Online migrációs ütemezési modellek Az online migrációs modellekben a régebben ütemezett munkák is átütemezhetőek valamilyen korlátozott mértékben az új munka ütemezése mellett. Ez csökkentheti a versenyképességi
2012. október 9 és 11. Dr. Vincze Szilvia
2012. október 9 és 11. Dr. Vincze Szilvia Egyváltozós valós függvények nevezetes osztályai I. Algebrai függvények Racionális egész függvények (polinomok) Racionális törtfüggvények Irracionális függvények
Fonyó Lajos: A végtelen leszállás módszerének alkalmazása. A végtelen leszállás módszerének alkalmazása a matematika különböző területein
A végtelen leszállás módszerének alkalmazása a matematika különböző területein A végtelen leszállás (infinite descent) egy indirekt bizonyítási módszer, ami azon alapul, hogy a természetes számok minden
Diszkrét matematika 2.
Diszkrét matematika 2. Mérai László előadása alapján Készítette: Nagy Krisztián 1. előadás Gráfok halmaza, gráf, ahol a csúcsok halmaza, az élek illesztkedés reláció: illesztkedik az élre, ha ( -él illesztkedik
Alapvető polinomalgoritmusok
Alapvető polinomalgoritmusok Maradékos osztás Euklideszi algoritmus Bővített euklideszi algoritmus Alkalmazás: Véges testek konstrukciója Irodalom: Iványi Antal: Informatikai algoritmusok II, 18. fejezet.
First Prev Next Last Go Back Full Screen Close Quit. (L Hospital szabály, Taylor-polinom,
Valós függvények (L Hospital szabály, Taylor-polinom, függvények közelítése) . Tegyük fel, hogy f és g differenciálható az (a, p) (p, b) halmazon, ahol a < b, g-nek és g -nek nincs gyöke ebben a halmazban.
Logika és számításelmélet. 11. előadás
Logika és számításelmélet 11. előadás NP-teljesség Emlékeztetőül: NP-teljes nyelv Egy L probléma NP-teljes (a polinom idejű visszavezetésre nézve), ha L NP L NP-nehéz, azaz minden L NP esetén L p L. Azaz
Lineáris algebra. (közgazdászoknak)
Lineáris algebra (közgazdászoknak) 10A103 FELADATOK A GYAKORLATRA (3.) 2018/2019. tavaszi félév Lineáris egyenletrendszerek 3.1. Feladat. Oldjuk meg az alábbi lineáris egyenletrendszereket Gauss-eliminációval
1. tétel Halmazok és halmazok számossága. Halmazműveletek és logikai műveletek kapcsolata.
1. tétel Halmazok és halmazok számossága. Halmazműveletek és logikai műveletek kapcsolata. HLMZOK halmaz axiomatikus fogalom, nincs definíciója. benne van valami a halmazban szintén axiomatikus fogalom,
Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit
Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit 1. Valós számsorozaton valós számok meghatározott sorrendű végtelen listáját értjük. A hangsúly az egymásután következés rendjén van.
A matematika nyelvér l bevezetés
A matematika nyelvér l bevezetés Wettl Ferenc 2012-09-06 Wettl Ferenc () A matematika nyelvér l bevezetés 2012-09-06 1 / 19 Tartalom 1 Matematika Matematikai kijelentések 2 Logikai m veletek Állítások
Diszkrét Irányítások tervezése. Heurisztika Dr. Bécsi Tamás
Diszkrét Irányítások tervezése Heurisztika Dr. Bécsi Tamás Algoritmusok futásideje Az algoritmus futásideje függ az N bemenő paramétertől. Azonos feladat különböző N értékek esetén más futásidőt igényelnek.
DISZKRÉT MATEMATIKA 2 KIDOLGOZOTT TÉTELSOR 1. RÉSZ
DISZKRÉT MATEMATIKA 2 KIDOLGOZOTT TÉTELSOR 1. RÉSZ B szakirány 2014 június Tartalom 1. Fák definíciója ekvivalens jellemzései... 3 2. Hamilton-kör Euler-vonal... 4 3. Feszítőfa és vágás... 6 4. Címkézett
Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját!
Taylor-polinomok 205. április.. Alapfeladatok. Feladat: Írjuk fel az fx) = e 2x függvény másodfokú Maclaurinpolinomját! Megoldás: A feladatot kétféle úton is megoldjuk. Az els megoldásban induljunk el
Matematika A1a Analízis
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Elemi függvények H607, EIC 2019-03-13 Wettl Ferenc
Obudai Egyetem RKK Kar. Feladatok a Matematika I tantárgyhoz
Obudai Egyetem RKK Kar Feladatok a Matematika I tantárgyhoz Gyakorló Feladatok a Matematika I Tantárgyhoz Els rész: Feladatok. Halmazelmélet, Számhalmazok, Függvények... Feladat. Legyen A = { : + 3 = 3},
Matematika A1a Analízis
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 A derivált alkalmazásai H607, EIC 2019-04-03 Wettl
Diszkrét matematika 1. estis képzés. Komputeralgebra Tanszék ősz
Diszkrét matematika 1. estis képzés 2015. ősz 1. Diszkrét matematika 1. estis képzés 6. előadás Mérai László diái alapján Komputeralgebra Tanszék 2015. ősz Elemi számelmélet Diszkrét matematika 1. estis