Dr. Schuster György február / 32

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Dr. Schuster György február / 32"

Átírás

1 Algoritmusok és magvalósítások Dr. Schuster György OE-KVK-MAI február február / 32

2 Algoritmus Alapfogalmak Algoritmus Definíció Algoritmuson olyan megengedett végesszámú lépésekből álló módszert, utasítás sorozatot, részletes útmutatást, receptet értünk, amely valamely felmerült probléma megoldására alkalmas február / 32

3 Algoritmus Alapfogalmak Algoritmus Tulajdonságai: 1 Az eljárás egyértelműen leírható véges szöveggel. 2 Az eljárás minden lépése ténylegesen kivitelezhető. 3 Az eljárás minden időpontban véges sok tárat használ. 4 Az eljárás véges sok lépésből áll. Következmény: 1 Az algoritmus ugyanarra a bemenetre mindig ugyanazt az eredményt adja. 2 Minden időpontban egyértelműen adott a következő lépés február / 32

4 Adatstruktúra Alapfogalmak Algoritmus Algoritmus adatstruktúra Az algoritmus az elemi műveletek sorozata. Az algoritmus adatok alapján dolgozik. Az adatstruktúra Az elérhető adatok egy szisztematikusan összeállított szerkezete február / 32

5 Jellemzők: Alapfogalmak Algoritmusok analízise Futási idő Elsődleges mérőszám. Az idő az egyik legfontosabb erőforrás. Természetes elvárás a lehető legkisebb időfelhasználás. Tárfelhasználás: Lényeges mérőszám. Hardver függő. Beleférünk-e a tárba, vagy nem. Manapság háttérbe szorul, mivel a memória egyre olcsóbb. Megjegyzés: A futási sebesség és a tárfelhasználás egymásnak ellentmondó követelmények február / 32

6 Futási sebesség Alapfogalmak Algoritmusok analízise Mitől függ? a bementek számátol, a műveletek számától, a kimenetek számától február / 32

7 Futási sebesség Alapfogalmak Algoritmusok analízise Tapasztalati mérések Hasznos, de korlátai vannak: limitált számú teszt bemenet használható, két algoritmus nehezen hasonlítható össze, hacsak nem azonos hardver és szoftver környezetben vizsgáljuk, az algoritmust implementálni és futtatni kell azért, hogy a mérést el lehessen végezni február / 32

8 Futási sebesség Alapfogalmak Algoritmusok analízise Feladatok a tapasztalati méréshez: a lehetséges bemenetek felmérése, az algoritmus hatékonyságának eldöntése, illetőleg összehasonlítása hardver- és szoftver környezettől függetlenül, az algoritmus magas szintű leírása implementáció nélkül február / 32

9 Futási sebesség Alapfogalmak Algoritmusok analízise Komponensek: az implementáció nyelve, a számítási modell, amelyben az algoritmus fut, a mérőszám, amelyben mérjük a futási sebességet, az a megközelítés, amely alapján a futási időt mgehatározzuk, a rekurzív algoritmusokat is február / 32

10 Pszeudó kód Példa: Alapfogalmak Pszeudo kód Algorithm arraymax(a, n): Input: An array A storing n 1 integers. Output: The maximum element in A. currentmax <- A[0] for i <- 1 to n 1 do if currentmax < A[i] then currentmax <- A[i] return currentmax február / 32

11 Pszeudó kód Alapfogalmak Pszeudo kód Mi is ez? A pszeudó kód egyfajta keveréke a természetes nyelv(ek)nek és egy magasszintű szabványos programozási nyelvnek február / 32

12 Pszeudó kód Alapfogalmak Pszeudo kód Elemei: Kifejezések: a logikai és matematikai kifejezésekre szabványos matematikai jelölések, Metódusok deklarációja: az algoritmus neve és paraméter lista, Döntési struktúrák: szabványos if, then és else kifejezések, While ciklus: while feltétel do művelet, Repeat ciklus: repeat művelet until feltétel, For ciklus: for változó - inkremens to feltétel do művelet, Tömb indexelés: A[i], Metódus hívás: metodus(argumentumok), Metódus visszatérés: return(változó) február / 32

13 Alapfogalmak Pszeudo kód RAM (Random Access Machine) Miért kell: A kisérleti analízis limitált pontosságú és hatékonyságú. Ezért két eljárást nehéz összehasonlítani - főleg futtatás nélkül. Műveleti primitívek: változónak értékadás, metódus hívás, aritmetikai művelet végrehajtása, két szám összehasonlítása, tömb indexelés, objektum referencia kezelése, metódusból visszatérés február / 32

14 Alapfogalmak Pszeudo kód RAM (Random Access Machine) Definíció: feltételezi, hogy a CPU a RAM modellben bármelyik műveleti primitívet véges lépésben végre tudja hajtani. A műveletek nem függnek a bemeneti értékektől február / 32

15 Alapfogalmak Pszeudo kód RAM (Random Access Machine) Számolás a műveleti primitívekkel A példa alapján: A[0]-t a CurrentMax értékkel inicializálja, azi-t ciklusszálálót 1-el inicializálja, mielőtt a ciklustörzsbe belép ellenőrzi, hogy i<n a ciklustörzset n-1-szer végrehajtja, ahol - inedxel, - összehasonlít CurrentMax-al, - A[i]-t esetleg cseréli CurrentMax-al (indexel és értéket ad), visszatér a CurrentMax értékkel. Legalább 2+1+n+ 4(n 1)+1 = 5n Legfeljebb 2+1+n+6(n 1)+1 = 7n február / 32

16 Alapfogalmak Pszeudo kód Átlagos eset vagy legrosszabb eset Átlagos eset Az átlagos futási sebesség egy adott nagyrészt véletlenszerű bemeneti halmazra vonatkozik és statisztikai vizsgálatokat, illetőleg valószínűség számítási módszereket igényel. A legrosszabb eset A legroszabb (leghosszabb) futási sebesség bemeneti halmaza gyakran egyértelműen megállapítható, így a kalkuláció pontosan elvégezhető február / 32

17 Alapfogalmak Pszeudo kód Rekurzív algoritmusok analízise A példa rekurzív megoldása: Algorithm recursivemax(a,n) Input: An array A storing n 1 itegers. Output: The maximum element in A if n=1 then return A[0] return max{recursivemax(a,n-1),a[n-1]} A futási idő: { 3 ha n = 1. T(n) = T(n 1)+7 egyébként február / 32

18 Alapfogalmak Miért? 1 a pontos meghatározás nagyon munkaigényes, 2 minden egyes magasszintű utasítás számos elemi utasítást tartalmaz, 3 az elemi utasítások száma nem mindig határozható meg (JIT compile), 4 sokszor elegendő egy közelítés is, főleg összehasonlítások esetén február / 32

19 Alapfogalmak Nagy O definíció Legyenek f(n) és g(n) függvények, amelyek nem negatív egészek halmazáról a valós számok halmazára képeznek le. f(n) akkor O(g(n)), ha létezik egy olyan c R, hogy c > 0 és egy n n 0, ahol n, n 0 Z +, hogy n n 0 esetén f(n) c g(n). Ekkor mondjuk, hogy f(n) O(g(n)), vagy f(n) nagy ordo g(n). Példa: 7n 2 az O(n) Bizonyítás: Keressük c > 0 és n 0 1, hogy 7n 2 c n, ha n n 0 -ra. Célszerű választás a c = 7 és az n 0 = február / 32

20 Alapfogalmak 20n n log n+5 az O(n 3 ) 20n n log n+5 35n 3 n 1 Megjegyzés: Minden a k n k + a k 1 n k 1 + +a 1 n+a 0 polinóm az O(n k ). 3 log n+ log log n az O(log n) 3 log n+ log log n 4 log n, ha n az O(1) , ha n 1 5n log n+2n az O(n log n) 5n log n+2n 7n log n, ha n február / 32

21 Alapfogalmak Szabályok: 1 ha d(n) az O(f(n)), akkor ad(n) szintén O(f(n)) minden a > 0-ra, 2 ha d(n) az O(f(n)) és e(n) az O(g(n)), akkor d(n)+e(n) az O(f(n)+g(n)), 3 ha d(n) az O(f(n)) és e(n) az O(g(n)), akkor d(n) e(n) az O(f(n) g(n)), 4 ha d(n) az O(f(n)), akkor f(n) az O(g(n)), 5 ha a k n k + a k 1 n k 1 + +a 1 n+a 0, akkor f(n) az O(n k ), 6 ha f(n) = n x, akkor O(a n ), bármilyen rögzített x > 0 és a > 1-re, 7 ha log n x az O(log n) bármilyen rögzített x > 0-ra, 8 ha log x n az O(n y ) bármilyen rögzített x > 0 és y > 1-re február / 32

22 Alapfogalmak Példa: 2n 3 + 4n 2 log n az O(n 3 ) log n az O(n), 8. szabály, 4n 2 log n az O(4n 3 ), 3. szabály, an 3 + 4n 2 log n az O(2n 3 + 4n 3 ), 2. szabály, 2n + 4n 3 az O(n 3 ), 5. és 1. szabály, 2n 3 + 4n 2 log n az O(n 3 ), 4. szabály február / 32

23 Alapfogalmak Terminológia: O(log n) logaritmikus, O(n) lineáris, O(n 2 ) kvadratikus, O(n k ) polinomiális (k 1), O(a n ) exponenciális (a > 1) február / 32

24 Alapfogalmak Ω jelölés Legyenek f(n) és g(n) függvények, amelyek nem negatív egészek halmazáról a valós számok halmazára képeznek le. f(n) akkor Ω(g(n)), ha g(n) O(f(n)), amely szerint létezik olyan c > 0 valós konstans és egy n n 0 (n 0 1) egész küszöbszám, amelyre igaz az, hogy f(n) cg(n) n n 0. Ez a definíció lehetővé teszi, hogy két algoritmus egy adott c konstans erejéig aszomptotikusan egyenlőek, illetve összehasonlíthatóak. Θ jelölés Legyenek f(n) és g(n) függvények, amelyek nem negatív egészek halmazáról a valós számok halmazára képeznek le. f(n) akkor Ω(g(n)), ha g(n) O(f(n)), amely szerint léteznek olyan c > 0 és c > 0 valós konstansok és egy n n 0 (n 0 1) egész küszöbszám, amelyre igaz az, hogy c g(n) f(n) c g(n) n n február / 32

25 Alapfogalmak Kis o definíció Legyenek f(n) és g(n) függvények, amelyek nem negatív egészek halmazáról a valós számok halmazára képeznek le. f(n) akkor o(g(n)), ha bármely olyan c R + és egy n n 0, ahol n, n 0 Z 0,+, hogy n n 0 esetén f(n) c g(n). Ekkor mondjuk, hogy f(n) az o(g(n)), vagy f(n) kis ordo g(n). ω definíció Akkor mondjuk, hogy f(n) az ω(g(n)), ha g(n) az o(f(n)), vagyis ha bármely olyan c R + és egy n n 0, ahol n, n 0 Z 0,+, hogy n n 0 esetén g(n) c f(n). Megjegyzés: o( ) analóg a kisebb egyenlő, az ω( ) analóg a nagyobb aszimptótikus közelítéssel február / 32

26 Alapfogalmak f(n) = 12n 2 + 6n az o(n 3 ) és ω(n) 1 fn(n) az o(n 3 ) legyen c > 0 ebből n 0 = (12+6)/c = 18/c 18 < cn n n 0, ebből f(n) = 12n 2 + 6n 12n 2 + 6n 2 = 18n 2 cn 3. Tehát f(n) az o(n 3 ). 2 f(n) az ω(n) legyen c > 0 ebből n 0 = c/12 egy n n 0 12n c, így f(n) = 12n 2 + 6n 12n 2 cn. Tehát f(n) az ω(n). Megjegyzés: Vagis f(n) akkor és csak akkor o(g(n)), ha f(n) lim n g(n) = február / 32

27 Összegzés Alapfogalmak Matematikai áttekintés Definíció: b f(i) = f(a)+f(a+1)+f(a+2)+ +f(b) i=a Gyakori!! Ha ciklussal dolgozunk, akkor a futásidő lineárisan nő. Ezért jó tudni, hogy: n i=0 ai = 1+a+a 2 + +a n = 1+an+1, ha a > 0, 1 a n 1 i=0 = n 1 = 2 n 1, n n(n+1) i=1 = n 1+n =, ha n 1, február / 32

28 Esettanulmány Alapfogalmak Matematikai áttekintés Egyszerű részösseg algoritmus s j,k = a j + a j+1 + +a k = Algorithm MaxsubSlow(A): Input: An n-element array A of numbers, indexed from 1 to n. Output: The maximum subarray sum of array A. m 0 // the maximum found so far for j 1 to n do for k j to n do s 0 // the next partial sum we are computing for i j to k do s s + A[i] if s > m then m s return m Ez O(n 3 ). k i=j a i február / 32

29 Esettanulmány Alapfogalmak Matematikai áttekintés Javított részösszeg algoritmus Input: An n-element array A of numbers, indexed from 1 to n. Output: The maximum subarray sum of array A. S 0 0 // the initial prefix sum for i 1 to n do S i S i1 + A[i] m 0 // the maximum found so far for j 1 to n do for k j to n do s = S k - S jx1 if s > m then m s return m Ez O(n 2 ) február / 32

30 Esettanulmány Alapfogalmak Matematikai áttekintés Lineáris idejű részösszeg algoritmis M t = max{0, M t 1 + A[t]} Algorithm MaxsubFastest(A): Input: An n-element array A of numbers, indexed from 1 to n. Output: The maximum subarray sum of array A. M0 0 // the initial prefix maximum for t 1 to n do M t max{0, M t1 + A[t]} m 0 // the maximum found so far for t 1 to n do m max{m, M t} return m Ez O(n) február / 32

31 Alapfogalmak Matematikai áttekintés február / 32

32 Alapfogalmak Matematikai áttekintés február / 32

1. Alapfogalmak Algoritmus Számítási probléma Specifikáció Algoritmusok futási ideje

1. Alapfogalmak Algoritmus Számítási probléma Specifikáció Algoritmusok futási ideje 1. Alapfogalmak 1.1. Algoritmus Az algoritmus olyan elemi műveletekből kompozíciós szabályok szerint felépített összetett művelet, amelyet megadott feltételt teljesítő bemeneti adatra végrehajtva, a megkívánt

Részletesebben

A félév során előkerülő témakörök

A félév során előkerülő témakörök A félév során előkerülő témakörök rekurzív algoritmusok rendező algoritmusok alapvető adattípusok, adatszerkezetek, és kapcsolódó algoritmusok dinamikus programozás mohó algoritmusok gráf algoritmusok

Részletesebben

Specifikáció. B logikai formula, a bemeneti feltétel, K logikai formula, a kimeneti feltétel, A az algoritmus, amelyre az állítás vonatkozik.

Specifikáció. B logikai formula, a bemeneti feltétel, K logikai formula, a kimeneti feltétel, A az algoritmus, amelyre az állítás vonatkozik. Algoritmus Az algoritmus olyan elemi műveletekből kompozíciós szabályok szerint felépített összetett művelet, amelyet megadott feltételt teljesítő bemeneti adatra végrehajtva, a megkívánt kimeneti adatot

Részletesebben

Specifikáció. B logikai formula, a bemeneti feltétel, K logikai formula, a kimeneti feltétel, A az algoritmus, amelyre az állítás vonatkozik.

Specifikáció. B logikai formula, a bemeneti feltétel, K logikai formula, a kimeneti feltétel, A az algoritmus, amelyre az állítás vonatkozik. Algoritmus Az algoritmus olyan elemi műveletekből kompozíciós szabályok szerint felépített összetett művelet, amelyet megadott feltételt teljesítő bemeneti adatra végrehajtva, a megkívánt kimeneti adatot

Részletesebben

Algoritmusok Tervezése. 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás

Algoritmusok Tervezése. 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás Algoritmusok Tervezése 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás Mi az algoritmus? Lépések sorozata egy feladat elvégzéséhez (legáltalánosabban) Informálisan algoritmusnak nevezünk bármilyen jól definiált

Részletesebben

Függvények növekedési korlátainak jellemzése

Függvények növekedési korlátainak jellemzése 17 Függvények növekedési korlátainak jellemzése A jellemzés jól bevált eszközei az Ω, O, Θ, o és ω jelölések. Mivel az igények általában nemnegatívak, ezért az alábbi meghatározásokban mindenütt feltesszük,

Részletesebben

Nagyságrendek. Kiegészítő anyag az Algoritmuselmélet tárgyhoz. Friedl Katalin BME SZIT február 1.

Nagyságrendek. Kiegészítő anyag az Algoritmuselmélet tárgyhoz. Friedl Katalin BME SZIT február 1. Nagyságrendek Kiegészítő anyag az Algoritmuselmélet tárgyhoz (a Rónyai Ivanyos Szabó: Algoritmusok könyv mellé) Friedl Katalin BME SZIT friedl@cs.bme.hu 018. február 1. Az O, Ω, Θ jelölések Az algoritmusok

Részletesebben

Teljesítmény Mérés. Tóth Zsolt. Miskolci Egyetem. Tóth Zsolt (Miskolci Egyetem) Teljesítmény Mérés / 20

Teljesítmény Mérés. Tóth Zsolt. Miskolci Egyetem. Tóth Zsolt (Miskolci Egyetem) Teljesítmény Mérés / 20 Teljesítmény Mérés Tóth Zsolt Miskolci Egyetem 2013 Tóth Zsolt (Miskolci Egyetem) Teljesítmény Mérés 2013 1 / 20 Tartalomjegyzék 1 Bevezetés 2 Visual Studio Kód metrikák Performance Explorer Tóth Zsolt

Részletesebben

Programozás I. 1. előadás: Algoritmusok alapjai. Sergyán Szabolcs

Programozás I. 1. előadás: Algoritmusok alapjai. Sergyán Szabolcs Programozás I. 1. előadás: Algoritmusok alapjai Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar Alkalmazott Informatikai Intézet 2015. szeptember 7. Sergyán

Részletesebben

Összetett programozási tételek Rendezések Keresések PT egymásra építése. 10. előadás. Programozás-elmélet. Programozás-elmélet 10.

Összetett programozási tételek Rendezések Keresések PT egymásra építése. 10. előadás. Programozás-elmélet. Programozás-elmélet 10. Összetett programozási tételek Sorozathoz sorozatot relő feladatokkal foglalkozunk. A bemenő sorozatot le kell másolni, s közben az elemekre vonatkozó átalakításokat lehet végezni rajta: Input : n N 0,

Részletesebben

14. Mediánok és rendezett minták

14. Mediánok és rendezett minták 14. Mediánok és rendezett minták Kiválasztási probléma Bemenet: Azonos típusú (különböző) elemek H = {a 1,...,a n } halmaza, amelyeken értelmezett egy lineáris rendezési reláció és egy i (1 i n) index.

Részletesebben

Programozási módszertan. Függvények rekurzív megadása "Oszd meg és uralkodj" elv, helyettesítő módszer, rekurziós fa módszer, mester módszer

Programozási módszertan. Függvények rekurzív megadása Oszd meg és uralkodj elv, helyettesítő módszer, rekurziós fa módszer, mester módszer PM-03 p. 1/13 Programozási módszertan Függvények rekurzív megadása "Oszd meg és uralkodj" elv, helyettesítő módszer, rekurziós fa módszer, mester módszer Werner Ágnes Villamosmérnöki és Információs Rendszerek

Részletesebben

Edényrendezés. Futási idő: Tegyük fel, hogy m = n, ekkor: legjobb eset Θ(n), legrosszabb eset Θ(n 2 ), átlagos eset Θ(n).

Edényrendezés. Futási idő: Tegyük fel, hogy m = n, ekkor: legjobb eset Θ(n), legrosszabb eset Θ(n 2 ), átlagos eset Θ(n). Edényrendezés Tegyük fel, hogy a rendezendő H = {a 1,...,a n } halmaz elemei a [0,1) intervallumba eső valós számok. Vegyünk m db vödröt, V [0],...,V [m 1] és osszuk szét a rendezendő halmaz elemeit a

Részletesebben

Programok értelmezése

Programok értelmezése Programok értelmezése Kód visszafejtés. Izsó Tamás 2016. szeptember 22. Izsó Tamás Programok értelmezése/ 1 Section 1 Programok értelmezése Izsó Tamás Programok értelmezése/ 2 programok szemantika értelmezése

Részletesebben

Erdélyi Magyar TudományEgyetem (EMTE

Erdélyi Magyar TudományEgyetem (EMTE TARTALOM: Általánosságok Algoritmusok ábrázolása: Matematikai-logikai nyelvezet Pszeudokód Függőleges logikai sémák Vízszintes logikai sémák Fastruktúrák Döntési táblák 1 Általánosságok 1. Algoritmizálunk

Részletesebben

Kiegészítő részelőadás 1. Az algoritmusok hatékonyságának mérése

Kiegészítő részelőadás 1. Az algoritmusok hatékonyságának mérése Kiegészítő részelőadás 1. Az algoritmusok hatékonyságának mérése Dr. Kallós Gábor 2014 2015 1 Az Ordó jelölés Azt mondjuk, hogy az f(n) függvény eleme az Ordó(g(n)) halmaznak, ha van olyan c konstans (c

Részletesebben

Rendezések. A rendezési probléma: Bemenet: Kimenet: n számot tartalmazó (a 1,a 2,,a n ) sorozat

Rendezések. A rendezési probléma: Bemenet: Kimenet: n számot tartalmazó (a 1,a 2,,a n ) sorozat 9. Előadás Rendezések A rendezési probléma: Bemenet: n számot tartalmazó (a 1,a 2,,a n ) sorozat Kimenet: a bemenő sorozat olyan (a 1, a 2,,a n ) permutációja, hogy a 1 a 2 a n 2 Rendezések Általánosabban:

Részletesebben

BASH script programozás II. Vezérlési szerkezetek

BASH script programozás II. Vezérlési szerkezetek 06 BASH script programozás II. Vezérlési szerkezetek Emlékeztető Jelölésbeli különbség van parancs végrehajtása és a parancs kimenetére való hivatkozás között PARANCS $(PARANCS) Jelölésbeli különbség van

Részletesebben

Komputeralgebra Rendszerek

Komputeralgebra Rendszerek Komputeralgebra Rendszerek Programozás Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék 2014. február 23. TARTALOMJEGYZÉK 1 of 28 TARTALOMJEGYZÉK I 1 TARTALOMJEGYZÉK 2 Értékadás MAPLE -ben SAGE -ben 3

Részletesebben

Programozás I. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar szeptember 10.

Programozás I. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar szeptember 10. Programozás I. 1. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2012. szeptember 10. Sergyán (OE NIK) Programozás I. 2012. szeptember 10. 1 /

Részletesebben

Bonyolultságelmélet. Monday 26 th September, 2016, 18:50

Bonyolultságelmélet. Monday 26 th September, 2016, 18:50 Bonyolultságelmélet Monday 26 th September, 2016, 18:50 A kiszámítás modelljei 2 De milyen architektúrán polinom? A kiszámításnak számos (matematikai) modellje létezik: Általános rekurzív függvények λ-kalkulus

Részletesebben

Gyakorló feladatok ZH-ra

Gyakorló feladatok ZH-ra Algoritmuselmélet Schlotter Ildi 2011. április 6. ildi@cs.bme.hu Gyakorló feladatok ZH-ra Nagyságrendek 1. Egy algoritmusról tudjuk, hogy a lépésszáma O(n 2 ). Lehetséges-e, hogy (a) minden páros n-re

Részletesebben

A programozás alapjai előadás. Amiről szólesz: A tárgy címe: A programozás alapjai

A programozás alapjai előadás. Amiről szólesz: A tárgy címe: A programozás alapjai A programozás alapjai 1 1. előadás Híradástechnikai Tanszék Amiről szólesz: A tárgy címe: A programozás alapjai A számítógép részegységei, alacsony- és magasszintű programnyelvek, az imperatív programozási

Részletesebben

Számjegyes vagy radix rendezés

Számjegyes vagy radix rendezés Számláló rendezés Amennyiben a rendezendő elemek által felvehető értékek halmazának számossága kicsi, akkor megadható lineáris időigényű algoritmus. A bemenet a rendezendő elemek egy n méretű A tömbben

Részletesebben

Mintavételes szabályozás mikrovezérlő segítségével

Mintavételes szabályozás mikrovezérlő segítségével Automatizálási Tanszék Mintavételes szabályozás mikrovezérlő segítségével Budai Tamás budai.tamas@sze.hu http://maxwell.sze.hu/~budait Tartalom Mikrovezérlőkről röviden Programozási alapismeretek ismétlés

Részletesebben

Algoritmusok bonyolultsága

Algoritmusok bonyolultsága Algoritmusok bonyolultsága 9. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm 1 / 18 Közelítő algoritmusok ládapakolás (bin packing) Adott n tárgy (s i tömeggel) és végtelen sok 1 kapacitású láda

Részletesebben

Programozás I. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar szeptember 10.

Programozás I. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar szeptember 10. Programozás I. 1. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2012. szeptember 10. Sergyán (OE NIK) Programozás I. 2012. szeptember 10. 1 /

Részletesebben

Algoritmusok helyességének bizonyítása. A Floyd-módszer

Algoritmusok helyességének bizonyítása. A Floyd-módszer Algoritmusok helyességének bizonyítása A Floyd-módszer Algoritmusok végrehajtása Egy A algoritmus esetében a változókat három változótípusról beszélhetünk, melyeket az X, Y és Z vektorokba csoportosítjuk

Részletesebben

Pénzügyi algoritmusok

Pénzügyi algoritmusok Pénzügyi algoritmusok A C++ programozás alapjai Tömbök (3. rész) Konstansok Kivételkezelés Tömbök 3. Többdimenziós tömbök Többdimenziós tömbök int a; Többdimenziós tömbök int a[5]; Többdimenziós tömbök

Részletesebben

S z á m í t ó g é p e s a l a p i s m e r e t e k

S z á m í t ó g é p e s a l a p i s m e r e t e k S z á m í t ó g é p e s a l a p i s m e r e t e k 7. előadás Ami eddig volt Számítógépek architektúrája Alapvető alkotóelemek Hardver elemek Szoftver Gépi kódtól az operációs rendszerig Unix alapok Ami

Részletesebben

Bonyolultságelmélet. Monday 26 th September, 2016, 18:28

Bonyolultságelmélet. Monday 26 th September, 2016, 18:28 Bonyolultságelmélet Monday 26 th September, 2016, 18:28 A kurzus teljesítési követelményei 2 Gyakorlat Három kisdolgozat 6 6 pontért kb. a 4., 7. és 10. gyakorlaton Egy nagydolgozat 28 pontért utolsó héten

Részletesebben

Algoritmuselmélet 1. előadás

Algoritmuselmélet 1. előadás Algoritmuselmélet 1. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Február 11. ALGORITMUSELMÉLET 1. ELŐADÁS 1 Források

Részletesebben

1. ábra. Számláló rendezés

1. ábra. Számláló rendezés 1:2 2:3 1:3 1,2,3 1:3 1,3,2 3,1,2 2,1,3 2:3 2,3,1 3,2,1 1. ábra. Alsó korlát rendezési algoritmusokra Minden olyan rendezési algoritmusnak a futását, amely elempárok egymással

Részletesebben

end function Az A vektorban elõforduló legnagyobb és legkisebb értékek indexeinek különbségét.. (1.5 pont) Ha üres a vektor, akkor 0-t..

end function Az A vektorban elõforduló legnagyobb és legkisebb értékek indexeinek különbségét.. (1.5 pont) Ha üres a vektor, akkor 0-t.. A Név: l 2014.04.09 Neptun kód: Gyakorlat vezető: HG BP MN l 1. Adott egy (12 nem nulla értékû elemmel rendelkezõ) 6x7 méretû ritka mátrix hiányos 4+2 soros reprezentációja. SOR: 1 1 2 2 2 3 3 4 4 5 6

Részletesebben

Bánsághi Anna 2014 Bánsághi Anna 1 of 68

Bánsághi Anna 2014 Bánsághi Anna 1 of 68 IMPERATÍV PROGRAMOZÁS Bánsághi Anna anna.bansaghi@mamikon.net 3. ELŐADÁS - PROGRAMOZÁSI TÉTELEK 2014 Bánsághi Anna 1 of 68 TEMATIKA I. ALAPFOGALMAK, TUDOMÁNYTÖRTÉNET II. IMPERATÍV PROGRAMOZÁS Imperatív

Részletesebben

Előfeltétel: legalább elégséges jegy Diszkrét matematika II. (GEMAK122B) tárgyból

Előfeltétel: legalább elégséges jegy Diszkrét matematika II. (GEMAK122B) tárgyból ÜTEMTERV Programozás-elmélet c. tárgyhoz (GEMAK233B, GEMAK233-B) BSc gazdaságinformatikus, programtervező informatikus alapszakok számára Óraszám: heti 2+0, (aláírás+kollokvium, 3 kredit) 2019/20-es tanév

Részletesebben

Algoritmizálás és adatmodellezés tanítása 1. előadás

Algoritmizálás és adatmodellezés tanítása 1. előadás Algoritmizálás és adatmodellezés tanítása 1. előadás Algoritmus-leíró eszközök Folyamatábra Irányított gráf, amely csomópontokból és őket összekötő élekből áll, egyetlen induló és befejező éle van, az

Részletesebben

9. előadás. Programozás-elmélet. Programozási tételek Elemi prog. Sorozatszámítás Eldöntés Kiválasztás Lin. keresés Megszámolás Maximum.

9. előadás. Programozás-elmélet. Programozási tételek Elemi prog. Sorozatszámítás Eldöntés Kiválasztás Lin. keresés Megszámolás Maximum. Programozási tételek Programozási feladatok megoldásakor a top-down (strukturált) programtervezés esetén három vezérlési szerkezetet használunk: - szekvencia - elágazás - ciklus Eddig megismertük az alábbi

Részletesebben

Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása

Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása 1 Információk 2 A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin Elérhetőség mesko.katalin@tfk.kefo.hu Fogadóóra: szerda 9:50-10:35 Számonkérés időpontok Április 25. 9 00 Május 17. 9 00 Június

Részletesebben

I. A DIGITÁLIS ÁRAMKÖRÖK ELMÉLETI ALAPJAI

I. A DIGITÁLIS ÁRAMKÖRÖK ELMÉLETI ALAPJAI I. A DIGITÁLIS ÁRAMKÖRÖK ELMÉLETI ALAPJAI 1 A digitális áramkörökre is érvényesek a villamosságtanból ismert Ohm törvény és a Kirchhoff törvények, de az elemzés és a tervezés rendszerint nem ezekre épül.

Részletesebben

Tartalom Keresés és rendezés. Vektoralgoritmusok. 1. fejezet. Keresés adatvektorban. A programozás alapjai I.

Tartalom Keresés és rendezés. Vektoralgoritmusok. 1. fejezet. Keresés adatvektorban. A programozás alapjai I. Keresés Rendezés Feladat Keresés Rendezés Feladat Tartalom Keresés és rendezés A programozás alapjai I. Hálózati Rendszerek és Szolgáltatások Tanszék Farkas Balázs, Fiala Péter, Vitéz András, Zsóka Zoltán

Részletesebben

Programozási nyelvek a közoktatásban alapfogalmak I. előadás

Programozási nyelvek a közoktatásban alapfogalmak I. előadás Programozási nyelvek a közoktatásban alapfogalmak I. előadás Szempontok Programozási nyelvek osztályozása Felhasználói kör (amatőr, professzionális) Emberközelség (gépi nyelvektől a természetes nyelvekig)

Részletesebben

Tartalomjegyzék. Köszönetnyilvánítás. 1. Az alapok 1

Tartalomjegyzék. Köszönetnyilvánítás. 1. Az alapok 1 Köszönetnyilvánítás Bevezetés Kinek szól a könyv? Elvárt előismeretek A könyv témája A könyv használata A megközelítés alapelvei Törekedjünk az egyszerűségre! Ne optimalizáljunk előre! Felhasználói interfészek

Részletesebben

Keresés és rendezés. A programozás alapjai I. Hálózati Rendszerek és Szolgáltatások Tanszék Farkas Balázs, Fiala Péter, Vitéz András, Zsóka Zoltán

Keresés és rendezés. A programozás alapjai I. Hálózati Rendszerek és Szolgáltatások Tanszék Farkas Balázs, Fiala Péter, Vitéz András, Zsóka Zoltán Keresés Rendezés Feladat Keresés és rendezés A programozás alapjai I. Hálózati Rendszerek és Szolgáltatások Tanszék Farkas Balázs, Fiala Péter, Vitéz András, Zsóka Zoltán 2016. november 7. Farkas B., Fiala

Részletesebben

Ordó, omega, theta, rekurzió :15 11:45. Megoldás. A nagyságrendi sorra tekintve nyilvánvalóan igaz pl., hogy: 1

Ordó, omega, theta, rekurzió :15 11:45. Megoldás. A nagyságrendi sorra tekintve nyilvánvalóan igaz pl., hogy: 1 Algoritmuselmélet 1. gyakorlat megoldások Gyakorlatvezető: Engedy Balázs Ordó, omega, theta, rekurzió 01.0.08. 10:15 11:45 Bemelegítés 1. Az f(n) = O(g(n)) jelölés egyenletnek tekinthető-e? Mi fejezi ki

Részletesebben

Kupac adatszerkezet. A[i] bal fia A[2i] A[i] jobb fia A[2i + 1]

Kupac adatszerkezet. A[i] bal fia A[2i] A[i] jobb fia A[2i + 1] Kupac adatszerkezet A bináris kupac egy majdnem teljes bináris fa, amely minden szintjén teljesen kitöltött kivéve a legalacsonyabb szintet, ahol balról jobbra haladva egy adott csúcsig vannak elemek.

Részletesebben

Smalltalk 2. Készítette: Szabó Éva

Smalltalk 2. Készítette: Szabó Éva Smalltalk 2. Készítette: Szabó Éva Blokkok Paraméter nélküli blokk [műveletek] [ x := 5. 'Hello' print. 2+3] Kiértékelés: [művelet] value az értéke az utolsó művelet értéke lesz, de mindet kiírja. x :=

Részletesebben

Programozás I. Matematikai lehetőségek Műveletek tömbökkel Egyszerű programozási tételek & gyakorlás V 1.0 OE-NIK,

Programozás I. Matematikai lehetőségek Műveletek tömbökkel Egyszerű programozási tételek & gyakorlás V 1.0 OE-NIK, Programozás I. Matematikai lehetőségek Műveletek tömbökkel Egyszerű programozási tételek & gyakorlás OE-NIK, 2013 1 Hallgatói Tájékoztató A jelen bemutatóban található adatok, tudnivalók és információk

Részletesebben

Algoritmuselmélet 12. előadás

Algoritmuselmélet 12. előadás Algoritmuselmélet 12. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Április 9. ALGORITMUSELMÉLET 12. ELŐADÁS 1 Turing-gépek

Részletesebben

Objektumorientált Programozás VI.

Objektumorientált Programozás VI. Objektumorientált Programozás Metódusok Paraméterek átadása Programozási tételek Feladatok VI. ÓE-NIK, 2011 1 Hallgatói Tájékoztató A jelen bemutatóban található adatok, tudnivalók és információk a számonkérendő

Részletesebben

2. Rekurzió. = 2P2(n,n) 2 < 2P2(n,n) 1

2. Rekurzió. = 2P2(n,n) 2 < 2P2(n,n) 1 2. Rekurzió Egy objektum definícióját rekurzívnak nevezünk, ha a definíció tartalmazza a definiálandó objektumot. Egy P eljárást (vagy függvényt) rekurzívnak nevezünk, ha P utasításrészében előfordul magának

Részletesebben

Adatszerkezetek 7a. Dr. IványiPéter

Adatszerkezetek 7a. Dr. IványiPéter Adatszerkezetek 7a. Dr. IványiPéter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér () Nincsennek hurkok!!! 2 Bináris fák Azokat a

Részletesebben

Diszkrét Irányítások tervezése. Heurisztika Dr. Bécsi Tamás

Diszkrét Irányítások tervezése. Heurisztika Dr. Bécsi Tamás Diszkrét Irányítások tervezése Heurisztika Dr. Bécsi Tamás Algoritmusok futásideje Az algoritmus futásideje függ az N bemenő paramétertől. Azonos feladat különböző N értékek esetén más futásidőt igényelnek.

Részletesebben

Algoritmusok, adatszerkezetek, objektumok

Algoritmusok, adatszerkezetek, objektumok Algoritmusok, adatszerkezetek, objektumok 1. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2011. szeptember 14. Sergyán (OE NIK) AAO 01 2011.

Részletesebben

Programozási nyelvek 6. előadás

Programozási nyelvek 6. előadás Programozási nyelvek 6. előadás Szempontok Programozási nyelvek osztályozása Felhasználói kör (amatőr, professzionális) Emberközelség (gépi nyelvektől a természetes nyelvekig) Számítási modell (hogyan

Részletesebben

... S n. A párhuzamos programszerkezet két vagy több folyamatot tartalmaz, melyek egymással közös változó segítségével kommunikálnak.

... S n. A párhuzamos programszerkezet két vagy több folyamatot tartalmaz, melyek egymással közös változó segítségével kommunikálnak. Párhuzamos programok Legyen S parbegin S 1... S n parend; program. A párhuzamos programszerkezet két vagy több folyamatot tartalmaz, melyek egymással közös változó segítségével kommunikálnak. Folyamat

Részletesebben

Nagyordó, Omega, Theta, Kisordó

Nagyordó, Omega, Theta, Kisordó A növekedés nagyságrendje, számosság Logika és számításelmélet, 6. gyakorlat 2009/10 II. félév Számításelmélet (6. gyakorlat) A növekedés nagyságrendje, számosság 2009/10 II. félév 1 / 1 Nagyordó, Omega,

Részletesebben

Bonyolultságelmélet. Monday 26 th September, 2016, 18:27. Bonyolultságelmélet

Bonyolultságelmélet. Monday 26 th September, 2016, 18:27. Bonyolultságelmélet Monday 26 th September, 2016, 18:27 A kurzus teljesítési követelményei Gyakorlat Három kisdolgozat 6 6 pontért kb. a 4., 7. és 10. gyakorlaton Egy nagydolgozat 28 pontért utolsó héten előadáson Pontszám:

Részletesebben

Bonyolultságelmélet. Thursday 1 st December, 2016, 22:21

Bonyolultságelmélet. Thursday 1 st December, 2016, 22:21 Bonyolultságelmélet Thursday 1 st December, 2016, 22:21 Tárbonyolultság A futásidő mellett a felhasznált tárterület a másik fontos erőforrás. Ismét igaz, hogy egy Ram-program esetében ha csak a használt

Részletesebben

7. előadás. Gyorsrendezés, rendezés lineáris lépésszámmal. Adatszerkezetek és algoritmusok előadás március 6.

7. előadás. Gyorsrendezés, rendezés lineáris lépésszámmal. Adatszerkezetek és algoritmusok előadás március 6. 7. előadás, rendezés lineáris lépésszámmal Adatszerkezetek és algoritmusok előadás 2018. március 6.,, és Debreceni Egyetem Informatikai Kar 7.1 Általános tudnivalók Ajánlott irodalom: Thomas H. Cormen,

Részletesebben

Maximum kiválasztás tömbben

Maximum kiválasztás tömbben ELEMI ALKALMAZÁSOK FEJLESZTÉSE I. Maximum kiválasztás tömbben Készítette: Szabóné Nacsa Rozália Gregorics Tibor tömb létrehozási módozatok maximum kiválasztás kódolása for ciklus adatellenőrzés do-while

Részletesebben

Mesterséges intelligencia 1 előadások

Mesterséges intelligencia 1 előadások VÁRTERÉSZ MAGDA Mesterséges intelligencia 1 előadások 2006/07-es tanév Tartalomjegyzék 1. A problémareprezentáció 4 1.1. Az állapottér-reprezentáció.................................................. 5

Részletesebben

A C programozási nyelv III. Pointerek és tömbök.

A C programozási nyelv III. Pointerek és tömbök. A C programozási nyelv III. Pointerek és tömbök. Miskolci Egyetem Általános Informatikai Tanszék A C programozási nyelv III. (Pointerek, tömbök) CBEV3 / 1 Mutató (pointer) fogalma A mutató olyan változó,

Részletesebben

Programozási módszertan. Dinamikus programozás: szerelőszalag ütemezése Mátrixok véges sorozatainak szorzása

Programozási módszertan. Dinamikus programozás: szerelőszalag ütemezése Mátrixok véges sorozatainak szorzása PM-06 p. 1/28 Programozási módszertan Dinamikus programozás: szerelőszalag ütemezése Mátrixok véges sorozatainak szorzása Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu

Részletesebben

BABEŞ BOLYAI TUDOMÁNYEGYETEM MATEMATIKA ÉS INFORMATIKA KAR BBTE Matek-Infó verseny 1. tételsor INFORMATIKA írásbeli. A versenyzők figyelmébe:

BABEŞ BOLYAI TUDOMÁNYEGYETEM MATEMATIKA ÉS INFORMATIKA KAR BBTE Matek-Infó verseny 1. tételsor INFORMATIKA írásbeli. A versenyzők figyelmébe: BABEŞ BOLYAI TUDOMÁNYEGYETEM MATEMATIKA ÉS INFORMATIKA KAR BBTE Matek-Infó verseny 1. tételsor INFORMATIKA írásbeli A versenyzők figyelmébe: 1. A tömböket 1-től kezdődően indexeljük. 2. A rácstesztekre

Részletesebben

A C programozási nyelv III. Pointerek és tömbök.

A C programozási nyelv III. Pointerek és tömbök. A C programozási nyelv III. Pointerek és tömbök. Miskolci Egyetem Általános Informatikai Tanszék A C programozási nyelv III. (Pointerek, tömbök) CBEV3 / 1 Mutató (pointer) fogalma A mutató olyan változó,

Részletesebben

Bevezetés az informatikába

Bevezetés az informatikába Bevezetés az informatikába 6. előadás Dr. Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék Matematikus BSc - I. félév / 2008 / Budapest Dr.

Részletesebben

Deníciók és tételek a beugró vizsgára

Deníciók és tételek a beugró vizsgára Deníciók és tételek a beugró vizsgára (a szóbeli viszgázás jogáért) Utolsó módosítás: 2008. december 2. 2 Bevezetés Számítási problémának nevezünk egy olyan, a matematika nyelvén megfogalmazott kérdést,

Részletesebben

Java programozási nyelv

Java programozási nyelv Java programozási nyelv 2. rész Vezérlő szerkezetek Nyugat-Magyarországi Egyetem Faipari Mérnöki Kar Informatikai Intézet Soós Sándor 2005. szeptember A Java programozási nyelv Soós Sándor 1/23 Tartalomjegyzék

Részletesebben

Algoritmizálás. Horváth Gyula Szegedi Tudományegyetem Természettudományi és Informatikai Kar

Algoritmizálás. Horváth Gyula Szegedi Tudományegyetem Természettudományi és Informatikai Kar Algoritmizálás Horváth Gyula Szegedi Tudományegyetem Természettudományi és Informatikai Kar horvath@inf.u-szeged.hu 0.1. Az algoritmikus tudás szintjei Ismeri (a megoldó algoritmust) Érti Le tudja pontosan

Részletesebben

Adatszerkezetek 2. Dr. Iványi Péter

Adatszerkezetek 2. Dr. Iványi Péter Adatszerkezetek 2. Dr. Iványi Péter 1 Hash tábla A bináris fáknál O(log n) a legjobb eset a keresésre. Ha valamilyen közvetlen címzést használunk, akkor akár O(1) is elérhető. A hash tábla a tömb általánosításaként

Részletesebben

Algoritmuselmélet 2. előadás

Algoritmuselmélet 2. előadás Algoritmuselmélet 2. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Február 12. ALGORITMUSELMÉLET 2. ELŐADÁS 1 Buborék-rendezés

Részletesebben

1. ábra. Egy rekurzív preorder bejárás. Egy másik rekurzív preorder bejárás

1. ábra. Egy rekurzív preorder bejárás. Egy másik rekurzív preorder bejárás Preorder ejárás Fa bejárásán olyan algoritmust értünk, amelynek bemenete egy F fa és egy M művelet, és az algoritmus adott sorrendben pontosan egyszer végrehajtja az M műveletet a fa pontjaiban lévő adatokra.

Részletesebben

Szimuláció RICHARD M. KARP és AVI WIGDERSON. (Készítette: Domoszlai László)

Szimuláció RICHARD M. KARP és AVI WIGDERSON. (Készítette: Domoszlai László) Szimuláció RICHARD M. KARP és AVI WIGDERSON A Fast Parallel Algorithm for the Maximal Independent Set Problem című cikke alapján (Készítette: Domoszlai László) 1. Bevezetés A következőkben megadott algoritmus

Részletesebben

Szoftver karbantartási lépések ellenőrzése

Szoftver karbantartási lépések ellenőrzése Szoftverellenőrzési technikák (vimim148) Szoftver karbantartási lépések ellenőrzése Majzik István Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék http://www.inf.mit.bme.hu/

Részletesebben

1: Bevezetés: Internet, rétegmodell Alapok: aszimptótika, gráfok. HálózatokII, 2007

1: Bevezetés: Internet, rétegmodell Alapok: aszimptótika, gráfok. HálózatokII, 2007 Hálózatok II 2007 1: Bevezetés: Internet, rétegmodell Alapok: aszimptótika, gráfok 1 Az előadáshoz Előadás: Szerda 17:00 18:30 Gyakorlat: nincs Vizsga írásbeli Honlap: http://people.inf.elte.hu/lukovszki/courses/g/07nwii

Részletesebben

Algoritmusok bonyolultsága

Algoritmusok bonyolultsága Algoritmusok bonyolultsága 5. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm 1 / 27 Gazdaságos faváz Kruskal-algoritmus Joseph Kruskal (1928 2010) Legyen V = {v 1, v 2,..., v n }, E = {e 1, e 2,...,

Részletesebben

Felvételi vizsga mintatételsor Informatika írásbeli vizsga

Felvételi vizsga mintatételsor Informatika írásbeli vizsga BABEȘ BOLYAI TUDOMÁNYEGYETEM MATEMATIKA ÉS INFORMATIKA KAR A. tételsor (30 pont) Felvételi vizsga mintatételsor Informatika írásbeli vizsga 1. (5p) Egy x biten tárolt egész adattípus (x szigorúan pozitív

Részletesebben

Partíció probléma rekurzíómemorizálással

Partíció probléma rekurzíómemorizálással Partíció probléma rekurzíómemorizálással A partíciószám rekurzív algoritmusa Ω(2 n ) műveletet végez, pedig a megoldandó részfeladatatok száma sokkal kisebb O(n 2 ). A probléma, hogy bizonyos már megoldott

Részletesebben

Algoritmusok és adatszerkezetek gyakorlat 07

Algoritmusok és adatszerkezetek gyakorlat 07 Algoritmusok és adatszerkezetek gyakorlat 0 Keresőfák Fák Fa: összefüggő, körmentes gráf, melyre igaz, hogy: - (Általában) egy gyökér csúcsa van, melynek 0 vagy több részfája van - Pontosan egy út vezet

Részletesebben

Programozási módszertan. Dinamikus programozás: A leghosszabb közös részsorozat

Programozási módszertan. Dinamikus programozás: A leghosszabb közös részsorozat PM-07 p. 1/13 Programozási módszertan Dinamikus programozás: A leghosszabb közös részsorozat Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu PM-07

Részletesebben

Algoritmuselmélet. Bonyolultságelmélet. Katona Gyula Y.

Algoritmuselmélet. Bonyolultságelmélet. Katona Gyula Y. Algoritmuselmélet Bonyolultságelmélet Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 12. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet

Részletesebben

Függvények. Programozás alapjai C nyelv 7. gyakorlat. LNKO függvény. Függvények(2) LNKO függvény (2) LNKO függvény (3)

Függvények. Programozás alapjai C nyelv 7. gyakorlat. LNKO függvény. Függvények(2) LNKO függvény (2) LNKO függvény (3) Programozás alapjai C nyelv 7. gyakorlat Szeberényi Imre BME IIT Függvények C program egymás mellé rendelt függvényekből áll. A függvény (alprogram) jó absztrakciós eszköz a programok

Részletesebben

Programozás alapjai C nyelv 7. gyakorlat. Függvények. Függvények(2)

Programozás alapjai C nyelv 7. gyakorlat. Függvények. Függvények(2) Programozás alapjai C nyelv 7. gyakorlat Szeberényi Imre BME IIT Programozás alapjai I. (C nyelv, gyakorlat) BME-IIT Sz.I. 2005.11.05. -1- Függvények C program egymás mellé rendelt függvényekből

Részletesebben

Programozási segédlet

Programozási segédlet Programozási segédlet Programozási tételek Az alábbiakban leírtam néhány alap algoritmust, amit ismernie kell annak, aki programozásra adja a fejét. A lista korántsem teljes, ám ennyi elég kell legyen

Részletesebben

Változók. Mennyiség, érték (v. objektum) szimbolikus jelölése, jelentése Tulajdonságai (attribútumai):

Változók. Mennyiség, érték (v. objektum) szimbolikus jelölése, jelentése Tulajdonságai (attribútumai): Python Változók Mennyiség, érték (v. objektum) szimbolikus jelölése, jelentése Tulajdonságai (attribútumai): Név Érték Típus Memóriacím A változó értéke (esetleg más attribútuma is) a program futása alatt

Részletesebben

Operációs rendszerek. 11. gyakorlat. AWK - szintaxis, vezérlési szerkezetek UNIVERSITAS SCIENTIARUM SZEGEDIENSIS UNIVERSITY OF SZEGED

Operációs rendszerek. 11. gyakorlat. AWK - szintaxis, vezérlési szerkezetek UNIVERSITAS SCIENTIARUM SZEGEDIENSIS UNIVERSITY OF SZEGED UNIVERSITAS SCIENTIARUM SZEGEDIENSIS UNIVERSITY OF SZEGED AWK - szintaxis, vezérlési szerkezetek Operációs rendszerek 11. gyakorlat Szegedi Tudományegyetem Természettudományi és Informatikai Kar Csuvik

Részletesebben

Rekurzív algoritmusok

Rekurzív algoritmusok Rekurzív algoritmusok 11. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2011. november 14. Sergyán (OE NIK) AAO 11 2011. november 14. 1 / 32 Rekurzív

Részletesebben

C programozási nyelv Pointerek, tömbök, pointer aritmetika

C programozási nyelv Pointerek, tömbök, pointer aritmetika C programozási nyelv Pointerek, tömbök, pointer aritmetika Dr. Schuster György 2011. június 16. C programozási nyelv Pointerek, tömbök, pointer aritmetika 2011. június 16. 1 / 15 Pointerek (mutatók) Pointerek

Részletesebben

Formális módszerek GM_IN003_1 Program verifikálás, formalizmusok

Formális módszerek GM_IN003_1 Program verifikálás, formalizmusok Formális módszerek GM_IN003_1 Program verifikálás, formalizmusok Program verifikálás Konkurens programozási megoldások terjedése -> verifikálás szükséges, (nehéz) logika Legszélesebb körben alkalmazott

Részletesebben

Adattípusok, vezérlési szerkezetek. Informatika Szabó Adrienn szeptember 14.

Adattípusok, vezérlési szerkezetek. Informatika Szabó Adrienn szeptember 14. Informatika 1 2011 Második előadás, vezérlési szerkezetek Szabó Adrienn 2011. szeptember 14. Tartalom Algoritmusok, vezérlési szerkezetek If - else: elágazás While ciklus For ciklus Egyszerű típusok Összetett

Részletesebben

Algoritmuselmélet 1. előadás

Algoritmuselmélet 1. előadás Algoritmuselmélet 1. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Február 11. ALGORITMUSELMÉLET 1. ELŐADÁS 1 Források

Részletesebben

Programozás alapjai C nyelv 5. gyakorlat. Írjunk ki fordítva! Írjunk ki fordítva! (3)

Programozás alapjai C nyelv 5. gyakorlat. Írjunk ki fordítva! Írjunk ki fordítva! (3) Programozás alapjai C nyelv 5. gyakorlat Szeberényi Imre BME IIT Programozás alapjai I. (C nyelv, gyakorlat) BME-IIT Sz.I. 2005.10.17. -1- Tömbök Azonos típusú adatok tárolására. Index

Részletesebben

Kupac adatszerkezet. 1. ábra.

Kupac adatszerkezet. 1. ábra. Kupac adatszerkezet A bináris kupac egy majdnem teljes bináris fa, amely minden szintjén teljesen kitöltött kivéve a legalacsonyabb szintet, ahol balról jobbra haladva egy adott csúcsig vannak elemek.

Részletesebben

Kriptográfia 0. A biztonság alapja. Számítás-komplexitási kérdések

Kriptográfia 0. A biztonság alapja. Számítás-komplexitási kérdések Kriptográfia 0 Számítás-komplexitási kérdések A biztonság alapja Komplexitás elméleti modellek független, egyenletes eloszlású véletlen változó értéke számítással nem hozható kapcsolatba más információval

Részletesebben

Programozási alapismeretek 3. előadás

Programozási alapismeretek 3. előadás Programozási alapismeretek 3. előadás Tartalom Ciklusok specifikáció+ algoritmika +kódolás Egy bevezető példa a tömbhöz A tömb Elágazás helyett tömb Konstans tömbök 2/42 Ciklusok Feladat: Határozzuk meg

Részletesebben

Permutáció n = 3 esetében: Eredmény: permutációk száma: P n = n! romámul: permutări, angolul: permutation

Permutáció n = 3 esetében: Eredmény: permutációk száma: P n = n! romámul: permutări, angolul: permutation Visszalépéses módszer (Backtracking) folytatás Permutáció n = 3 esetében: 1 2 3 2 3 1 3 1 2 Eredmény: 3 2 3 1 2 1 123 132 213 231 312 321 permutációk száma: P n = n! romámul: permutări, angolul: permutation

Részletesebben

Számítógép hálózatok, osztott rendszerek 2009

Számítógép hálózatok, osztott rendszerek 2009 Számítógép hálózatok, osztott rendszerek 2009 1: Bevezetés: Internet, rétegmodell Alapok: aszimptótika, gráfok 1 Az előadáshoz Előadás: Hétfő 10:00 12:00 óra Gyakorlat: Hétfő 14:00-16:00 óra Honlap: http://people.inf.elte.hu/lukovszki/courses/0910nwmsc

Részletesebben

Programozás alapjai C nyelv 4. gyakorlat. Mit tudunk már? Feltételes operátor (?:) Típus fogalma char, int, float, double

Programozás alapjai C nyelv 4. gyakorlat. Mit tudunk már? Feltételes operátor (?:) Típus fogalma char, int, float, double Programozás alapjai C nyelv 4. gyakorlat Szeberényi Imre BME IIT Programozás alapjai I. (C nyelv, gyakorlat) BME-IIT Sz.I. 2005.10.10.. -1- Mit tudunk már? Típus fogalma char, int, float,

Részletesebben

Fibonacci számok. Dinamikus programozással

Fibonacci számok. Dinamikus programozással Fibonacci számok Fibonacci 1202-ben vetette fel a kérdést: hány nyúlpár születik n év múlva, ha feltételezzük, hogy az első hónapban csak egyetlen újszülött nyúl-pár van; minden nyúlpár, amikor szaporodik

Részletesebben