Fibonacci számok. Dinamikus programozással
|
|
- Géza Imre Bogdán
- 6 évvel ezelőtt
- Látták:
Átírás
1 Fibonacci számok Fibonacci 1202-ben vetette fel a kérdést: hány nyúlpár születik n év múlva, ha feltételezzük, hogy az első hónapban csak egyetlen újszülött nyúl-pár van; minden nyúlpár, amikor szaporodik egy újabb nyúlpárt hoz létre; a nyulak a születésük után a következő két évben egyszer-egyszer szaporodnak Fibonacci(n) If n=1 or n=2 return 1 Else return Fibonacci(n-1)+Fibonacci(n-2) Az algoritmus az n és n-1 argumentumra 1-szer, az n-2-re 2-szer (n és n-1), az n-3-ra 3-szor (n-1 és 2-szer n-2), az n-4-re 5-ször (2-szer n-2 és 3-szor n-3) lesz végrehajtva. Rekurzíómemórizálás FibonacciM(n) If T[n]> 0 then Else If n=1 or n=2 then T[n]:=1 Else T[n]:=FibonacciM(n-1)+FibonacciM(n-2) FibonacciDP(n) T[1]:=1 T[2]:=2 for i=3 to n T[i]:=T[i-1]+T[i-2] Dinamikus programozással Partíció probléma Az n természetes szám egy partíciója olyan π = (a 1,...,a k ) sorozat, amelyre teljesül: - a 1 a 2 a k > 0 - k i=1 a i = n Jelölje P(n) az n szám összes partíciójának számát. Partíciószám számító algoritmus Jelölje P2(n,k) n azon partícióinak számát, amelyben minden elem legfeljebb k. Ekkor a következő összefüggések teljesülnek: P2(1,k) = 1,P2(n,1) = 1 P2(n,n) = 1 + P2(n,n 1) P2(n,k) = P2(n,n) ha n < k P2(n,k) = P2(n,k 1) + P2(n k,k) ha k < n 1
2 A megoldás: P(n) = P2(n,n) Partíció négyzetes táblázatkitöltéssel A rekurziót teljesen kiküszöbölhetjük táblázat-kitöltéssel. A T2[n,k] táblázatelem tartalmazza a P2(n,k) részprobléma megoldását. A táblázat első sora azonnal kitölthető, mert P2(n, 1) = 1. Olyan kitöltési sorrendet keresünk, hogy minden (n, k), k > 1 részprobléma kiszámítása esetén azok a részproblémák, amelyek szükségesek P2(n, k) kiszámításához, már korábban kiszámítottak legyenek. Általánosan, rekurzív összefüggéssel definiált problémamegoldás esetén egy r (rész)probléma összetevői azok a részproblémák, amelyek megoldásától r megoldása függ. Tehát a táblázatkitöltés alkalmazásához meg kell állapítani a részproblémáknak egy olyan sorrendjét, hogy minden r részprobléma minden összetevője előrébb álljon a sorrendben, mint r. A rekurzív összefüggések megadják az összetevőket: P2(1,k) = 1, P2(n,1) = 1, P2(n,n) = 1+P2(n,n-1), P2(n,k) = P2(n,n) ha n < k, P2(n,k) = P2(n,k-1)+P2(n-k,k) ha k < n. Összetevők: P2(1,k)-nak és P2(n,1)-nek nincs összetevője, P2(n,n) összetevője P2(n,n-1), P2(n,k) összetevője P2(n,n), ha (n < k), P2(n,k) összetevői: P2(n,k-1) és P2(n-k,k), ha (k < n). Tehát a táblázat kitöltése (k-szerint) soronként balról jobbra haladó lehet. Az algoritmus futási ideje és tárigénye is O(n 2 ). ParticioDin for i:=1 to n T[i,1]:=1 for j:=2 to n {T[j,j]=T[j,j-1]+1 for r:=j+1 to n {p:=min(r-j,j) T[r,j]:=T[r,j-1]+T[r-j,p]}} return T[n,n] Partíció lineáris táblázatkitöltéssel Látható, hogy elegendő lenne a táblázatnak csak két sorát tárolni, mert minden (n,k) részprobléma összetevői vagy a k-adik, vagy a k-1-edik sorban vannak. Sőt, elég egy sort tárolni balról jobbra (növekvő n-szerint) haladó kitöltésnél, mert amelyik részproblémát felülírjuk (n-k,k), annak később éppen az új értéke kell összetevőként. 2
3 1. táblázat. A partíció algoritmus táblázata táblázat. A partíció algoritmus teljes táblázata ParticioDin2 for i:=1 to n do T[i]:=1 for j:=2 to n {T[j]=T[j]+1 for r:=j+1 to n T[r]:=T[r]+T[r-j]} A dinamikus programozás stratégiája. A dinamikus programozás, mint probléma-megoldási stratégia az alábbi öt lépés végrehajtását jelenti. 1. Az [optimális] megoldás szerkezetének elemzése. 2. Részproblémákra és összetevőkre bontás úgy, hogy az összetevőktől való függés körmentes legyen. Minden részprobléma [optimális] megoldása kifejezhető legyen (rekurzívan) az összetevők [optimális] megoldásaival. 3. Részproblémák [optimális] megoldásának kifejezése (rekurzívan) az összetevők [optimális] megoldásaiból. Az 1-3 pontok lényegében egy rekurzív algoritmus megtervezését jelentik. 4. Részproblémák [optimális] megoldásának kiszámítása alulról-felfelé haladva. (A részproblémák kiszámítási sorrendjének meghatározása. Olyan sorba kell rakni a részproblémákat, hogy minden p részprobléma minden összetevője előrébb szerepeljen a felsorolásban, mint p. A részproblémák kiszámítása a sorrendnek megfelelően haladva, azaz táblázat-kitöltéssel. 5. Egy [optimális] megoldás előállítása a 4. lépésben kiszámított (és tárolt) információkból. Visszafejtéses vagy feljegyzéses módszer. Mikor érdemes dinamikus programozást használni? Optimális résztruktúrájú feladat: a probléma egy részfeladatának optimális megoldása önmagán belül a további részfeladatok optimális megoldásait is tartalmazza. Átfedő részfeladatok: egy rekurzív algoritmus, ismételten visszatér ugyanazokra a részfeladatokra. (Oszd meg és uralkodj típusú rekurzív algoritmusoknál általában nincs ilyen probléma.) Leghosszabb közös részsorozat Egy sorozat, akkor részsorozata egy másiknak, ha abból elemeinek elhagyásával megkapható. A feladat két sorozat X = (x 1,...,x m ) és Y = (y 1,...,y n ) leghosszabb közös részsorozatának meghatározása. 3
4 A továbbiakban X i az X sorozat i hosszú prefixét jelöli X i = (x 1,...,x i ) és hasonlóan jelöljük a prefixeket az Y és Z sorozatokra is. Lemma: Legyen X = (x 1,...,x m ) és Y = (y 1,...,y n ) két sorozat és Z = (z 1,...,z k ) ezek LKR-je. Ekkor: - Ha x m = y n, akkor z k = x m = y n és Z k 1 az X m 1 és Y n 1 sorozatok egy LKR-je. - Ha x m y n, akkor Z az X m 1 és Y vagy az X és Y n 1 sorozatok egy LKR-je. Megoldás dinamikus programozással: Részprobléma: X i és Y j LKR-je. Az LKR hossza legyen c[i,j]. Nyilvánvalóan c[0,j]=c[i, 0]= 0. Rekurzív összefüggés: A lemma alapján 0, ha i = 0 vagy j = 0, c[i, j] = c[i 1, j 1] + 1, ha x i = y j, max{c[i 1, j], c[i, j 1]} egyébként, Táblázatkitöltés: c[i,j]-hez használjuk az c[i,j-1] és c[i-1,j] értékeket, ezeknek kell meglenni a c[i,j] érték számításánál. Így a helyes kitöltési sorrend soronként minden sorban a nagyobb j érték felé. A megoldás meghatározását feljegyzéses módszerrel oldjuk meg, S[i,j]-ben feljegyezzük, hogy mi volt az optimális döntés c[i,j] számításakor. LKR for i:=0 to m c[i, 0]:=0 for j:=1 to n c[0,j]:= 0 for i=:1 to m {for j:=1 to n {if x[i]=y[j] then {c[i,j]:=c[i-1,j-1]+1 S[i,j]:=2} else if c[i-1,j]>= c[i,j-1] then {c[i,j]:=c[i-1,j] S[i,j]:=1} else {c[i,j]:=c[i,j-1] S[i,j]:= 0}}} Megoldás meghatározása Ez a szakasz kitölti a c és S táblázatokat, a kiíratás S alapján egy rekurzív algoritmussal megtehető. KIIR(i,j) if i=0 or j=0 then return if S[i,j]=2 then {KIIR(i-1,j-1) Print "x[i]"} else if S[i,j]=1 then KIIR(i-1,j) else KIIR(i,j-1) Példa Határozzuk meg az (a,b,b,a,b,a,b,a) és (b,a,b,a,a,b,a,a,b) sorozatok leghosszabb közös részsorozatát! Tehát az LKR hossza 6. Az LKR-t megkapjuk, ha felírjuk az S táblázatot, vagy visszafejtéssel, ahol az átlós érték növekszik, ott van közös betű. Az i-edik sor j-edik elemének, az X i-edik és az Y j-edik betűje felel meg. Következésképp egy LKR (b, b, a, a, b, a). Mátrixszorzás probléma 4
5 3. táblázat. Az c[i,j] értékek táblázata Ha egy i j méretű mátrixot és egy j k méretű mátrixot szorzunk össze a skalár műveletek száma i jk. A mátrixok szorzása asszociatív, az elvégzendő skalár műveletek száma függ a zárójelezéstől. Példa: Legyenek A 1,A 2,A 3 méretei 2 3, 3 4, 4 5. Ekkor: - (A 1 A 2 )A =64 műveletet hajt végre - A 1 (A 2 A 3 ) pedig 60+30=90 műveletet. A mátrixszorzás probléma feladata egy adott szorzás optimális zárójelezésének megtalálása. Az input: A 1,A 2,...A n, ahol A i mérete p i 1 p i. Részprobléma: A i...a j optimális zárójelezése minden i, j párra, a megoldás értéke legyen m[i, j]. Nyilvánvaló, hogy m[i,i] = 0. Rekurzív összefüggés: Ha a szorzásnál az első zárójelpár hátsó zárójele az A k után kerül, akkor a költség: m[i,k]+ m[k + 1, j] + p i 1 p k p j. Ezen lehetőségek közül választjuk a legjobbat, így ha i < j, akkor m[i, j] = min i k< j {m[i,k] + m[k + 1, j] + p i 1 p k p j }. Táblázatkitöltés: m[i,j]-hez használjuk az m[i,k] és m[k+1,j] értékeket, ezeknek kell meglenni az m[i,j] érték számításánál. Így a helyes kitöltési sorrend átlónként megy (elsőként a j=i, értékek, aztán j=i+1, majd j=i+2 és így tovább). A megoldás meghatározását feljegyzéses módszerrel oldjuk meg, S[i,j]-ben feljegyezzük, hogy mi volt az optimális döntés m[i,j] számításakor. MATRIXSZORZAS for i:=1 to n m[i,i]=0 for z:=2 to n {for i:=1 to n-z+1 {j:=i+z-1 m[i,j]:=inf for k:=i to j-1 {q:= m[i,k]+m[k+1,j]+p(i-1)p(k)p(j) If q<m[i,j] then {m[i,j]:=q S[i,j]:=k}}}} A fenti a szakasz kitölti az m és S táblázatokat, a kiíratás S alapján egy rekurzív algoritmussal megtehető. KIIR(i,j) If j>i Then Print "(" 5
6 KIIR(i,S[i,j]) KIIR(S[i,j]+1,j) Print ")" Else Print "A(i)" Példa: A 1 (6 7), A 2 (7 3), A 3 (3 1), A 4 (1 2), A 5 (2 4) 4. táblázat. Az m[i,j] értékek táblázata m[1,3] = min{[m[1,1] + m[2,3] ,m[1,2] + m[3,3] } = 63 m[2,4] = min{[m[2,2] + m[3,4] ,m[2,3] + m[4,4] } = 35 m[3,5] = min{[m[3,3] + m[4,5] ,m[3,4] + m[5,5] } = 20 m[1,4] = min{[m[1,1] + m[2,4] ,m[1,2] + m[3,4] ,m[1,3] + m[4,4] } = táblázat. Az S[i,j] értékek táblázata Megoldás: ((A 1 )(A 2 A 3 ))(A 4 A 5 ) Partíció négyzetes táblázatkitöltéssel Kérdések Mátrixszorzás (KIIR is) Leghosszabb Közös Részsorozat (KIIR is) Két adott string esetén azok leghosszabb közös részsorozatának meghatározása Szorgalmi feladat Adott egy pozitív egész K és egy számjegyekből álló n hosszú S sztring. A sztring felbontható S(0),S(1),S(2),...,S(M) részekre, amelyekt egymás után írva visszakapjuk S-t. Minden ilyen felbontáshoz hozzárendelhető egy polinom, P(x) = a(0) + a(1)x + a(2)x a(m)x M, ahol a(i) az a szám, amit az S(i) sztring megad. Például az S = 1204 sztring felbontható S = alakba (ami a P(x) = x polinom), de S = alakba is, ami a P(x) = 1 + 2x + 4x 2 polinom) és még egyéb felbontások is vannak. A feladat egy olyan legfeljebb O(n 2 ) futási idejű dinamikus programozási algoritmus megadása, amely kiszámolja melyik S-ből előállítható polinomra a legkisebb a P(K) érték. Beküldés: cimreh@inf.u-szeged.hu, Pszeudókod vagy forrás + magyarázat + futási idő 6
7 első négy megoldó 8-8 pont második négy megoldó 5-5 pont A szerzett plusszpontok a vizsga minimumkövetelményébe nem számítanak bele. 7
Partíció probléma rekurzíómemorizálással
Partíció probléma rekurzíómemorizálással A partíciószám rekurzív algoritmusa Ω(2 n ) műveletet végez, pedig a megoldandó részfeladatatok száma sokkal kisebb O(n 2 ). A probléma, hogy bizonyos már megoldott
Megoldás meghatározása Ez a szakasz kitölti a c és S táblázatokat, a kiíratás S alapján egy rekurzív algoritmussal megtehető.
Leghosszabb közös részsorozat Egy sorozat, akkor részsorozata egy másiknak, ha abból elemeinek elhagyásával megkapható. A feladat két sorozat X = (x 1,...,x m ) és Y = (y 1,...,y n ) leghosszabb közös
Dinamikus programozás II.
Dinamikus programozás II. Dinamikus programozás stratégiája A dinamikus programozás stratégiája 1. Az [optimális] megoldás szerkezetének tanulmányozása. 2. Részproblémákra és összetevőkre bontás úgy, hogy:
Programozási módszertan. Dinamikus programozás: szerelőszalag ütemezése Mátrixok véges sorozatainak szorzása
PM-06 p. 1/28 Programozási módszertan Dinamikus programozás: szerelőszalag ütemezése Mátrixok véges sorozatainak szorzása Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu
Programozási módszertan. Dinamikus programozás: A leghosszabb közös részsorozat
PM-07 p. 1/13 Programozási módszertan Dinamikus programozás: A leghosszabb közös részsorozat Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu PM-07
A félév során előkerülő témakörök
A félév során előkerülő témakörök rekurzív algoritmusok rendező algoritmusok alapvető adattípusok, adatszerkezetek, és kapcsolódó algoritmusok dinamikus programozás mohó algoritmusok gráf algoritmusok
Specifikáció. B logikai formula, a bemeneti feltétel, K logikai formula, a kimeneti feltétel, A az algoritmus, amelyre az állítás vonatkozik.
Algoritmus Az algoritmus olyan elemi műveletekből kompozíciós szabályok szerint felépített összetett művelet, amelyet megadott feltételt teljesítő bemeneti adatra végrehajtva, a megkívánt kimeneti adatot
Specifikáció. B logikai formula, a bemeneti feltétel, K logikai formula, a kimeneti feltétel, A az algoritmus, amelyre az állítás vonatkozik.
Algoritmus Az algoritmus olyan elemi műveletekből kompozíciós szabályok szerint felépített összetett művelet, amelyet megadott feltételt teljesítő bemeneti adatra végrehajtva, a megkívánt kimeneti adatot
2. Rekurzió. = 2P2(n,n) 2 < 2P2(n,n) 1
2. Rekurzió Egy objektum definícióját rekurzívnak nevezünk, ha a definíció tartalmazza a definiálandó objektumot. Egy P eljárást (vagy függvényt) rekurzívnak nevezünk, ha P utasításrészében előfordul magának
Programozási módszertan. Dinamikus programozás: Nyomtatási feladat A leghosszabb közös részsorozat
PM-04 p. 1/18 Programozási módszertan Dinamikus programozás: Nyomtatási feladat A leghosszabb közös részsorozat Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu
Mohó algoritmusok. Példa:
Mohó algoritmusok Optimalizálási probléma megoldására szolgáló algoritmus sokszor olyan lépések sorozatából áll, ahol minden lépésben adott halmazból választhatunk. Ezt gyakran dinamikus programozás alapján
Edényrendezés. Futási idő: Tegyük fel, hogy m = n, ekkor: legjobb eset Θ(n), legrosszabb eset Θ(n 2 ), átlagos eset Θ(n).
Edényrendezés Tegyük fel, hogy a rendezendő H = {a 1,...,a n } halmaz elemei a [0,1) intervallumba eső valós számok. Vegyünk m db vödröt, V [0],...,V [m 1] és osszuk szét a rendezendő halmaz elemeit a
Dinamikus programozás - Szerelőszalag ütemezése
Dinamikus programozás - Szerelőszalag ütemezése A dinamikus programozás minden egyes részfeladatot és annak minden részfeladatát pontosan egyszer oldja meg, az eredményt egy táblázatban tárolja, és ezáltal
Programozási módszertan. Mohó algoritmusok
PM-08 p. 1/17 Programozási módszertan Mohó algoritmusok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu PM-08 p. 2/17 Bevezetés Dinamikus programozás
Optimalizációs stratégiák 1.
Optimalizációs stratégiák 1. Nyers erő, Oszd meg és uralkodj, Feljegyzéses, Dinamikus, Mohó előadás http://nik.uni-obuda.hu/prog2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János
Dinamikus programozás vagy Oszd meg, és uralkodj!
Dinamikus programozás Oszd meg, és uralkodj! Mohó stratégia Melyiket válasszuk? Dinamikus programozás vagy Oszd meg, és uralkodj! Háromszögfeladat rekurzívan: c nj := a nj ha 1 j n c ij := a ij + max{c
Példa Hajtsuk végre az 1 pontból a Dijkstra algoritmust az alábbi gráfra. (A mátrixban a c i j érték az (i, j) él hossza, ha nincs él.
Legrövidebb utak súlyozott gráfokban A feladat egy súlyozott gráfban egy adott pontból kiinduló legrövidebb utak megkeresése. Az input a súlyozott gráf és a kiindulási s pont. Outputként egy legrövidebb
Algoritmusok és adatszerkezetek I. 10. előadás
Algortmusok és adatszerkezetek I. 10. előadás Dnamkus programozás Feladat: Adott P 1,P 2, P n pénzjegyekkel kfzethető-e F fornt? Megoldás: Tegyük fel, hogy F P P... P... m! 1 2 m 1 Ekkor F P P P P......,
INFORMATIKA javítókulcs 2016
INFORMATIKA javítókulcs 2016 ELMÉLETI TÉTEL: Járd körbe a tömb fogalmát (Pascal vagy C/C++): definíció, egy-, két-, több-dimenziós tömbök, kezdőértékadás definíciókor, tömb típusú paraméterek átadása alprogramoknak.
Rekurzív algoritmusok
Rekurzív algoritmusok 11. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2011. november 14. Sergyán (OE NIK) AAO 11 2011. november 14. 1 / 32 Rekurzív
Számjegyes vagy radix rendezés
Számláló rendezés Amennyiben a rendezendő elemek által felvehető értékek halmazának számossága kicsi, akkor megadható lineáris időigényű algoritmus. A bemenet a rendezendő elemek egy n méretű A tömbben
Programozási módszertan. Függvények rekurzív megadása "Oszd meg és uralkodj" elv, helyettesítő módszer, rekurziós fa módszer, mester módszer
PM-03 p. 1/13 Programozási módszertan Függvények rekurzív megadása "Oszd meg és uralkodj" elv, helyettesítő módszer, rekurziós fa módszer, mester módszer Werner Ágnes Villamosmérnöki és Információs Rendszerek
Algoritmizálás, adatmodellezés tanítása 8. előadás
Algoritmizálás, adatmodellezés tanítása 8. előadás Elágazás és korlátozás A backtrack alkalmas-e optimális megoldás keresésére? Van költség, és a legkisebb költségű megoldást szeretnénk előállítani. Van
Lineáris algebra (10A103)
Lineáris algebra (10A103 Kátai-Urbán Kamilla Tudnivalók Honlap: http://www.math.u-szeged.hu/~katai Jegyzet: Megyesi László: Lineáris algebra. Vizsga: írásbeli (beugróval, feltétele a Lineáris algebra gyakorlat
A MAXIMUM-KUPACOL eljárás helyreállítja az A[i] elemre a kupactulajdonságot. Az elemet süllyeszti cserékkel mindaddig, amíg a tulajdonság sérül.
Kiválasztás kupaccal A bináris kupac egy majdnem teljes bináris fa, amely minden szintjén teljesen kitöltött kivéve a legalacsonyabb szintet, ahol balról jobbra haladva egy adott csúcsig vannak elemek.
Előfeltétel: legalább elégséges jegy Diszkrét matematika II. (GEMAK122B) tárgyból
ÜTEMTERV Programozás-elmélet c. tárgyhoz (GEMAK233B, GEMAK233-B) BSc gazdaságinformatikus, programtervező informatikus alapszakok számára Óraszám: heti 2+0, (aláírás+kollokvium, 3 kredit) 2019/20-es tanév
Algoritmizálás. Horváth Gyula Szegedi Tudományegyetem Természettudományi és Informatikai Kar
Algoritmizálás Horváth Gyula Szegedi Tudományegyetem Természettudományi és Informatikai Kar horvath@inf.u-szeged.hu 0.1. Az algoritmikus tudás szintjei Ismeri (a megoldó algoritmust) Érti Le tudja pontosan
Példa Hajtsuk végre az 1 pontból a Dijkstra algoritmust az alábbi gráfra. (A mátrixban a c i j érték az (i, j) él hossza, ha nincs él.
Legrövidebb utak súlyozott gráfokban A feladat egy súlyozott gráfban egy adott pontból kiinduló legrövidebb utak megkeresése. Az input a súlyozott gráf és a kiindulási s pont. Outputként egy legrövidebb
Algoritmizálás, adatmodellezés tanítása 7. előadás
Algoritmizálás, adatmodellezés tanítása 7. előadás Oszd meg és uralkodj! Több részfeladatra bontás, amelyek hasonlóan oldhatók meg, lépései: a triviális eset (amikor nincs rekurzív hívás) felosztás (megadjuk
Műveletek mátrixokkal. Kalkulus. 2018/2019 ősz
2018/2019 ősz Elérhetőségek Előadó: (safaro@math.bme.hu) Fogadóóra: hétfő 9-10 (H épület 3. emelet 310-es ajtó) A pontos tárgykövetelmények a www.math.bme.hu/~safaro/kalkulus oldalon találhatóak. A mátrix
Általános algoritmustervezési módszerek
Általános algoritmustervezési módszerek Ebben a részben arra mutatunk példát, hogy miként használhatóak olyan általános algoritmustervezési módszerek mint a dinamikus programozás és a korlátozás és szétválasztás
Dinamikus programozás párhuzamosítási lehetőségekkel
8. tavasz Dinamikus programozás párhuzamosítási lehetőségekkel A. Grama, A. Gupta, G. Karypis és V. Kumar: Introduction to Parallel Computing, Addison Wesley, könyv, valamint Michael Goodrich (Univ. California)
Permutáció n = 3 esetében: Eredmény: permutációk száma: P n = n! romámul: permutări, angolul: permutation
Visszalépéses módszer (Backtracking) folytatás Permutáció n = 3 esetében: 1 2 3 2 3 1 3 1 2 Eredmény: 3 2 3 1 2 1 123 132 213 231 312 321 permutációk száma: P n = n! romámul: permutări, angolul: permutation
Numerikus módszerek 1.
Numerikus módszerek 1. 3. előadás: Mátrixok LU-felbontása Lócsi Levente ELTE IK 2013. szeptember 23. Tartalomjegyzék 1 Alsó háromszögmátrixok és Gauss-elimináció 2 Háromszögmátrixokról 3 LU-felbontás Gauss-eliminációval
10. gyakorlat Struktúrák, uniók, típusdefiníciók
10. gyakorlat Struktúrák, uniók, típusdefiníciók Házi - (f0218) Olvass be 5 darab maximum 99 karakter hosszú szót úgy, hogy mindegyiknek pontosan annyi helyet foglalsz, amennyi kell! A sztringeket írasd
1. ábra. Számláló rendezés
1:2 2:3 1:3 1,2,3 1:3 1,3,2 3,1,2 2,1,3 2:3 2,3,1 3,2,1 1. ábra. Alsó korlát rendezési algoritmusokra Minden olyan rendezési algoritmusnak a futását, amely elempárok egymással
Dinamukus programozás
Dinamukus programozás Horváth Gyula horvath@inf.elte.hu 2. Dinamikus programozással megoldható feladatok A dinamikus programozás elnevezés egy probléma-megoldási módszert jelöl. A módszer lényege, hogy
Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása
1 Információk 2 A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin Elérhetőség mesko.katalin@tfk.kefo.hu Fogadóóra: szerda 9:50-10:35 Számonkérés időpontok Április 25. 9 00 Május 17. 9 00 Június
Kombinatorikai algoritmusok. (Horváth Gyula és Szlávi Péter előadásai felhasználásával)
Kombinatorikai algoritmusok (Horváth Gyula és Szlávi Péter előadásai felhasználásával) Kombinatorikai algoritmusok A kombinatorika: egy véges halmaz elemeinek valamilyen szabály alapján történő csoportosításával,
Kombinatorikai algoritmusok
Kombinatorikai algoritmusok (Horváth Gyula és Szlávi Péter előadásai felhasználásával) Kombinatorikai algoritmusok A kombinatorika: egy véges halmaz elemeinek valamilyen szabály alapján történő csoportosításával,
Gauss-Seidel iteráció
Közelítő és szimbolikus számítások 5. gyakorlat Iterációs módszerek: Jacobi és Gauss-Seidel iteráció Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei alapján 1 ITERÁCIÓS
A 2017/2018 tanévi Országos Középiskolai Tanulmányi Verseny második fordulójának feladatai. INFORMATIKA II. (programozás) kategória
Oktatási Hivatal A 1/18 tanévi Országos Középiskolai Tanulmányi Verseny második fordulójának feladatai INFORMATIKA II. (programozás) kategória 1. feladat: K-homogén sorozat ( pont) Azt mondjuk, hogy az
MBNK12: Permutációk (el adásvázlat, április 11.) Maróti Miklós
MBNK12: Permutációk el adásvázlat 2016 április 11 Maróti Miklós 1 Deníció Az A halmaz permutációin a π : A A bijektív leképezéseket értjünk Tetsz leges n pozitív egészre az {1 n} halmaz összes permutációinak
Algoritmusokfelülnézetből. 1. ELŐADÁS Sapientia-EMTE
Algoritmusokfelülnézetből 1. ELŐADÁS Sapientia-EMTE 2015-16 Algoritmus Az algoritmus kifejezés a bagdadi arab tudós, al-hvárizmi(780-845) nevének eltorzított, rosszul latinra fordított változatából ered.
Gráfok, definíciók. Gráfok ábrázolása. Az adott probléma megoldásához ténylegesen mely műveletek szükségesek. Ábrázolások. Példa:
Gráfok, definíciók Irányítatlan gráf: G = (V,E), ahol E rendezetlen (a,b),a,b V párok halmaza. Irányított gráf: G = (V,E) E rendezett (a,b) párok halmaza; E V V. Címkézett (súlyozott) gráf: G = (V,E,C)
Alkalmazott modul: Programozás 4. előadás. Procedurális programozás: iteratív és rekurzív alprogramok. Alprogramok. Alprogramok.
Eötvös Loránd Tudományegyetem Informatikai Kar Alkalmazott modul: Programozás 4. előadás Procedurális programozás: iteratív és rekurzív alprogramok Giachetta Roberto groberto@inf.elte.hu http://people.inf.elte.hu/groberto
2015, Diszkrét matematika
Diszkrét matematika 4. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2015, őszi félév Miről volt szó az elmúlt előadáson? Számtartományok:
5. Előadás. (5. előadás) Mátrixegyenlet, Mátrix inverze március 6. 1 / 39
5. Előadás (5. előadás) Mátrixegyenlet, Mátrix inverze 2019. március 6. 1 / 39 AX = B (5. előadás) Mátrixegyenlet, Mátrix inverze 2019. március 6. 2 / 39 AX = B Probléma. Legyen A (m n)-es és B (m l)-es
Összetett programozási tételek Rendezések Keresések PT egymásra építése. 10. előadás. Programozás-elmélet. Programozás-elmélet 10.
Összetett programozási tételek Sorozathoz sorozatot relő feladatokkal foglalkozunk. A bemenő sorozatot le kell másolni, s közben az elemekre vonatkozó átalakításokat lehet végezni rajta: Input : n N 0,
Egész számok. pozitív egész számok: 1; 2; 3; 4;... negatív egész számok: 1; 2; 3; 4;...
Egész számok természetes számok ( ) pozitív egész számok: 1; 2; 3; 4;... 0 negatív egész számok: 1; 2; 3; 4;... egész számok ( ) 1. Írd a következõ számokat a halmazábra megfelelõ helyére! 3; 7; +6 ; (
Bonyolultságelmélet. Thursday 1 st December, 2016, 22:21
Bonyolultságelmélet Thursday 1 st December, 2016, 22:21 Tárbonyolultság A futásidő mellett a felhasznált tárterület a másik fontos erőforrás. Ismét igaz, hogy egy Ram-program esetében ha csak a használt
RSA algoritmus. P(M) = M e mod n. S(C) = C d mod n. A helyesség igazoláshoz szükséges számelméleti háttér. a φ(n) = 1 mod n, a (a 1,a 2,...
RSA algoritmus 1. Vegyünk véletlenszerűen két különböző nagy prímszámot, p-t és q-t. 2. Legyen n = pq. 3. Vegyünk egy olyan kis páratlan e számot, amely relatív prím φ(n) = (p 1)(q 1)-hez. 4. Keressünk
Algoritmusok és adatszerkezetek gyakorlat 03 Oszd meg és uralkodj. Nagy
Algoritmusok és adatszerkezetek gyakorlat 03 Oszd meg és uralkodj Divide & Conquer (,,Oszd meg és uralkodj ) paradigma Divide: Osszuk fel az adott problémát kisebb problémákra. Conquer: Oldjuk meg a kisebb
2. Visszalépéses stratégia
2. Visszalépéses stratégia A visszalépéses keres rendszer olyan KR, amely globális munkaterülete: út a startcsúcsból az aktuális csúcsba (ezen kívül a még ki nem próbált élek nyilvántartása) keresés szabályai:
Amortizációs költségelemzés
Amortizációs költségelemzés Amennyiben műveleteknek egy M 1,...,M m sorozatának a futási idejét akarjuk meghatározni, akkor egy lehetőség, hogy külön-külön minden egyes művelet futási idejét kifejezzük
Módosítható Prioritási sor Binomiális kupaccal. Wednesday, March 21, 12
Módosítható Prioritási sor Binomiális kupaccal modosit(x,k) {! if (k>x.kulcs) {!! x.kulcs=k ;!! y=x!! z=x.apa ;!! while(z!=nil and y.kulcs
Sorozatok határértéke SOROZAT FOGALMA, MEGADÁSA, ÁBRÁZOLÁSA; KORLÁTOS ÉS MONOTON SOROZATOK
Sorozatok határértéke SOROZAT FOGALMA, MEGADÁSA, ÁBRÁZOLÁSA; KORLÁTOS ÉS MONOTON SOROZATOK Sorozat fogalma Definíció: Számsorozaton olyan függvényt értünk, amelynek értelmezési tartománya a pozitív egész
I. VEKTOROK, MÁTRIXOK
217/18 1 félév I VEKTOROK, MÁTRIXOK I1 I2 Vektorok 1 A síkon derékszögű koordinátarendszerben minden v vektornak van vízszintes és van függőleges koordinátája, ezeket sorrendben v 1 és v 2 jelöli A v síkbeli
Egy negyedikes felvételi feladattól az egyetemi matematikáig
Egy negyedikes felvételi feladattól az egyetemi matematikáig Tassy Gergely Veres Péter Gimnázium, Budapest ELTE Matematikatanár-délután Kombinatorika és gráfelmélet a középiskolában 2015. február 18. I.
Algoritmuselmélet 2. előadás
Algoritmuselmélet 2. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Február 12. ALGORITMUSELMÉLET 2. ELŐADÁS 1 Buborék-rendezés
end function Az A vektorban elõforduló legnagyobb és legkisebb értékek indexeinek különbségét.. (1.5 pont) Ha üres a vektor, akkor 0-t..
A Név: l 2014.04.09 Neptun kód: Gyakorlat vezető: HG BP MN l 1. Adott egy (12 nem nulla értékû elemmel rendelkezõ) 6x7 méretû ritka mátrix hiányos 4+2 soros reprezentációja. SOR: 1 1 2 2 2 3 3 4 4 5 6
Programozás alapjai gyakorlat. 4. gyakorlat Konstansok, tömbök, stringek
Programozás alapjai gyakorlat 4. gyakorlat Konstansok, tömbök, stringek Házi ellenőrzés (f0069) Valósítsd meg a linuxos seq parancs egy egyszerűbb változatát, ami beolvas két egész számot, majd a kettő
Korlátozás és szétválasztás elve. ADAGOLO adattípus
Korlátozás és szétválasztás elve ADAGOLO adattípus Értékhalmaz: E Adagolo : A E Műveletek: A : Adagolo, x : E {Igaz} Letesit(A) {A = /0} {A = A} Megszuntet(A) {Igaz} {A = A} Uresit(A) {A = /0} {A = A}
Algoritmizálás Horváth Gyula Szegedi Tudományegyetem Természettudományi és Informatikai Kar horvath@inf.u-szeged.hu 2. Rekurzió 2.1. Feladat: Sorbaállítások száma Hány féleképpen lehet sorbaállítani az
Az B sorozatban a pontok helyes preorder sorrendben vannak. A preorder bejárásban p k -t közvetlenül q m követi.
Nemrekurzív preorder bejárás veremmel Ismét feltesszük, hogy a fa a g gyökérpontja által van megadva elsőfiú testvér reprezentációval, és az M műveletet akarjuk minden ponton végrehajtani. PreorderV(g,M)
Numerikus matematika vizsga
1. Az a = 2, t = 4, k = 3, k + = 2 számábrázolási jellemzők mellett hány pozitív, normalizált lebegőpontos szám ábrázolható? Adja meg a legnagyobb ábrázolható számot! Mi lesz a 0.8-hoz rendelt lebegőpontos
Matlab alapok. Baran Ágnes
Matlab alapok Mátrixok Baran Ágnes Mátrixok megadása Mátrix megadása elemenként A = [1, 2, 3; 4, 5, 6; 7, 8, 9] vagy A = [1 2 3; 4 5 6; 7 8 9] eredménye: A = 1 2 3 4 5 6 7 8 9 (Az egy sorban álló elemeket
Ellenőrző kérdések. 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t
Ellenőrző kérdések 2. Kis dolgozat kérdései 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t 37. Ha t szintű indexet használunk,
1. Alapfogalmak Algoritmus Számítási probléma Specifikáció Algoritmusok futási ideje
1. Alapfogalmak 1.1. Algoritmus Az algoritmus olyan elemi műveletekből kompozíciós szabályok szerint felépített összetett művelet, amelyet megadott feltételt teljesítő bemeneti adatra végrehajtva, a megkívánt
Adatszerkezetek II. 10. előadás
Adatszerkezetek II. 10. előadás Kombinatorikai algoritmusok A kombinatorika: egy véges halmaz elemeinek valamilyen szabály alapján történő csoportosításával, kiválasztásával, sorrendbe rakásával foglalkozik
Algoritmuselmélet. Legrövidebb utak, Bellmann-Ford, Dijkstra. Katona Gyula Y.
Algoritmuselmélet Legrövidebb utak, Bellmann-Ford, Dijkstra Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 3. előadás Katona Gyula Y. (BME
3. Előadás. Megyesi László: Lineáris algebra, oldal. 3. előadás Lineáris egyenletrendszerek
3. Előadás Megyesi László: Lineáris algebra, 47. 50. oldal. Gondolkodnivalók Determinánsok 1. Gondolkodnivaló Determinánselméleti tételek segítségével határozzuk meg a következő n n-es determinánst: 1
Dr. Schuster György február / 32
Algoritmusok és magvalósítások Dr. Schuster György OE-KVK-MAI schuster.gyorgy@kvk.uni-obuda.hu 2015. február 10. 2015. február 10. 1 / 32 Algoritmus Alapfogalmak Algoritmus Definíció Algoritmuson olyan
Irodalom. (a) A T, B T, (b) A + B, C + D, D C, (c) 3A, (d) AD, DA, B T A, 1 2 B = 1 C = A = 1 0 D = (a) 1 1 3, B T = = ( ) ; A T = 1 0
Irodalom ezek egyrészt el- A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: hangzanak az előadáson, másrészt megtalálják a jegyzetben: Szabó László: Bevezetés a lineáris algebrába, Polygon
Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit
Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit 1. Valós számsorozaton valós számok meghatározott sorrendű végtelen listáját értjük. A hangsúly az egymásután következés rendjén van.
Szittyai István december 8. SZTE Bolyai Intézet. Szittyai István (NLG, Hmvh) Partíciók , Bolyai, Szeged 1 / 24
Hányféleképpen válthatom föl a pénzemet? Szittyai István Németh László Gimnázium, Hódmezővásárhely 2012. december 8. SZTE Bolyai Intézet Szittyai István (NLG, Hmvh) Partíciók 2012.12.08, Bolyai, Szeged
angolul: greedy algorithms, románul: algoritmi greedy
Mohó algoritmusok angolul: greedy algorithms, románul: algoritmi greedy 1. feladat. Gazdaságos telefonhálózat építése Bizonyos városok között lehet direkt telefonkapcsolatot kiépíteni, pl. x és y város
Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)
Sorozatok I. DEFINÍCIÓ: (Számsorozat) A számsorozat olyan függvény, amelynek értelmezési tartománya a pozitív egész számok halmaza, értékkészlete a valós számok egy részhalmaza. Jelölés: (a n ), {a n }.
Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei
A Gauss-Jordan elimináció, mátrixinvertálás Gauss-Jordan módszer Ugyanazzal a technikával, mint ahogy a k-adik oszlopban az a kk alatti elemeket kinulláztuk, a fölötte lévő elemeket is zérussá lehet tenni.
BBTE Matek-Infó verseny mintatételsor Informatika írásbeli vizsga
BABEȘ BOLYAI TUDOMÁNYEGYETEM MATEMATIKA ÉS INFORMATIKA KAR A. tételsor (30 pont) 1. (5p) Tekintsük a következő alprogramot: Alprogram f(a): Ha a!= 0, akkor visszatérít: a + f(a - 1) különben visszatérít
Neumann János Tehetséggondozó Program Gráfalgoritmusok II.
Neumann János Tehetséggondozó Program Gráfalgoritmusok II. Horváth Gyula horvath@inf.elte.hu 1. A szélességi bejárás alkalmazásai. Nyilvánvaló, hogy S(0) = {r}. Jelölés: D(p) = δ(r, p) Nyilvánvaló, hogy
Az informatika kulcsfogalmai
Az informatika kulcsfogalmai Kulcsfogalmak Melyek azok a fogalmak, amelyek nagyon sok más fogalommal kapcsolatba hozhatók? Melyek azok a fogalmak, amelyek más-más környezetben újra és újra megjelennek?
Algoritmuselmélet 12. előadás
Algoritmuselmélet 12. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Április 9. ALGORITMUSELMÉLET 12. ELŐADÁS 1 Turing-gépek
2018, Diszkrét matematika
Diszkrét matematika 3. előadás mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia 2018, őszi félév Miről volt szó az elmúlt előadáson? számtartományok: természetes
BABEŞ BOLYAI TUDOMÁNYEGYETEM MATEMATIKA ÉS INFORMATIKA KAR BBTE Matek-Infó verseny 1. tételsor INFORMATIKA írásbeli. A versenyzők figyelmébe:
BABEŞ BOLYAI TUDOMÁNYEGYETEM MATEMATIKA ÉS INFORMATIKA KAR BBTE Matek-Infó verseny 1. tételsor INFORMATIKA írásbeli A versenyzők figyelmébe: 1. A tömböket 1-től kezdődően indexeljük. 2. A rácstesztekre
2. Visszalépéses keresés
2. Visszalépéses keresés Visszalépéses keresés A visszalépéses keresés egy olyan KR, amely globális munkaterülete: egy út a startcsúcsból az aktuális csúcsba (az útról leágazó még ki nem próbált élekkel
A programozás alapjai 1 Rekurzió
A programozás alapjai Rekurzió. előadás Híradástechnikai Tanszék - preorder (gyökér bal gyerek jobb gyerek) mentés - visszaállítás - inorder (bal gyerek gyökér jobb gyerek) rendezés 4 5 6 4 6 7 5 7 - posztorder
A 2017/2018 tanévi Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai. INFORMATIKA II. (programozás) kategória
Oktatási Hivatal A 2017/2018 tanévi Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai 1. feladat: Repülők (20 pont) INFORMATIKA II. (programozás) kategória Ismerünk városok közötti repülőjáratokat.
Mátrixok 2017 Mátrixok
2017 számtáblázatok" : számok rendezett halmaza, melyben a számok helye két paraméterrel van meghatározva. Például lineáris egyenletrendszer együtthatómátrixa 2 x 1 + 4 x 2 = 8 1 x 1 + 3 x 2 = 1 ( 2 4
11. Előadás. 11. előadás Bevezetés a lineáris programozásba
11. Előadás Gondolkodnivalók Sajátérték, Kvadratikus alak 1. Gondolkodnivaló Adjuk meg, hogy az alábbi A mátrixnak mely α értékekre lesz sajátértéke a 5. Ezen α-ák esetén határozzuk meg a 5 sajátértékhez
Felvételi vizsga mintatételsor Informatika írásbeli vizsga
BABEȘ BOLYAI TUDOMÁNYEGYETEM MATEMATIKA ÉS INFORMATIKA KAR A. tételsor (30 pont) Felvételi vizsga mintatételsor Informatika írásbeli vizsga 1. (5p) Egy x biten tárolt egész adattípus (x szigorúan pozitív
Számítógépes döntéstámogatás. Genetikus algoritmusok
BLSZM-10 p. 1/18 Számítógépes döntéstámogatás Genetikus algoritmusok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu BLSZM-10 p. 2/18 Bevezetés 1950-60-as
ABSZTRAKCIÓ FÜGGVÉNYEKKEL (ELJÁRÁSOKKAL)
ABSZTRAKCIÓ FÜGGVÉNYEKKEL (ELJÁRÁSOKKAL) Elágazó rekurzió Absztrakció függvényekkel (eljárásokkal) FP-5..7-2 Korábban lineáris-rekurzív, ill. lineáris-iteratív folyamatokra láttunk példákat (faktoriális
Kupac adatszerkezet. 1. ábra.
Kupac adatszerkezet A bináris kupac egy majdnem teljes bináris fa, amely minden szintjén teljesen kitöltött kivéve a legalacsonyabb szintet, ahol balról jobbra haladva egy adott csúcsig vannak elemek.
Gauss elimináció, LU felbontás
Közelítő és szimbolikus számítások 3. gyakorlat Gauss elimináció, LU felbontás Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei alapján 1 EGYENLETRENDSZEREK 1. Egyenletrendszerek
9. gyakorlat Lineáris egyenletrendszerek megoldási módszerei folyt. Néhány kiegészítés a Gauss- és a Gauss Jordan-eliminációhoz
9. gyakorlat Lineáris egyenletrendszerek megoldási módszerei folyt. Néhány kiegészítés a Gauss- és a Gauss Jordan-eliminációhoz. Mindkét eliminációs módszer műveletigénye sokkal kisebb, mint a Cramer-szabályé:
Lineáris algebra (10A103)
Lineáris algebra (10A103) Dr. Hartmann Miklós Tudnivalók Honlap: http://www.math.u-szeged.hu/~hartm Jegyzet: Megyesi László: Lineáris algebra. Vizsga: írásbeli, feltétele a Lineáris algebra gyakorlat teljesítése.
PROGRAMOZÁS tantárgy. Gregorics Tibor egyetemi docens ELTE Informatikai Kar
PROGRAMOZÁS tantárgy Gregorics Tibor egyetemi docens ELTE Informatikai Kar Követelmények A,C,E szakirány B szakirány Előfeltétel Prog. alapismeret Prog. alapismeret Diszkrét matematika I. Óraszám 2 ea
Polinomok, Lagrange interpoláció
Közelítő és szimbolikus számítások 8. gyakorlat Polinomok, Lagrange interpoláció Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor Vinkó Tamás London András Deák Gábor jegyzetei alapján 1. Polinomok
Vektorok, mátrixok, lineáris egyenletrendszerek
a Matematika mérnököknek I. című tárgyhoz Vektorok, mátrixok, lineáris egyenletrendszerek Vektorok A rendezett valós számpárokat kétdimenziós valós vektoroknak nevezzük. Jelölésükre latin kisbetűket használunk.