Példa Hajtsuk végre az 1 pontból a Dijkstra algoritmust az alábbi gráfra. (A mátrixban a c i j érték az (i, j) él hossza, ha nincs él.
|
|
- Erzsébet Tóthné
- 8 évvel ezelőtt
- Látták:
Átírás
1 Legrövidebb utak súlyozott gráfokban A feladat egy súlyozott gráfban egy adott pontból kiinduló legrövidebb utak megkeresése. Az input a súlyozott gráf és a kiindulási s pont. Outputként egy legrövidebb utak fáját adunk vissza, egy Apa függvény által, továbbá a legrövidebb utak hosszait egy d függvény által. A feladatot nemnegatív élsúlyok esetén a következő Dijsktra algoritmussal oldhatjuk meg. A pontokat egy d érték szerinti Q módosítható prioritási sorban tároljuk. Dijskstra algoritmusa Kezd(G,s) {d(v):=inf Apa(v):=0 Kesz(v):=0} d(s):=0 Kozelit(G,u,v,Q) if d(v)>d(u)+c(u,v) then {d(v):=d(u)+c(u,v) Modosit(Q,v) Apa(v):=u} Dijkstra(G,s) Kezd(G,s) Letesit(Q: ModPrisor) SorBa(Q,v) while(elemszam(q)>0) {SorBol(Q,u) Kesz(u):=1 for(v in KiEl(G,u)) {if Kesz(v)=0 then Kozelit(u,v)}} Példa Hajtsuk végre az 1 pontból a Dijkstra algoritmust az alábbi gráfra. (A mátrixban a c i j érték az (i, j) él hossza, ha nincs él.) Kesz = {1},d(2) = 2,Apa(2) = 1,d(4) = 1,Apa(4) = 1,d(5) = 8,Apa(5) = 1, Kesz = {1,4},d(3) = 5,Apa(3) = 4,d(5) = 3,Apa(5) = 4,d(6) = 8,Apa(6) = 4, Kesz = {1,4,2},d(3) = 3,Apa(3) = 2,d(6) = 6,Apa(6) = 2, Kesz = {1,4,2,3}, 1
2 Kesz = {1,4,2,3,5}d(6) = 4,Apa(6) = 5, Tulajdonságok Tegyük fel, hogy a G = (V,E,c) irányított, súlyozott gráfra és s kezdőpontra végrehajtottuk a Kezd eljárást, majd valahány Kozelit műveletet. Ekkor az alábbi összefüggések teljesülnek. Háromszög egyenlőtlenség: ( (u, v) E)(δ(s, v) δ(s, u) + c(u, v)) Bizonyítás A legrövidebb s u utat folytatva az (u,v) éllel egy s v utat kapunk. Felső korlát tulajdonság: d(v) δ(s,v) és ha egyszer d(v) = δ(s,v), akkor ezután mindig teljesül az egyenlőség. Bizonyítás Az egyenlőtlenség a Kozelit lépések száma szerinti indukcióval igazolható, felhasználva a háromszög egyenlőtlenséget. Ha egyszer létrejön az egyenlőség az utána nem változhat, mivel d értéke az eljárás során nem növekedhet, és az egyenlőtlenség miatt nem is csökken tovább. Nincs-út tulajdonság: Ha nincs s v út, akkor mindvégig d(v) = In f teljesül. Bizonyítás A felső korlát tulajdonságból azonnal következik. Konvergencia tulajdonság: Ha s u v egy legrövidebb út és d(u) = δ(s,u) Kozelit(G,u,v,Q) végrehajtása előtt, akkor Kozelit(G,u,v,Q) után d[v] = δ(s,v). Bizonyítás Kozelit(G,u,v,Q) után d(v) d(u) + c(u,v) = δ(s,u) + c(u,v) = δ(s,v), így a felső korlát tulajdonság alapján egyenlőség kell fennálljon. Út-közelítés tulajdonság: Ha p = {v 0,v 1,...,v k } egy s = v 0 v k legrövidebb út, akkor a (v 0,v 1 ),(v 1,v 2 ),...,(v k 1,v k ) élekre ebben a sorrendben végrehajtott Kozelit eljárások után d(v k ) = δ(s,v k ). Bizonyítás A konvergencia tulajdonságból következik. LUF tulajdonság: Tegyük fel, hogy G nem tartalmaz negatív súlyú éleket és minden v V pontra d[v] = δ(s,v). Ekkor az F = {(Apa(v), v) : v V, Apa(v) 0} élhalmaz G-nek s gyökerű LUF-ja lesz. Bizonyítás: A nincs út tulajdonság alapján a fába pontosan azon pontok kerülnek, amelyek elérhetőek s-ből. Továbbá könnyen látható, hogy minden v pontra az F fában az adott pontba s-ből vezető út hossza d(v), mivel d(v)-t minden esetben a d(apa(v)) + c(apa(v),v) érték alapján kapjuk. Helyesség Tétel A DIJKSTRA algoritmust nemnegatív él-súlyozott irányított G = (V,E,c) gráfra és s kezdőpontra végrehajtva, minden v V pontra teljesül d(v) = δ(s, v). Bizonyítás: Bizonyítás a Kesz halmazba kerülés szerinti indukcióval. Az első pont, amely kikerül a Q prioritási sorból és bekerül Kesz-be az s pont, amire az állítás nyilvánvaló. Legyen u az első pont, amire nem teljesül az állítás, akkor a bekerülésekor a felső korlát tulajdonság miatt d(u) > δ(s,u). Így δ(s,u), tehát van egy legrövidebb út s-ből u-ba. Ezen az úton u bekerülésekor a kezdőpont a Kesz halmazban van, a végpont nincs, így van két olyan egymást követő pont (x,y) hogy x Kesz és y / Kesz. Ekkor x még u előtt került be a Kesz halmazba, így d(x) = δ(s,x). Továbbá x bekerülésekor végrehajtottuk a Kozelit(G,x,y,Q) műveletet, így a konvergencia tulajdonság miatt d(y) = δ(s,y). Minden él súlya nemnegatív, y rajta van az u-ba vezető legrövidebb úton, így δ(s,y) δ(s,u). Továbbá a prioritási sorból u-t hamarabb választjuk ki, mint y-t, így d(u) d(y). Következésképpen azt kaptuk, hogy d(y) = δ(s,y) δ(s,u) < d(u) d(y), ami ellentmondás, így a tételt igazoltuk. Következmény: A tételből a LUF tulajdonság alapján következik az algoritmus helyessége. Példa 2
3 Tegyük fel, hogy egy hivatalban minden hivatalnok megvesztegethető. Nem mindegyiküket lehet közvetlenül megvesztegetni a magasabb hivatalban levő embereket csak az vesztegetheti meg, aki rendelkezik megfelelő ajánlólevéllel, amit az ajánlólevél irójának megvesztegetésével lehet megszerezni. Egy jól értesült vállalkozó tudja kit mennyibe kerül megvesztegetni és azt is, hogy az egyes emberek milyen ajánlóleveleket fogadnak el. A hivatal vezetőjét szeretné megvesztegetni a lehető legkisebb teljes költség megfizetése mellett. Adjunk meg egy eljárást, amellyel meghatározhatja kiket kell megvesztegetnie! Megoldás Vegyünk egy gráfot, amelynek pontjai a vállalkozó és a tisztviselők. A vállalkozóból él megy azokba a tiszviselőkbe, akiket közvetlenül megvesztegethet, továbbá minden tisztviselőből él megy azokba a tisztviselőkbe, akik elfogadják az ajánlólevelét. A gráfban a csúcsoknak van súlya, a vállalkozóé 0, a tisztviselőké a megvesztegetés összege. A cél a vállalkozóból a hivatal vezetőjébe egy legrövidebb út megkeresése, ahol az út hossza a benne levő csúcsok súlyainak összege. Ez megoldható a legrövidebb út algoritmusok módosításával is, de visszavezethetjük a legrövidebb út problémára. Minden csúcsot helyettesítsünk egy éllel, amelynek súlya a csúcs súlya. Az él kezdőpontjába mennek azok az élek, amelyek a csúcsba mentek, az él végpontjából mennek azok az élek, amelyek a csúcsból mentek. (Szemléletesen ez azt jelenti, hogy az új csúcsok a megvesztegetések kezdetei és végei, a kezdet előfeltétele az ajánlólevél, és ajánlólevelet az ember csak a vesztegetés végén kap. Ford-Bellman algoritmus. Az algoritmus egy negatív súlyú kört nem tartalmazó G=(V,E) súlyozott gráfban határozza meg egy s kezdőpontból a legrövidebb utak hosszát és a legrövidebb utak feszítőfáját. Ha a gráf tartalmaz negatív kört hamis értéket ad vissza egyébként igazat. FordBellman(G,s) {d(v):=inf Apa(v):=0} d(s):=0 for i=1 to V -1 {for (u,v) in E {if d(v)>d(u)+c(u,v) then {d(v):=d(u)+c(u,v) apa(v):=u}}} for (u,v) in E {if d(v)>d(u)+c(u,v) then return False} return True Legrövidebb utakat meghatározó algoritmus körmentes irányított gráfokban. Elsőként a csúcsoknak vesszük a topologikus rendezés szerinti sorrendjét. Ekkor egy s pontból csak azon pontokba vezet út, amelyek a sorrendben s után jönnek. s-ből az utána jövő csúcsokba a legrövidebb utak fáját a következő algoritmussal kaphatjuk meg. Kormentes(G,s) {d(v):=inf Apa(v):=0} d(s):=0 3
4 for(u in V a topologikus sorrendben) for (v in Ki(u)) {if d(v)>d(u)+c(u,v) then {d(v):=d(u)+c(u,v) Apa(v):=u}} Helyesség: Indukcióval látható, hogy minden pont esetén d(u) = δ(s, u) fennáll, amikor a külső for ciklusban sorra kerül. Floyd Warshall algoritmus A feladat egy súlyozott gráfban minden pontpárra a legrövidebb utak megkeresése. Az input a súlyozott gráf. Outputként egy mátrixot adunk meg, amely a legrövidebb utakat tartalmazza, továbbá egy segédmátrixot, amely minden pontpárra tartalmazza a legrövidebb út első pontját, így a mátrix alapján a legrövidebb út egyszerűen megkapható. A feladatot dinamikus programozással oldjuk meg. Legyen V = 1...n és c(i, j) =, ha (i, j) / E, legyen G(i, j) = c(i, j) ha i j és G(i,i) = 0, i = 1,...,n. Részproblémákra bontás: i, j {1,...,n}-ra és k {0,1,...,n}-re legyen D k (i, j)=az i-ből j-be vezető olyan utak hosszának minimuma, amelyek legfeljebb az {1,...,k} belső pontokon mennek keresztül. Ekkor D n (i, j) = δ(i, j) és D 0 (i, j) = G(i, j)., Rekurzív összefüggés (k 1): D k (i, j) = min{d k 1 (i, j),d k 1 (i,k) + D k 1 (k, j)} Megjegyzés: A rekurzíó kiszámítása egyetlen tömbben megoldható, mert D k 1 (i,k) = D k (i,k) és D k 1 (k, j) = D k (k, j) Floyd Warshall algoritmus FloydWarshall(G) for i=1 to n {for j=1 to n {D[i,j]:=G[i,j] if D[i,j]<INF then Elso[i,j]:=j}} for k=1 to n {for i=1 to n {for j=1 to n If D[i,k]+D[k,j]<D[i,j] then {D[i,j]:=D[i,k]+D[k,j] Elso[i,j]:=Elso[i,k]}}} Futási idő: Θ(n 3 ) A G = (V,E) gráf tranzitív lezártja az a G = (V,E ) gráf, ahol E = {(u,v) : u v}. Egy lehetséges algoritmus G kiszámítására: vegyük azt a gráfot, amelyben minden létező él súlya 1, és alkalmazzuk a Floyd-Warshall algoritmust. Az i és j pontok között akkor és csak akkor van út G-ben, ha távolságuk nem. Megjegyzés: Azonban a Floyd-Warshall algoritmus egyszerű módosításával (Boolean értékeket használva a távolságok helyett) hatékonyabb megoldást kapunk. Minimális feszítőfák 4
5 Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra: C(T ) = (u,v) T c(u,v) Az F = (V,T) gráf minimális feszitőfája G-nek, ha F feszitőfája G-nek, és C(T) minimális Legyen A F valamely (V,F) minimális feszítőfára, és (u,v) E. Definíció (u,v) biztonságos él A-ra nézve, ha A {(u,v)} is része valamely minimális feszítőfának. Elvi algoritmus A := /0 While A nem feszítőfa (u,v) biztonságos él keresése; A := A {(u,v)} Definíció: A G = (V,E) gráf vágása: (S,V \ S), ahol S V ; Definíció: (u,v) E keresztél az (S,V \ S) vágásra, ha u S és v V \ S, vagy u V \ S és v S. Az (S,V \ S) vágás elkerüli az A E élhalmazt, ha A-ban nincs keresztél. Definíció: (u,v) könnyű él az (S,V \ S) vágásra, ha a legkisebb c-értékű (súlyú) keresztél. Tétel: Ha A része a G = (V,E,c) valamely minimális feszítőfájának és elkerüli az (S,V \ S) vágást, továbbá (u, v) könnyű él az (S,V \ S) vágásra, akkor (u,v) biztonságos él A-ra nézve. Bizonyítás: Legyen T = (V,F) egy olyan minimális feszítőfa, amelyre A F. Ha (u,v) F, akkor az állítás nyilvánvaló. Ha (u,v) / F, akkor (u,v)-t hozzá véve az F éleihez kört kapunk. Mivel u és v az S vágás különböző oldalán vannak, ezért van a körben egy másik (x,y) keresztél. Ekkor az F := F \ {(x,y)} {(u,v)} élhalmaz is feszítőfája lesz G-nek. Továbbá c(u,v) c(x,y) miatt C(F ) C(F), így szintén minimális. Kruskal algoritmusa Kruskal(G,w) Letesit(A: halmaz) for (v V ) Halmazt Keszit(v) rendezzük E éleit w szerint növekvő sorrendbe for (u,v) E esetén a súly szerinti sorrendben If Halmazt Keres(u) Halmazt Keres(v) A := A {(u,v)} Egyesít(u,v) Megvalósítás: Unio Holvan adattípussal. Helyesség: Az általános tétel alapján, vágásnak olyan vágást használva, ahol az egyik halmaz az u-tartalmazó részfa az aktuális feszítő erdőből. Futási idő: O( E log V ) Példa A Kruskal algoritmus a következő sorrendben választja be az éleket: (a,b),(c,e),(d, f ),(a,c),(d,e), Kiskérdések jövő utáni hétre 5
6 b a c e 2 d 3 f 1 1. ábra. Dijskstra algoritmus Ford Bellman algoritmus Floyd Warshall algoritmus Kruskal algoritmus Szorgalmi Útvonalak Adott egy gráf és annak egy kiválasztott éle. A feladat az összes olyan pontpár meghatározása a gráfban, amelyek között csak olyan út van, ami átmegy a kiválasztott élen. Adunk egy O(n 3 ) futási idejű algoritmust, amely ezeket a pontpárokat meghatározza. Beküldés: cimreh@inf.u-szeged.hu, Pszeudókód +magyarázat + futási idő elemzés első öt megoldó 8-8 pont a második öt megoldó 5-5 pont A szerzett plusszpontok a vizsga minimumkövetelményébe nem számítanak bele. 6
Példa Hajtsuk végre az 1 pontból a Dijkstra algoritmust az alábbi gráfra. (A mátrixban a c i j érték az (i, j) él hossza, ha nincs él.
Legrövidebb utak súlyozott gráfokban A feladat egy súlyozott gráfban egy adott pontból kiinduló legrövidebb utak megkeresése. Az input a súlyozott gráf és a kiindulási s pont. Outputként egy legrövidebb
Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra:
Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra: C(T ) = (u,v) T c(u,v) Az F = (V,T) gráf minimális feszitőfája G-nek,
Gráfok, definíciók. Minden irányítatlan G = (V,E) gráf olyan irányított gráfnak tekinthető, amelyre teljesül, hogy
Gráfok, definíciók Irányítatlan gráf: G = (V,E), ahol E rendezetlen (a,b),a,b V párok halmaza. Irányított gráf: G = (V,E) E rendezett (a,b) párok halmaza; E V V. Címkézett (súlyozott) gráf: G = (V,E,C)
Elmaradó óra. Az F = (V,T) gráf minimális feszitőfája G-nek, ha. F feszitőfája G-nek, és. C(T) minimális
Elmaradó óra A jövő heti, november 0-dikei óra elmarad. Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra: C(T ) = (u,v)
Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra:
Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra: C(T ) = (u,v) T c(u,v) Az F = (V,T) gráf minimális feszitőfája G-nek,
Gráfok, definíciók. Gráfok ábrázolása. Az adott probléma megoldásához ténylegesen mely műveletek szükségesek. Ábrázolások. Példa:
Gráfok, definíciók Irányítatlan gráf: G = (V,E), ahol E rendezetlen (a,b),a,b V párok halmaza. Irányított gráf: G = (V,E) E rendezett (a,b) párok halmaza; E V V. Címkézett (súlyozott) gráf: G = (V,E,C)
Melykeres(G) for(u in V) {szin(u):=feher Apa(u):=0} for(u in V) {if szin(u)=feher then MBejar(u)}
Mélységi keresés Ez az algoritmus a gráf pontjait járja be, eredményképpen egy mélységi feszítőerdőt ad vissza az Apa függvény által. A pontok bejártságát színekkel kezeljük, fehér= érintetlen, szürke=meg-
Algoritmuselmélet. Legrövidebb utak, Bellmann-Ford, Dijkstra. Katona Gyula Y.
Algoritmuselmélet Legrövidebb utak, Bellmann-Ford, Dijkstra Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 3. előadás Katona Gyula Y. (BME
Gráfok 2. Legrövidebb utak, feszítőfák. Szoftvertervezés és -fejlesztés II. előadás. Szénási Sándor
Gráfok 2. Legrövidebb utak, feszítőfák előadás http://nik.uni-obuda.hu/sztf2 Szénási Sándor Óbudai Egyetem,Neumann János Informatikai Kar Legrövidebb utak keresése Minimális feszítőfa keresése Gráfok 2
5/1. tétel: Optimalis feszítőfák, Prim és Kruskal algorithmusa. Legrövidebb utak graphokban, negatív súlyú élek, Dijkstra és Bellman Ford algorithmus.
5/1. tétel: Optimalis feszítőfák, Prim és Kruskal algorithmusa. Legrövidebb utak graphokban, negatív súlyú élek, Dijkstra és Bellman Ford algorithmus. Optimalis feszítőfák Egy összefüggő, irányítatlan
Melykeres(G) for(u in V) {szin(u):=feher Apa(u):=0} for(u in V) {if szin(u)=feher then MBejar(u)}
Példa Adott egy n n-es sakktábla. Az (1,1) mezőn áll egy huszár. Határozzuk meg eljuthat -e az (u,v) mezőre, ha igen adjunk meg egy legkevesebb lépésből álló utat! Adjunk algoritmust, ami megoldja a feladatot.
Gráfalgoritmusok ismétlés ősz
Gráfalgoritmusok ismétlés 2017. ősz Gráfok ábrázolása Egy G = (V, E) gráf ábrázolására alapvetően két módszert szoktak használni: szomszédsági listákat, illetve szomszédsági mátrixot. A G = (V, E) gráf
Melykeres(G) for(u in V) {szin(u):=feher Apa(u):=0} for(u in V) {if szin(u)=feher then MBejar(u)}
Példa Adott egy sziget ahol 42 kaméleon lakik. A kaméleonok három színt vehetnek fel piros, kék és zöld. Ha két különböző színű kaméleon találkozik, akkor megijednek és mindkettő átváltoztatja a színét
Algoritmuselmélet. Mélységi keresés és alkalmazásai. Katona Gyula Y.
Algoritmuselmélet Mélységi keresés és alkalmazásai Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 9. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet
26. MINIMÁLIS KÖLTSÉGŰ UTAK MINDEN CSÚCSPÁRRA
26. MINIMÁLIS KÖLTSÉGŰ UTAK MINDEN CSÚCSPÁRRA Az előző két fejezetben tárgyalt feladat általánosításaként a gráfban található összes csúcspárra szeretnénk meghatározni a legkisebb költségű utat. A probléma
Gráf-algoritmusok Legrövidebb utak
https://www.cs.princeton.edu/~rs/algsds07/15shortestpaths.pdf Gráf-algoritmusok Legrövidebb utak Sapientia-EMTE 2017-18 Typesetting in TeX Két pont között, akkor van él, ha közéjük 1 2 3 4 eső szó szekvencia
Algoritmuselmélet 7. előadás
Algoritmuselmélet 7. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Március 11. ALGORITMUSELMÉLET 7. ELŐADÁS 1 Múltkori
Algoritmusok bonyolultsága
Algoritmusok bonyolultsága 5. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm 1 / 27 Gazdaságos faváz Kruskal-algoritmus Joseph Kruskal (1928 2010) Legyen V = {v 1, v 2,..., v n }, E = {e 1, e 2,...,
Edényrendezés. Futási idő: Tegyük fel, hogy m = n, ekkor: legjobb eset Θ(n), legrosszabb eset Θ(n 2 ), átlagos eset Θ(n).
Edényrendezés Tegyük fel, hogy a rendezendő H = {a 1,...,a n } halmaz elemei a [0,1) intervallumba eső valós számok. Vegyünk m db vödröt, V [0],...,V [m 1] és osszuk szét a rendezendő halmaz elemeit a
Algoritmuselmélet. Gráfok megadása, szélességi bejárás, összefüggőség, párosítás. Katona Gyula Y.
Algoritmuselmélet Gráfok megadása, szélességi bejárás, összefüggőség, párosítás Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 2. előadás
A számítástudomány alapjai
A számítástudomány alapjai Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem Legszélesebb utak Katona Gyula Y. (BME SZIT) A számítástudomány
Neumann János Tehetséggondozó Program Gráfalgoritmusok II.
Neumann János Tehetséggondozó Program Gráfalgoritmusok II. Horváth Gyula horvath@inf.elte.hu 1. A szélességi bejárás alkalmazásai. Nyilvánvaló, hogy S(0) = {r}. Jelölés: D(p) = δ(r, p) Nyilvánvaló, hogy
Fibonacci számok. Dinamikus programozással
Fibonacci számok Fibonacci 1202-ben vetette fel a kérdést: hány nyúlpár születik n év múlva, ha feltételezzük, hogy az első hónapban csak egyetlen újszülött nyúl-pár van; minden nyúlpár, amikor szaporodik
Mohó algoritmusok. Példa:
Mohó algoritmusok Optimalizálási probléma megoldására szolgáló algoritmus sokszor olyan lépések sorozatából áll, ahol minden lépésben adott halmazból választhatunk. Ezt gyakran dinamikus programozás alapján
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2015. ősz 1. Diszkrét matematika 2.C szakirány 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2015.
10. Gráf absztrakt adattípus, gráfok ábrázolása
Gráf absztrakt adattípus, gráfok ábrázolása Definíciók Irányítatlan gráf:g = (V, E) E rendezetlen {a,b,a,b V párok halmaza Irányított gráf:g = (V,E) E rendezett (a,b) párok halmaza; E V V Multigráf: G
Gráfelméleti feladatok. c f
Gráfelméleti feladatok d e c f a b gráf, csúcsok, élek séta: a, b, c, d, e, c, a, b, f vonal: c, d, e, c, b, a út: f, b, a, e, d (walk, lanţ) (trail, lanţ simplu) (path, lanţ elementar) 1 irányított gráf,
Amortizációs költségelemzés
Amortizációs költségelemzés Amennyiben műveleteknek egy M 1,...,M m sorozatának a futási idejét akarjuk meghatározni, akkor egy lehetőség, hogy külön-külön minden egyes művelet futási idejét kifejezzük
Adatszerkezetek II. 3. előadás
Adatszerkezetek II. 3. előadás Körmentes-e egy irányítatlan gráf? Alapötlet: Ha a bejárás során minden szürke pontból csak fehér pontba vezet él, akkor a gráf körmentes. 2013.02.27. 2 Körmentes?(p): Szín(p):=szürke;
A félév során előkerülő témakörök
A félév során előkerülő témakörök rekurzív algoritmusok rendező algoritmusok alapvető adattípusok, adatszerkezetek, és kapcsolódó algoritmusok dinamikus programozás mohó algoritmusok gráf algoritmusok
Geometriai algoritmusok
Geometriai algoritmusok Alapfogalmak Pont: (x,y) R R Szakasz: Legyen A,B két pont. Az A és B pontok által meghatározott szakasz: AB = {p = (x,y) : x = aa.x + (1 a)b.x,y = aa.y + (1 a)b.y),a R,0 a 1. Ha
Számjegyes vagy radix rendezés
Számláló rendezés Amennyiben a rendezendő elemek által felvehető értékek halmazának számossága kicsi, akkor megadható lineáris időigényű algoritmus. A bemenet a rendezendő elemek egy n méretű A tömbben
Dijkstra algoritmusa
Budapesti Fazekas és ELTE Operációkutatási Tanszék 201. július 1. Legrövidebb utak súlyozatlan esetben v 4 v 3 Feladat Hány élből áll a legrövidebb út ezen a gráfon az s és t csúcsok között? v v 6 v 7
Kupac adatszerkezet. A[i] bal fia A[2i] A[i] jobb fia A[2i + 1]
Kupac adatszerkezet A bináris kupac egy majdnem teljes bináris fa, amely minden szintjén teljesen kitöltött kivéve a legalacsonyabb szintet, ahol balról jobbra haladva egy adott csúcsig vannak elemek.
bármely másikra el lehessen jutni. A vállalat tudja, hogy tetszőlegesen adott
. Minimális súlyú feszítő fa keresése Képzeljük el, hogy egy útépítő vállalat azt a megbízást kapja, hogy építsen ki egy úthálózatot néhány település között (a települések között jelenleg nincs út). feltétel
Gráfelmélet jegyzet 2. előadás
Gráfelmélet jegyzet 2. előadás Készítette: Kovács Ede . Fák Tétel. : A következők ekvivalensek a T gráfra: (i) T összefüggő, e E. T e már nem összefüggő (ii) T összefüggő és körmentes. (iii) x, y V T!
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.
HÁLÓZAT Maximális folyam, minimális vágás
HÁLÓZAT Maximális folyam, minimális vágás HÁLÓZAT informálisan Hálózat Irányított gráf Mindegyik élnek adott a (nemnegatív) kapacitása Spec csúcsok: Forrás (Source): a kiindulási pont csak ki élek Nyelő
24. MINIMÁLIS KÖLTSÉGŰ UTAK I.
24. MINIMÁLIS KÖLTSÉGŰ UTAK I. Az útvonaltervezés az egyik leggyakrabban végrehajtott eljárása a gráfok alkalmazásai körében. A feladat például a közlekedésben jelentkezik. A gráfot itt az a térkép jelenti,
Algoritmuselmélet 18. előadás
Algoritmuselmélet 18. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Május 7. ALGORITMUSELMÉLET 18. ELŐADÁS 1 Közelítő algoritmusok
Euler tétel következménye 1:ha G összefüggő síkgráf és legalább 3 pontja van, akkor: e 3
Síkgráfok Kuratowski-tétel: egy gráf akkor és csak akkor síkba rajzolható gráf, ha nincs olyan részgráfja, ami a K 5 -el, vagy a K 3,3 -altopologikusan izomorf (homeomorf). Euler síkgráfokra vonatkozó
2: Minimális feszítőfák, legrövidebb utak. HálózatokII, 2007
Hálózatok II 007 : Minimális feszítőfák, legrövidebb utak Fák, Feszítőfák Egy irányítatlan gráf egy fa, ha összefügő és nem tartalmaz kört. Egy irányítatlan G=(V,E) gráf feszítőfája egy olyan fa, melynek
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Diszkrét matematika 1. estis képzés
Diszkrét matematika 1. estis képzés 2019. tavasz 1. Diszkrét matematika 1. estis képzés 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
Gráfok. Programozás II. előadás. Szénási Sándor.
Gráfok előadás http://nik.uni-obuda.hu/prog2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar Tárolási módok Szélességi bejárás Mélységi bejárás Legrövidebb
Ugrólisták. RSL Insert Example. insert(22) with 3 flips. Runtime?
Ugrólisták Ugrólisták Ugrólisták Ugrólisták RSL Insert Example insert(22) with 3 flips 13 8 29 20 10 23 19 11 2 13 22 8 29 20 10 23 19 11 2 Runtime? Ugrólisták Empirical analysis http://www.inf.u-szeged.hu/~tnemeth/alga2/eloadasok/skiplists.pdf
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Sapientia - Erdélyi Magyar TudományEgyetem (EMTE) Csíkszereda IRT- 4. kurzus. 3. Előadás: A mohó algoritmus
Csíkszereda IRT-. kurzus 3. Előadás: A mohó algoritmus 1 Csíkszereda IRT. kurzus Bevezetés Az eddig tanult algoritmus tipúsok nem alkalmazhatók: A valós problémák nem tiszta klasszikus problémák A problémák
Algoritmuselmélet 11. előadás
Algoritmuselmélet 11. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Március 26. ALGORITMUSELMÉLET 11. ELŐADÁS 1 Kruskal
1. ábra. Számláló rendezés
1:2 2:3 1:3 1,2,3 1:3 1,3,2 3,1,2 2,1,3 2:3 2,3,1 3,2,1 1. ábra. Alsó korlát rendezési algoritmusokra Minden olyan rendezési algoritmusnak a futását, amely elempárok egymással
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Algoritmuselmélet. Bonyolultságelmélet. Katona Gyula Y.
Algoritmuselmélet Bonyolultságelmélet Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 12. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet
A gráffogalom fejlődése
A gráffogalom fejlődése ELTE Informatikai Kar, Doktori Iskola, Budapest Batthyány Lajos Gimnázium, Nagykanizsa erdosne@blg.hu a prezentáció kézirata elérhető: http://people.inf.elte.hu/szlavi/infodidact16/manuscripts/ena.pdf
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. ősz 1. Diszkrét matematika 2.C szakirány 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.
Programozási módszertan. Mohó algoritmusok
PM-08 p. 1/17 Programozási módszertan Mohó algoritmusok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu PM-08 p. 2/17 Bevezetés Dinamikus programozás
Partíció probléma rekurzíómemorizálással
Partíció probléma rekurzíómemorizálással A partíciószám rekurzív algoritmusa Ω(2 n ) műveletet végez, pedig a megoldandó részfeladatatok száma sokkal kisebb O(n 2 ). A probléma, hogy bizonyos már megoldott
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2016. tavasz 1. Diszkrét matematika 2. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
INFORMATIKA javítókulcs 2016
INFORMATIKA javítókulcs 2016 ELMÉLETI TÉTEL: Járd körbe a tömb fogalmát (Pascal vagy C/C++): definíció, egy-, két-, több-dimenziós tömbök, kezdőértékadás definíciókor, tömb típusú paraméterek átadása alprogramoknak.
Az optimális megoldást adó algoritmusok
Az optimális megoldást adó algoritmusok shop ütemezés esetén Ebben a fejezetben olyan modellekkel foglalkozunk, amelyekben a munkák több műveletből állnak. Speciálisan shop ütemezési problémákat vizsgálunk.
A MAXIMUM-KUPACOL eljárás helyreállítja az A[i] elemre a kupactulajdonságot. Az elemet süllyeszti cserékkel mindaddig, amíg a tulajdonság sérül.
Kiválasztás kupaccal A bináris kupac egy majdnem teljes bináris fa, amely minden szintjén teljesen kitöltött kivéve a legalacsonyabb szintet, ahol balról jobbra haladva egy adott csúcsig vannak elemek.
Algoritmizálás, adatmodellezés tanítása 8. előadás
Algoritmizálás, adatmodellezés tanítása 8. előadás Elágazás és korlátozás A backtrack alkalmas-e optimális megoldás keresésére? Van költség, és a legkisebb költségű megoldást szeretnénk előállítani. Van
30. ERŐSEN ÜSSZEFÜGGŐ KOMPONENSEK
30. ERŐSEN ÜSSZEFÜGGŐ KOMPONENSEK A gráfos alkalmazások között is találkozunk olyan problémákkal, amelyeket megoldását a részekre bontott gráfon határozzuk meg, majd ezeket alkalmas módon teljes megoldássá
1: Bevezetés: Internet, rétegmodell Alapok: aszimptótika, gráfok. HálózatokII, 2007
Hálózatok II 2007 1: Bevezetés: Internet, rétegmodell Alapok: aszimptótika, gráfok 1 Az előadáshoz Előadás: Szerda 17:00 18:30 Gyakorlat: nincs Vizsga írásbeli Honlap: http://people.inf.elte.hu/lukovszki/courses/g/07nwii
Dinamikus programozás - Szerelőszalag ütemezése
Dinamikus programozás - Szerelőszalag ütemezése A dinamikus programozás minden egyes részfeladatot és annak minden részfeladatát pontosan egyszer oldja meg, az eredményt egy táblázatban tárolja, és ezáltal
Diszkrét matematika 2.
Diszkrét matematika 2. 2018. szeptember 21. 1. Diszkrét matematika 2. 2. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. szeptember 21. Gráfelmélet
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.
További forgalomirányítási és szervezési játékok. 1. Nematomi forgalomirányítási játék
További forgalomirányítási és szervezési játékok 1. Nematomi forgalomirányítási játék A forgalomirányítási játékban adott egy hálózat, ami egy irányított G = (V, E) gráf. A gráfban megengedjük, hogy két
Általános algoritmustervezési módszerek
Általános algoritmustervezési módszerek Ebben a részben arra mutatunk példát, hogy miként használhatóak olyan általános algoritmustervezési módszerek mint a dinamikus programozás és a korlátozás és szétválasztás
Egyesíthető prioritási sor
Egyesíthető prioritási sor Értékhalmaz: EPriSor = S E, E-n értelmezett a lineáris rendezési reláció. Műveletek: S,S 1,S 2 : EPriSor, x : E {Igaz} Letesit(S, ) {S = /0} {S = S} Megszuntet(S) {} {S = S}
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Totális Unimodularitás és LP dualitás. Tapolcai János
Totális Unimodularitás és LP dualitás Tapolcai János tapolcai@tmit.bme.hu 1 Optimalizálási feladat kezelése NP-nehéz Hatékony megoldás vélhetően nem létezik Jó esetben hatékony algoritmussal közelíteni
Algoritmizálás. Horváth Gyula Szegedi Tudományegyetem Természettudományi és Informatikai Kar
Algoritmizálás Horváth Gyula Szegedi Tudományegyetem Természettudományi és Informatikai Kar horvath@inf.u-szeged.hu 0.1. Az algoritmikus tudás szintjei Ismeri (a megoldó algoritmust) Érti Le tudja pontosan
Adatszerkezetek II. 2. előadás
Adatszerkezetek II. 2. előadás Gráfok bejárása A gráf bejárása = minden elem feldolgozása Probléma: Lineáris elrendezésű sokaság (sorozat) bejárása könnyű, egyetlen ciklussal elvégezhető. Hálós struktúra
Tuesday, March 6, 12. Hasító táblázatok
Hasító táblázatok Halmaz adattípus U (kulcsuniverzum) K (aktuális kulcsok) Függvény adattípus U (univerzum) ÉT (értelmezési tartomány) ÉK (érték készlet) Milyen az univerzum? Közvetlen címzésű táblázatok
1. ábra. Egy rekurzív preorder bejárás. Egy másik rekurzív preorder bejárás
Preorder ejárás Fa bejárásán olyan algoritmust értünk, amelynek bemenete egy F fa és egy M művelet, és az algoritmus adott sorrendben pontosan egyszer végrehajtja az M műveletet a fa pontjaiban lévő adatokra.
Gráfok bejárása. Szlávi Péter, Zsakó László: Gráfok II :17
Gráfok 2. előadás Gráfok bejárása A gráf bejárása = minden elem feldolgozása Probléma: Lineáris elrendezésű sokaság (sorozat) bejárása könnyű, egyetlen ciklussal elvégezhető. Hálós struktúra bejárása nem
Gráfok 1. Tárolási módok, bejárások. Szoftvertervezés és -fejlesztés II. előadás. Szénási Sándor
Gráfok 1. Tárolási módok, bejárások előadás http://nik.uni-obuda.hu/sztf2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar Gráfok 1. Tárolási módok Szélességi
Egyesíthető prioritási sor
Egyesíthető prioritási sor Értékhalmaz: EPriSor = S E, E-n értelmezett a lineáris rendezési reláció. Műveletek: S,S 1,S 2 : EPriSor, x : E {Igaz} Letesit(S, ) {S = /0} {S = S} Megszuntet(S) {} {S = S}
Módosítható Prioritási sor Binomiális kupaccal. Wednesday, March 21, 12
Módosítható Prioritási sor Binomiális kupaccal modosit(x,k) {! if (k>x.kulcs) {!! x.kulcs=k ;!! y=x!! z=x.apa ;!! while(z!=nil and y.kulcs
Matematikai problémák vizsgálata a Maple programcsomag segítségével
Matematikai problémák vizsgálata a Maple programcsomag segítségével Tengely Szabolcs tengely@science.unideb.hu http://www.math.unideb.hu/~tengely Tengely Szabolcs 2014.04.26 Matematikai problémák és a
Programozási módszertan. Dinamikus programozás: szerelőszalag ütemezése Mátrixok véges sorozatainak szorzása
PM-06 p. 1/28 Programozási módszertan Dinamikus programozás: szerelőszalag ütemezése Mátrixok véges sorozatainak szorzása Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu
Korlátozás és szétválasztás elve. ADAGOLO adattípus
Korlátozás és szétválasztás elve ADAGOLO adattípus Értékhalmaz: E Adagolo : A E Műveletek: A : Adagolo, x : E {Igaz} Letesit(A) {A = /0} {A = A} Megszuntet(A) {Igaz} {A = A} Uresit(A) {A = /0} {A = A}
Az B sorozatban a pontok helyes preorder sorrendben vannak. A preorder bejárásban p k -t közvetlenül q m követi.
Nemrekurzív preorder bejárás veremmel Ismét feltesszük, hogy a fa a g gyökérpontja által van megadva elsőfiú testvér reprezentációval, és az M műveletet akarjuk minden ponton végrehajtani. PreorderV(g,M)
Kupac adatszerkezet. 1. ábra.
Kupac adatszerkezet A bináris kupac egy majdnem teljes bináris fa, amely minden szintjén teljesen kitöltött kivéve a legalacsonyabb szintet, ahol balról jobbra haladva egy adott csúcsig vannak elemek.
Arany Dániel Matematikai Tanulóverseny 2015/2016-os tanév 1. forduló Haladók III. kategória
Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 2015/2016-os tanév 1. forduló Haladók III. kategória Megoldások és javítási útmutató 1. Az a és b befogójú derékszögű háromszögnek
Számítógép hálózatok, osztott rendszerek 2009
Számítógép hálózatok, osztott rendszerek 2009 1: Bevezetés: Internet, rétegmodell Alapok: aszimptótika, gráfok 1 Az előadáshoz Előadás: Hétfő 10:00 12:00 óra Gyakorlat: Hétfő 14:00-16:00 óra Honlap: http://people.inf.elte.hu/lukovszki/courses/0910nwmsc
BBTE Matek-Infó verseny mintatételsor Informatika írásbeli vizsga
BABEȘ BOLYAI TUDOMÁNYEGYETEM MATEMATIKA ÉS INFORMATIKA KAR A. tételsor (30 pont) 1. (5p) Tekintsük a következő alprogramot: Alprogram f(a): Ha a!= 0, akkor visszatérít: a + f(a - 1) különben visszatérít
Algoritmusok helyességének bizonyítása. A Floyd-módszer
Algoritmusok helyességének bizonyítása A Floyd-módszer Algoritmusok végrehajtása Egy A algoritmus esetében a változókat három változótípusról beszélhetünk, melyeket az X, Y és Z vektorokba csoportosítjuk
Felvételi vizsga mintatételsor Informatika írásbeli vizsga
BABEȘ BOLYAI TUDOMÁNYEGYETEM MATEMATIKA ÉS INFORMATIKA KAR A. tételsor (30 pont) Felvételi vizsga mintatételsor Informatika írásbeli vizsga 1. (5p) Egy x biten tárolt egész adattípus (x szigorúan pozitív
Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz
Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz A vizsga menete: a vizsga írásbeli és szóbeli részből áll. Az írásbeli beugrón az alábbi kérdések közül szerepel összesen 12 darab, mindegyik egy pontot
Analízis előadás és gyakorlat vázlat
Analízis előadás és gyakorlat vázlat Készült a PTE TTK GI szakos hallgatóinak Király Balázs 2010-11. I. Félév 2 1. fejezet Számhalmazok és tulajdonságaik 1.1. Nevezetes számhalmazok ➀ a) jelölése: N b)
Előfeltétel: legalább elégséges jegy Diszkrét matematika II. (GEMAK122B) tárgyból
ÜTEMTERV Programozás-elmélet c. tárgyhoz (GEMAK233B, GEMAK233-B) BSc gazdaságinformatikus, programtervező informatikus alapszakok számára Óraszám: heti 2+0, (aláírás+kollokvium, 3 kredit) 2019/20-es tanév
III. Gráfok. 1. Irányítatlan gráfok:
III. Gráfok 1. Irányítatlan gráfok: Jelölés: G=(X,U), X a csomópontok halmaza, U az élek halmaza X={1,2,3,4,5,6}, U={[1,2], [1,4], [1,6], [2,3], [2,5], [3,4], [3,5], [4,5],[5,6]} Értelmezések: 1. Fokszám:
A DFS algoritmus. Összeállította: Szeszlér Dávid, c BME Számítástudományi és Információelméleti Tanszék, 2015, 2016.
A DFS algoritmus Korábban már megismerkedtünk a BFS (Szélességi keresés) algoritmussal, amely bejárja egy adott G gráf adott s csúcsából elérhető csúcsokat és eközben több feladatot is hatékonyan megold:
Bonyolultságelmélet. Monday 26 th September, 2016, 18:50
Bonyolultságelmélet Monday 26 th September, 2016, 18:50 A kiszámítás modelljei 2 De milyen architektúrán polinom? A kiszámításnak számos (matematikai) modellje létezik: Általános rekurzív függvények λ-kalkulus
... fi. ... fk. 6. Fabejáró algoritmusok Rekurzív preorder bejárás (elsőfiú-testvér ábrázolásra)
6. Fabejáró algoritmusok Fa bejárásán olyan algoritmust értünk, amelynek bemenete egy F fa és egy M művelet, és az algoritmus adott sorrendben pontosan egyszer végrehajtja az M műveletet a fa pontjaiban
Sali Attila Budapest Műszaki és Gazdaságtudományi Egyetem. I. B. 137/b március 16.
Bevezetés a Számításelméletbe II. 6. előadás Sali Attila Budapest Műszaki és Gazdaságtudományi Egyetem Számítástudományi és Információelméleti Tsz. I. B. 7/b sali@cs.bme.hu 004 március 6. A kritikus út
GRÁFELMÉLET. 7. előadás. Javító utak, javító utak keresése, Edmonds-algoritmus
GRÁFELMÉLET 7. előadás Javító utak, javító utak keresése, Edmonds-algoritmus Definíció: egy P utat javító útnak nevezünk egy M párosításra nézve, ha az út páratlan hosszú, kezdő- és végpontjai nem párosítottak,
Adatszerkezetek II. 1. előadás
Adatszerkezetek II. 1. előadás Gráfok A gráf fogalma: Gráf(P,E): P pontok (csúcsok) és E P P élek halmaza Fogalmak: Irányított gráf : (p 1,p 2 ) E-ből nem következik, hogy (p 2,p 1 ) E Irányítatlan gráf
Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.
2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az