Gráfelméleti feladatok. c f

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Gráfelméleti feladatok. c f"

Átírás

1 Gráfelméleti feladatok d e c f a b gráf, csúcsok, élek séta: a, b, c, d, e, c, a, b, f vonal: c, d, e, c, b, a út: f, b, a, e, d (walk, lanţ) (trail, lanţ simplu) (path, lanţ elementar) 1

2 irányított gráf, irányított csúcsok, irányított élek irányított séta irányított vonal irányított út (directed walk, drum) (directed trail, drum simplu) (directed path, drum elementar) 2

3 Gráfnak nevezzük a G = (V, E, G) rendezett hármast, ahol V csúcsok (vagy szögpontok esetleg pontok) nem üres halmaza, E élek halmaza, G : E V V. Ha G(e 1 ) = G(e 2 ), akkor e 1 és e 2 párhuzamos vagy többszörös élek. Ha G(e) = {a, a}, akkor az e él hurokél. Ha G(e) = {a, b}, akkor azt mondjuk, hogy az a és b csúcsokat az e él köti össze, a és b szomszédosak, az e él illeszkedik az a és b csúcsokra, az a és b csúcsok az e él végpontjai. 3

4 Az a és b csúcsokra illeszkedő (párhuzamos) élek halmaza: G 1 (a, b) = {e E G(e) = {a, b}}. Legyen x a G gráf egy csúcsa. Jelöljük N G (x)-szel vagy csak N(x)-szel az x-szel szomszédos csúcsok halmazát: vagy N G (x) = {y V (G) e E(G), G(e) = {x, y}} N G (x) = {y V (G) G 1 (x, y).} A G gráfban az x-hez illeszkedő élek (amelyek nem hurokélek) halmaza: I G (x) = {e E(G) y V (G), y x, G(e) = {x, y}} Az x-hez illeszkedő hurokélek halmaza: L G (x) = {e E(G) G(e) = {x, x}} 4

5 Az x csúcs fokszáma vagy foka, amelyet ϕ(x)-szel jelölünk, az x-hez illeszkedő élek száma (a hurokéleket kétszer számolva): ϕ(x) = I G (x) + 2 L G (x). Ha ϕ(x) = 0, akkor x izolált csúcs. Ha ϕ(x) = 1, akkor x levél. Egy többszörös éleket és hurokéleket nem tartalmazó gráfot egyszerű gráfnak nevezzük. Ha G egyszerű gráf, akkor G 1 (a, b) 1 tetszőleges a, b V csúcsokra, és G 1 (a, a) = tetszőleges a V csúcsra, tehát G(e) = {a, b} helyett egyszerűen írhatunk {a, b}-t, amely a megfelelő élt jelenti. Ekkor a gráf is jelölhető egyszerűbben: G = (V, E). 5

6 Egyszerű gráfban az x fokszáma vagy foka, amelynek jele szintén ϕ(x) vagy ϕ G (x), az N G (x) halamz elemszáma: ϕ(x) = N G (x). Példák. V (G 1 ) = {1, 2, 3, 4, 5}, E(G 1 ) = {e 1, e 2, e 3, e 4, e 5, e 6, e 7 }, G(e 1 ) = G(e 2 ) = G(e 3 ) = {1, 4}, G(e 4 ) = {2, 4}, G(e 5 ) = {2, 1}, G(e 6 ) = {2, 3}, G(e 7 ) = {3, 4}. ϕ(1) = 4, ϕ(2) = 3, ϕ(3) = 2, ϕ(4) = 5, ϕ(5) = 0. 6

7 V (G 2 ) = {a, b, c, d, e}, E(G 2 ) = { {a, c}, {a, d}, {b, c}, {b, e}, {b, d}{e, d} } 7

8 Ha egy gráf minden fokszáma azonos, például r, akkor a gráf reguláris vagy r-reguláris. A következő gráf egy (7,14) 4-reguláris gráf. 8

9 Ha egy egyszerű gráfban bármely két csúcsot él köt össze, akkor a gráf teljes gráf. Az n-csúcsú teljes gráf jele: K n. 9

10 A G = (V, E) egyszerű gráf a G = (V, E) egyszerű gráf komplementuma vagy komplementere, ha V = V, E = { {a, b} {a, b} E }. Ha a G egyszerű gráf n-csúcsú, akkor E(G) E(G) = E(K n ). 10

11 A G 1 és G 2 gráfok izomorfak, ha létezik egy bijektív fügvény ψ : V (G 1 ) V (G 2 ), úgy, hogy ha {a, b} E(G 1 ), akkor {ψ(a), ψ(b)} E(G 2 ). Az izomorfizmust tetszőleges gráfokra is értelmezhetjük. Két G 1 és G 2 gráf izomorf, ha létezik egy ψ : V (G 1 ) V (G 2 ) bijektív függvény úgy, hogy G1 1 (a, b) = G 1 2 (ψ(a), ψ(b)) minden a, b V (G 1)-re. 11

12 Példa izomorf gráfokra. A ψ függvény: x a b c ψ(x) x 1 x 5 x 3 x 2 x 6 x 4 Izomorf gráfokban ϕ(x)=ϕ(ψ(x)) minden x V (G 1 )-re. 12

13 Irányított gráfok Irányított gráfnak nevezzük a G = (V, E, G) rendezett hármast, ahol V a csúcsok (vagy szögpontok vagy pontok) halmaza, E az irányított élek halmaza és G : E V V Ha e E és (a, b) G(e), akkor a az e él kezdőpontja, b pedig az e él végpontja. Ha egy élnek a kezdő- és végpontja egybeesik, akkor az az él hurokél. 13

14 Ebben az irányított gráfban az e 1 és e 2 élek párhuzamosak, de e 6 és e 8 nem. Ha egy irányított gráfban nincsenek párhuzamos élek és hurokélek, akkor az egyszerű irányított gráf. 14

15 Legyen G irányított gráf. Ekkor N be G (y) = {x V ( G) G 1 (x, y) } az y-ba befutó élek kezdőpontjainak halmaza N ki G (y) = {z V ( G) G 1 (y, z) } az y-ból kifutó élek véppontjainak halmaza. Egy irányított gráfban az x csúcs be-foka az x-be befutó élek száma (jelölése ϕ be (x)), az x csúcs ki-foka az x-ből kifutó élek száma (jelölése ϕ ki (x)). Ha egyszerű irányított gráfról van szó, akkor: ϕ be (x) = N be (x) ϕ ki (x) = N ki (x). 15

16 Gráfok ábrázolása 1) geometriai ábrázolás 2) szomszédsági (adjacencia) mátrixszal G = (E, V, G), V = {x 1, x 2,..., x n } A = (a ij ) i,j=1,n a szomszédsági mátrix, ahol a ij = { G 1 (x i, x j ) ha i j 2 G 1 (x i, x j ) ha i = j 16

17 ϕ(x i ) = n j=1 a ij, minden i = 1, 2,..., n Az egyszerű gráf szomszédsági mátrixa csak 0 és 1 számokat tartalmaz. Irányított gráf esetében a definíció hasonló. 17

18 3) illeszkedési (incidencia) mátrixszal G = (E, V, G), V = {x 1, x 2,..., x n }, E = {e 1, e 2,..., e m } B = (b ij ) i=1,n,j=1,m, b ij = 1 ha x i illeszjedik e j -hez és e j nem hurokél 2 ha x i illeszjedik e j -hez és e j hurokél 0 ha x i nem e j -hez. 18

19 19

20 4) listával a) Minden csúcsnak felsoroljuk a szomszédjait. x 1 x 2 x 3 x 4 x 2 x 1 x 3 x 3 x 3 x 1 x 2 x 2 x 4 x 4 x 4 x 1 x 3 x 3 Használhatunk láncolt listákat is. b) A listákat egymás után írjuk egy-egy -gal elválasztva, a végére két csillagot téve. x 2 x 3 x 4 x 1 x 3 x 3 x 1 x 2 x 2 x 4 x 4 x 1 x 3 x 3 20

21 c) A -okat elhagyjuk, és még egy listát használunk, amelyikben az egyes listák kezdőindexeit adjuk meg. x 2 x 3 x 4 x 1 x 3 x 3 x 1 x 2 x 2 x 4 x 4 x 1 x 3 x A második lista elemei az egyes listák kezdőelemeire mutatnak a következőképpen: x 2 x 3 x 4 x 1 x 3 x 3 x 1 x 2 x 2 x 4 x 4 x 1 x 3 x 3 21

22 Legrövídebb utak A szomszédsági mátrix: A = ( a ij ) a ij = i,j=1,n, ahol a ij = d (0) ij, azaz: W(v i, v j ) ha {v i, v j } E(G) (vagy (v i, v j ) E( G)) 0 ha i = j ha {v i, v j } E(G) (vagy (v i, v j ) E( G)) A Floyd Warshall-algoritmus távolsági mátrix meghatározása Floyd, Robert W. ( ) Warshall, Stephen ( ) 22

23 Kezdetben p ij := i ha d ij és i j; más esetekben p ij := 0. FloydWarshall(D 0 ) 1. D := D 0 2. for k := 1 to n do 3. for i := 1 to n do 4. for j := 1 to n do 5. if d ij > d ik + d kj then 6. d ij := d ik + d kj 7. p ij := p kj 8. return D, p 23

24 Egy u x u y utat a következő algoritmussal határozzuk meg: 1. k := n : 2. u k := y 3. while u k x do 4. u k 1 := p xuk 5. k := k 1 A keresett út: u k, u k+1,..., u n. 24

25 Példa. 25

26 A szomszédsági mátrixa és a megfelelő P mátrix kezdeti értéke: D 0 = P 0 = Az algoritmus eredménye a D és P mátrixok: D = P =

27 Részsorozatok n, d 1 d 2, s pozitív egészek, x 1, x 2,..., x n sorozat (elemei Σ-ból). (d 1, d 2 )-részsorozat: x i1, x i2,..., x is, ahol i 1 1, d 1 i j+1 i j d 2, for j = 1, 2,..., s 1, i s n, Határozzuk meg a (d 1, d 2 )-részsorozatokat! 27

28 Például: a, a, b, c, a, d, e (2, 4)-részsorozatok: (a), (a, b), (a, c), (a, b, a), (a, a), (a, c, d), (a, b, d), (a, a, e), (a, b, a, e), (a, c, e), (a, b, e), (a, d), (b), (b, a), (b, d), (b, a, e), (b, e), (c), (c, d), (c, e), (a, e), (d), (e). 28

29 x 1, x 2,..., x n elemei páronként különböznek: (d 1, d 2 )-részsorozatok számának kiszámítása: G = (V, E), ahol V = { x 1, x 2,..., x n }, E = { (x i, x j ) d 1 j i d 2, i = 1, 2,..., n, j = 1, 2,..., n }. (2,4)-részsorozatok gráfja 29

30 A gráf szomszédsági mátrixa: A = ( a ij )i=1,n j=1,n a ij = { 1, if d1 j i d 2, 0, különben, ha i = 1, 2,..., n, j = 1, 2,..., n. A gráfban nincs irányított kör, ezért A k (ahol A k = A k 1 A, A 1 = A) i-edik sorában és j-edik oszlopában lévő elem a k- hosszúságú irányított utak számát jelenti a i és a j között. Ha A 0 az egységmátrix (1 a főátlón, 0 máshol), legyen R = (r ij ): R = A 0 + A + A A k, ahol A k+1 = O (nulla mátrix). A (d 1, d 2 )-részsorozatok száma C(n; d 1, d 2 ) = n n i=1 j=1 r ij. 30

31 Warshall(A, n) 1. W := A 2. for k := 1 to n 3. do for i := 1 to n 4. do for j := 1 to n 5. do w ij := w ij + w ik w kj 6. return W R = A 0 + W. 31

32 A = Warshall-algoritmus alkalmazása után: W = , R = C(6; 2, 4) = 19, az R elemeinek összege , 32

33 Latin négyzet segítségével: a, b, c, d, e, f, g n = 7, d 1 = 2, d 2 = 4 esetében: A = {ac} {ad} {ae} {bd} {be} {bf} {ce} {cf} {cg} {df} {dg} {eg}, 33

34 {ac} {ad} {ace, ae} {adf, acf} {aeg, aceg, adg, acg} {bd} {be} {bdf, bf} {beg, bdg} {ce} {cf} {ceg, cg} {df} {dg} {eg}. Hozzászámítva az egyelemű részsorozatokat is: C(7; 2, 4) =

35 Gazdaságos feszítőfák Súlyozott gráfban egy feszítőfa értéke az éleihez rendelt súlyok összege. Adott súlyozott gráfban keressük a legkisebb értékű feszítőfát, amelyet minimális feszítőfának nevezünk. Kruskal algoritmusa A gráf éleit súlyuk szerint növekvő sorrendbe rendezzük. Az első él a sorból bekerül a leendő gazdaságos favázba (az alábbi algoritmusban a leendő favázba bekerülő éleket megcsillagozzuk). Kezdetben a gráf minden csúcsa egy-egy halmazt képez. Egy él akkor kerül be a favázba, ha végpontjai különböző halmazból valók, és ekkor a két megfelelő halmazt egyesítjük. Az algoritmus akkor ér véget, amikor a gráf minden csúcsa egy halmazban van. 35

36 Az első oszlopban az élek vannak, a másodikban a megfelelő súly értéke, a harmadikban csillag, ha az él bekerült a favázba, a negyedik oszlopban pedig a csúcshalmazok. 36

37 {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8} {5,7} 1 * {5,7}, {1}, {2}, {3}, {4}, {6}, [8} {7,8} 2 * {5,7,8}, {1}, {2}, {3}, {4}, {6} {3,8} 3 * {3,5,7,8}, {1}, {2}, {4}, {6} {1,3} 4 * {1,3,5,7,8}, {2}, {4}, {6} {3,4} 4 * {1,3,4,5,7,8}, {2}, {6} {4,8} 4 {2,3} 5 * {1,2,3,4,5,7,8}, {6} {1,5} 6 {2,5} 6 {4,5} 6 {1,6} 8 * {1,2,3,4,5,6,7,8} {3,5} 9 {1,2} 10 {5,6} 12 {5,8} 13 37

38 A csillaggal megjelölt élek a gazdaságos faváz élei. Maga a faváz a következő: 38

39 Az algoritmus leírásához tekintsük az élek E = {e 1, e 2,..., e m } halmazát úgy, hogy W(e i ) W(e i+1 ), minden i = 1, 2,..., m 1 értékre (azaz, az élek súlyuk szerint növekvő sorrendben vannak indexelve). Halmazok helyett egy h = (h 1, h 2,..., h n ) vektort használunk (n a csúcsok száma), amelynek elemei kezdetben egyenlőek az indexükkel, ami arra utal, hogy különböző halmazok elemei. Amikor két halmazt egyesítünk, a megfelelő h i értékeket egyenlővé tesszük (egyik halmaz elemeinek h i értékeit a másik halmaz h i értékeire álĺıtjuk.). 39

40 Kruskal(E) 1. for j=1,2,..., n do 2. h j := j 3. i := 1 4. while h elemei különbözőek do 5. if (e i végpontjai v k, v l ) és (h k h l ) then 6. kíır e i 7. for j:=1, 2,..., n do 8. if h j = h l then 9. h j := h k 10. i:=i+1 40

41 Árvíz után Egy megye helységei (városok, falvak) közötti utakat néhol elmosta az árvíz. A helységek x i, i = 1, 2,..., n, és a köztük épen lévő utakat az A = (a ij ) mátrix jelzi: a ij = 1, ha x i és x j között van épen maradt út, és a ij = 0, ha az út járhatatlan. Kérdés: el lehet-e jutni a megye bármelyik helységéből bármelyik másik helységébe? Megoldás: Gráffal, amelynek szomszédsági mátrixa A. Választunk egy tetszőleges helységet: pl. x 1. U = {x 1 }. U = U N(U) ameddig U nem változik. (N(U) az U szomszédai.) Ha U tartalmazza az összes helységet, akkor a válasz igen, különben nem. 41

42 Euler-vonal keresése Fleury algoritmusa Ellenőrizzük, hogy a gráf Euler-gráf-e (minden fokszám páros) vagy pontosan két páratlan fokú csúcsa van. Elindulunk tetszőleges csúcsból (vagy egy páratlan fokszámúból). Mindig olyan új élt választunk, amely nem híd (kitöröljük). (Hidat csak akkor, ha más nincs.) 42

43 Hamilton-út keresése visszalépéses módszerrel Elégséges feltételek: Rédei-tétel Dirac-tétel Ore-tétel 43

Feladatok, amelyek gráfokkal oldhatók meg 1) A königsbergi hidak problémája (Euler-féle probléma) a

Feladatok, amelyek gráfokkal oldhatók meg 1) A königsbergi hidak problémája (Euler-féle probléma) a Feladatok, amelyek gráfokkal oldhatók meg ) A königsbergi hidak problémája (Euler-féle probléma) a b d c A megfelelő gráf: d a b c ) Egy szórakoztató feladat (Hamilton-féle probléma) Helyezzük el az,,,...,

Részletesebben

Algoritmusok bonyolultsága

Algoritmusok bonyolultsága Algoritmusok bonyolultsága 5. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm 1 / 27 Gazdaságos faváz Kruskal-algoritmus Joseph Kruskal (1928 2010) Legyen V = {v 1, v 2,..., v n }, E = {e 1, e 2,...,

Részletesebben

EGYSZERŰ, NEM IRÁNYÍTOTT (IRÁNYÍTATLAN) GRÁF

EGYSZERŰ, NEM IRÁNYÍTOTT (IRÁNYÍTATLAN) GRÁF Összefoglaló Gráfok / EGYSZERŰ, NEM IRÁNYÍTOTT (IRÁNYÍTATLAN) GRÁF Adott a G = (V, E) gráf ahol a V a csomópontok, E az élek halmaza E = {(x, y) x, y V, x y (nincs hurokél) és (x, y) = (y, x)) Jelölések:

Részletesebben

Diszkrét matematika 1. estis képzés

Diszkrét matematika 1. estis képzés Diszkrét matematika 1. estis képzés 2019. tavasz 1. Diszkrét matematika 1. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2015. tavasz 1. Diszkrét matematika 2.C szakirány 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu Komputeralgebra Tanszék 2015. tavasz Gráfelmélet Diszkrét

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2015. ősz 1. Diszkrét matematika 2.C szakirány 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2015.

Részletesebben

graf 2007/11/20 16:16 page 1 #1 BABEŞ-BOLYAI TUDOMÁNYEGYETEM KOLOZSVÁR MATEMATIKAI ÉS INFORMATIKAI KAR Kása Zoltán Gráfalgoritmusok

graf 2007/11/20 16:16 page 1 #1 BABEŞ-BOLYAI TUDOMÁNYEGYETEM KOLOZSVÁR MATEMATIKAI ÉS INFORMATIKAI KAR Kása Zoltán Gráfalgoritmusok graf 007/11/0 16:16 page 1 #1 BABEŞ-BOLYAI TUDOMÁNYEGYETEM KOLOZSVÁR MATEMATIKAI ÉS INFORMATIKAI KAR Kása Zoltán Gráfalgoritmusok 007 graf 007/11/0 16:16 page # Mottó helyett Königsberget vissza kellene

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.

Részletesebben

Gráfelméleti alapfogalmak

Gráfelméleti alapfogalmak 1 Gráfelméleti alapfogalmak Gráf (angol graph= rajz): pontokból és vonalakból álló alakzat. pontok a gráf csúcsai, a vonalak a gráf élei. GRÁ Irányítatlan gráf Vegyes gráf Irányított gráf G H Izolált pont

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Gráfelmélet. I. Előadás jegyzet (2010.szeptember 9.) 1.A gráf fogalma

Gráfelmélet. I. Előadás jegyzet (2010.szeptember 9.) 1.A gráf fogalma Készítette: Laczik Sándor János Gráfelmélet I. Előadás jegyzet (2010.szeptember 9.) 1.A gráf fogalma Definíció: a G=(V,E) párt egyszerű gráfnak nevezzük, (V elemeit a gráf csúcsainak/pontjainak,e elemeit

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 7. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Diszkrét matematika 2.

Diszkrét matematika 2. Diszkrét matematika 2. Mérai László előadása alapján Készítette: Nagy Krisztián 1. előadás Gráfok halmaza, gráf, ahol a csúcsok halmaza, az élek illesztkedés reláció: illesztkedik az élre, ha ( -él illesztkedik

Részletesebben

22. GRÁFOK ÁBRÁZOLÁSA

22. GRÁFOK ÁBRÁZOLÁSA 22. GRÁFOK ÁBRÁZOLÁSA A megoldandó feladatok, problémák modellezése során sokszor gráfokat alkalmazunk. A gráf fogalmát a matematikából ismertnek vehetjük. A modellezés során a gráfok több változata is

Részletesebben

ELTE IK Esti képzés tavaszi félév. Tartalom

ELTE IK Esti képzés tavaszi félév. Tartalom Diszkrét Matematika 2 vizsgaanyag ELTE IK Esti képzés 2017. tavaszi félév Tartalom 1. Számfogalom bővítése, homomorfizmusok... 2 2. Csoportok... 9 3. Részcsoport... 11 4. Generátum... 14 5. Mellékosztály,

Részletesebben

Euler tétel következménye 1:ha G összefüggő síkgráf és legalább 3 pontja van, akkor: e 3

Euler tétel következménye 1:ha G összefüggő síkgráf és legalább 3 pontja van, akkor: e 3 Síkgráfok Kuratowski-tétel: egy gráf akkor és csak akkor síkba rajzolható gráf, ha nincs olyan részgráfja, ami a K 5 -el, vagy a K 3,3 -altopologikusan izomorf (homeomorf). Euler síkgráfokra vonatkozó

Részletesebben

angolul: greedy algorithms, románul: algoritmi greedy

angolul: greedy algorithms, románul: algoritmi greedy Mohó algoritmusok angolul: greedy algorithms, románul: algoritmi greedy 1. feladat. Gazdaságos telefonhálózat építése Bizonyos városok között lehet direkt telefonkapcsolatot kiépíteni, pl. x és y város

Részletesebben

Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz

Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz A vizsga menete: a vizsga írásbeli és szóbeli részből áll. Az írásbeli beugrón az alábbi kérdések közül szerepel összesen 12 darab, mindegyik egy pontot

Részletesebben

1. tétel - Gráfok alapfogalmai

1. tétel - Gráfok alapfogalmai 1. tétel - Gráfok alapfogalmai 1. irányítatlan gráf fogalma A G (irányítatlan) gráf egy (Φ, E, V) hátmas, ahol E az élek halmaza, V a csúcsok (pontok) halmaza, Φ: E {V-beli rendezetlen párok} illeszkedési

Részletesebben

Gráfalgoritmusok ismétlés ősz

Gráfalgoritmusok ismétlés ősz Gráfalgoritmusok ismétlés 2017. ősz Gráfok ábrázolása Egy G = (V, E) gráf ábrázolására alapvetően két módszert szoktak használni: szomszédsági listákat, illetve szomszédsági mátrixot. A G = (V, E) gráf

Részletesebben

Diszkrét matematika 1. estis képzés

Diszkrét matematika 1. estis képzés Diszkrét matematika 1. estis képzés 2019. tavasz 1. Diszkrét matematika 1. estis képzés 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2016. tavasz 1. Diszkrét matematika 2. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra:

Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra: Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra: C(T ) = (u,v) T c(u,v) Az F = (V,T) gráf minimális feszitőfája G-nek,

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Diszkrét matematika 2.

Diszkrét matematika 2. Diszkrét matematika 2. 2018. szeptember 21. 1. Diszkrét matematika 2. 2. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. szeptember 21. Gráfelmélet

Részletesebben

SzA II. gyakorlat, szeptember 18.

SzA II. gyakorlat, szeptember 18. SzA II. gyakorlat, 015. szeptember 18. Barátkozás a gráfokkal Drótos Márton drotos@cs.bme.hu 1. Az előre megszámozott (címkézett) n darab pont közé hányféleképp húzhatunk be éleket úgy, hogy egyszerű gráfhoz

Részletesebben

Algoritmuselmélet. Legrövidebb utak, Bellmann-Ford, Dijkstra. Katona Gyula Y.

Algoritmuselmélet. Legrövidebb utak, Bellmann-Ford, Dijkstra. Katona Gyula Y. Algoritmuselmélet Legrövidebb utak, Bellmann-Ford, Dijkstra Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 3. előadás Katona Gyula Y. (BME

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.

Részletesebben

Példa Hajtsuk végre az 1 pontból a Dijkstra algoritmust az alábbi gráfra. (A mátrixban a c i j érték az (i, j) él hossza, ha nincs él.

Példa Hajtsuk végre az 1 pontból a Dijkstra algoritmust az alábbi gráfra. (A mátrixban a c i j érték az (i, j) él hossza, ha nincs él. Legrövidebb utak súlyozott gráfokban A feladat egy súlyozott gráfban egy adott pontból kiinduló legrövidebb utak megkeresése. Az input a súlyozott gráf és a kiindulási s pont. Outputként egy legrövidebb

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2017. ősz 1. Diszkrét matematika 2.C szakirány 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Gráfok 2. Legrövidebb utak, feszítőfák. Szoftvertervezés és -fejlesztés II. előadás. Szénási Sándor

Gráfok 2. Legrövidebb utak, feszítőfák. Szoftvertervezés és -fejlesztés II. előadás.   Szénási Sándor Gráfok 2. Legrövidebb utak, feszítőfák előadás http://nik.uni-obuda.hu/sztf2 Szénási Sándor Óbudai Egyetem,Neumann János Informatikai Kar Legrövidebb utak keresése Minimális feszítőfa keresése Gráfok 2

Részletesebben

Algoritmuselmélet. Gráfok megadása, szélességi bejárás, összefüggőség, párosítás. Katona Gyula Y.

Algoritmuselmélet. Gráfok megadása, szélességi bejárás, összefüggőség, párosítás. Katona Gyula Y. Algoritmuselmélet Gráfok megadása, szélességi bejárás, összefüggőség, párosítás Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 2. előadás

Részletesebben

Adatszerkezetek 2. Dr. Iványi Péter

Adatszerkezetek 2. Dr. Iványi Péter Adatszerkezetek 2. Dr. Iványi Péter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér (root) Nincsennek hurkok!!! 2 Bináris fák Azokat

Részletesebben

Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra:

Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra: Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra: C(T ) = (u,v) T c(u,v) Az F = (V,T) gráf minimális feszitőfája G-nek,

Részletesebben

Algoritmusok bonyolultsága

Algoritmusok bonyolultsága Algoritmusok bonyolultsága 9. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm 1 / 18 Közelítő algoritmusok ládapakolás (bin packing) Adott n tárgy (s i tömeggel) és végtelen sok 1 kapacitású láda

Részletesebben

Megjegyzés: A programnak tartalmaznia kell legalább egy felhasználói alprogramot. Példa:

Megjegyzés: A programnak tartalmaznia kell legalább egy felhasználói alprogramot. Példa: 1. Tétel Az állomány két sort tartalmaz. Az első sorában egy nem nulla természetes szám van, n-el jelöljük (5

Részletesebben

5/1. tétel: Optimalis feszítőfák, Prim és Kruskal algorithmusa. Legrövidebb utak graphokban, negatív súlyú élek, Dijkstra és Bellman Ford algorithmus.

5/1. tétel: Optimalis feszítőfák, Prim és Kruskal algorithmusa. Legrövidebb utak graphokban, negatív súlyú élek, Dijkstra és Bellman Ford algorithmus. 5/1. tétel: Optimalis feszítőfák, Prim és Kruskal algorithmusa. Legrövidebb utak graphokban, negatív súlyú élek, Dijkstra és Bellman Ford algorithmus. Optimalis feszítőfák Egy összefüggő, irányítatlan

Részletesebben

Matematika. Számonkérés. Írásbeli vizsga januárban. 1. konzultáció. Irodalom

Matematika. Számonkérés. Írásbeli vizsga januárban. 1. konzultáció. Irodalom 1 Matematika NYME KTK, Egyetemi kiegészítő alapképzés 2002/2003. tanév, I. évf. I.félév Budapest Előadó: Dr. Takách Géza NyME FMK Információ Technológia Tanszék 9400 Sopron, Bajcsy Zs. u. 9. GT fszt. 3.

Részletesebben

HAMILTON ÚT: minden csúcson PONTOSAN egyszer áthaladó út

HAMILTON ÚT: minden csúcson PONTOSAN egyszer áthaladó út SÍKBA RAJZOLHATÓ GRÁFOK ld. előadás diasorozat SZÍNEZÉS: ld. előadás diasorozat PÉLDA: Reguláris 5 gráf színezése 4 színnel Juhász, PPKE ITK, 007: http://users.itk.ppke.hu/~b_novak/dmat/juhasz_5_foku_graf.bmp

Részletesebben

III. Gráfok. 1. Irányítatlan gráfok:

III. Gráfok. 1. Irányítatlan gráfok: III. Gráfok 1. Irányítatlan gráfok: Jelölés: G=(X,U), X a csomópontok halmaza, U az élek halmaza X={1,2,3,4,5,6}, U={[1,2], [1,4], [1,6], [2,3], [2,5], [3,4], [3,5], [4,5],[5,6]} Értelmezések: 1. Fokszám:

Részletesebben

Adatszerkezetek II. 1. előadás

Adatszerkezetek II. 1. előadás Adatszerkezetek II. 1. előadás Gráfok A gráf fogalma: Gráf(P,E): P pontok (csúcsok) és E P P élek halmaza Fogalmak: Irányított gráf : (p 1,p 2 ) E-ből nem következik, hogy (p 2,p 1 ) E Irányítatlan gráf

Részletesebben

Példa Hajtsuk végre az 1 pontból a Dijkstra algoritmust az alábbi gráfra. (A mátrixban a c i j érték az (i, j) él hossza, ha nincs él.

Példa Hajtsuk végre az 1 pontból a Dijkstra algoritmust az alábbi gráfra. (A mátrixban a c i j érték az (i, j) él hossza, ha nincs él. Legrövidebb utak súlyozott gráfokban A feladat egy súlyozott gráfban egy adott pontból kiinduló legrövidebb utak megkeresése. Az input a súlyozott gráf és a kiindulási s pont. Outputként egy legrövidebb

Részletesebben

Algoritmuselmélet 7. előadás

Algoritmuselmélet 7. előadás Algoritmuselmélet 7. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Március 11. ALGORITMUSELMÉLET 7. ELŐADÁS 1 Múltkori

Részletesebben

end function Az A vektorban elõforduló legnagyobb és legkisebb értékek indexeinek különbségét.. (1.5 pont) Ha üres a vektor, akkor 0-t..

end function Az A vektorban elõforduló legnagyobb és legkisebb értékek indexeinek különbségét.. (1.5 pont) Ha üres a vektor, akkor 0-t.. A Név: l 2014.04.09 Neptun kód: Gyakorlat vezető: HG BP MN l 1. Adott egy (12 nem nulla értékû elemmel rendelkezõ) 6x7 méretû ritka mátrix hiányos 4+2 soros reprezentációja. SOR: 1 1 2 2 2 3 3 4 4 5 6

Részletesebben

Gráfelméleti alapfogalmak-1

Gráfelméleti alapfogalmak-1 KOMBINATORIKA ELŐADÁS osztatlan matematika tanár hallgatók számára Gráfelméleti alapfogalmak Előadó: Hajnal Péter 2015 1. Egyszerű gráfok Nagyon sok helyzetben egy alaphalmaz elemei között kitűntetett

Részletesebben

Gráfelméleti feladatok programozóknak

Gráfelméleti feladatok programozóknak Gráfelméleti feladatok programozóknak Nagy-György Judit 1. Lehet-e egy gráf fokszámsorozata 3, 3, 3, 3, 5, 6, 6, 6, 6, 6, 6? 2. Lehet-e egyszer gráf fokszámsorozata (a) 3, 3, 4, 4, 6? (b) 0, 1, 2, 2, 2,

Részletesebben

Diszkrét matematika 2.

Diszkrét matematika 2. Diszkrét matematika 2. Mérai László előadása alapján Készítette: Nagy Krisztián 4. előadás Eulerséta: Olyan séta, mely a gráf minden élét pontosan egyszer tartalmazza. Tétel: egy összefüggő gráf. Ha minden

Részletesebben

HAMILTON KÖR: minden csúcson PONTOSAN egyszer áthaladó kör. Forrás: (

HAMILTON KÖR: minden csúcson PONTOSAN egyszer áthaladó kör. Forrás: ( HAMILTON KÖR: minden csúcson PONTOSAN egyszer áthaladó kör Teljes gráf: Páros gráf, teljes páros gráf és Hamilton kör/út Hamilton kör: Minden csúcson áthaladó kör Hamilton kör Forrás: (http://www.math.klte.hur/~tujanyi/komb_j/k_win_doc/g0603.doc

Részletesebben

Algoritmuselmélet 18. előadás

Algoritmuselmélet 18. előadás Algoritmuselmélet 18. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Május 7. ALGORITMUSELMÉLET 18. ELŐADÁS 1 Közelítő algoritmusok

Részletesebben

I. VEKTOROK, MÁTRIXOK

I. VEKTOROK, MÁTRIXOK 217/18 1 félév I VEKTOROK, MÁTRIXOK I1 I2 Vektorok 1 A síkon derékszögű koordinátarendszerben minden v vektornak van vízszintes és van függőleges koordinátája, ezeket sorrendben v 1 és v 2 jelöli A v síkbeli

Részletesebben

Sapientia - Erdélyi Magyar TudományEgyetem (EMTE) Csíkszereda IRT- 4. kurzus. 3. Előadás: A mohó algoritmus

Sapientia - Erdélyi Magyar TudományEgyetem (EMTE) Csíkszereda IRT- 4. kurzus. 3. Előadás: A mohó algoritmus Csíkszereda IRT-. kurzus 3. Előadás: A mohó algoritmus 1 Csíkszereda IRT. kurzus Bevezetés Az eddig tanult algoritmus tipúsok nem alkalmazhatók: A valós problémák nem tiszta klasszikus problémák A problémák

Részletesebben

Elmaradó óra. Az F = (V,T) gráf minimális feszitőfája G-nek, ha. F feszitőfája G-nek, és. C(T) minimális

Elmaradó óra. Az F = (V,T) gráf minimális feszitőfája G-nek, ha. F feszitőfája G-nek, és. C(T) minimális Elmaradó óra A jövő heti, november 0-dikei óra elmarad. Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra: C(T ) = (u,v)

Részletesebben

24. tétel. Kombinatorika. A grá fok.

24. tétel. Kombinatorika. A grá fok. 2009/2010 1 Huszk@ Jenő 24. tétel. Kombinatorika. A grá fok. 1.Kombinatorika A kombinatorika a véges halmazokkal foglalkozik. Olyan problémákat vizsgál, amelyek függetlenek a halmazok elemeinek mibenlététől.

Részletesebben

bármely másikra el lehessen jutni. A vállalat tudja, hogy tetszőlegesen adott

bármely másikra el lehessen jutni. A vállalat tudja, hogy tetszőlegesen adott . Minimális súlyú feszítő fa keresése Képzeljük el, hogy egy útépítő vállalat azt a megbízást kapja, hogy építsen ki egy úthálózatot néhány település között (a települések között jelenleg nincs út). feltétel

Részletesebben

Algoritmuselmélet 1. előadás

Algoritmuselmélet 1. előadás Algoritmuselmélet 1. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Február 11. ALGORITMUSELMÉLET 1. ELŐADÁS 1 Források

Részletesebben

Felvételi tematika INFORMATIKA

Felvételi tematika INFORMATIKA Felvételi tematika INFORMATIKA 2016 FEJEZETEK 1. Természetes számok feldolgozása számjegyenként. 2. Számsorozatok feldolgozása elemenként. Egydimenziós tömbök. 3. Mátrixok feldolgozása elemenként/soronként/oszloponként.

Részletesebben

Diszkrét matematika II. gyakorlat

Diszkrét matematika II. gyakorlat Diszkrét matematika II. gyakorlat 9. Gyakorlat Szakács Nóra Helyettesít: Bogya Norbert Bolyai Intézet 2013. április 11. Bogya Norbert (Bolyai Intézet) Diszkrét matematika II. gyakorlat 2013. április 11.

Részletesebben

2. Visszalépéses keresés

2. Visszalépéses keresés 2. Visszalépéses keresés Visszalépéses keresés A visszalépéses keresés egy olyan KR, amely globális munkaterülete: egy út a startcsúcsból az aktuális csúcsba (az útról leágazó még ki nem próbált élekkel

Részletesebben

Dinamikus programozás vagy Oszd meg, és uralkodj!

Dinamikus programozás vagy Oszd meg, és uralkodj! Dinamikus programozás Oszd meg, és uralkodj! Mohó stratégia Melyiket válasszuk? Dinamikus programozás vagy Oszd meg, és uralkodj! Háromszögfeladat rekurzívan: c nj := a nj ha 1 j n c ij := a ij + max{c

Részletesebben

Algoritmuselmélet. Mélységi keresés és alkalmazásai. Katona Gyula Y.

Algoritmuselmélet. Mélységi keresés és alkalmazásai. Katona Gyula Y. Algoritmuselmélet Mélységi keresés és alkalmazásai Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 9. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet

Részletesebben

Gráfelmélet jegyzet 2. előadás

Gráfelmélet jegyzet 2. előadás Gráfelmélet jegyzet 2. előadás Készítette: Kovács Ede . Fák Tétel. : A következők ekvivalensek a T gráfra: (i) T összefüggő, e E. T e már nem összefüggő (ii) T összefüggő és körmentes. (iii) x, y V T!

Részletesebben

Síkbarajzolható gráfok Április 26.

Síkbarajzolható gráfok Április 26. Síkbarajzolható gráfok 2017. Április 26. Síkgráfok Egy gráf síkgráf=síkba rajzolható gráf, ha lerajzolható úgy a síkba, hogy élei csak a szögpontokban metszik egymást. Ha egy gráf lerajzolható a síkba,

Részletesebben

Építésikivitelezés-Vállalkozás / 2: Gráftechnikai alapfogalmak VÁLLALKOZÁS. javított háttöltés

Építésikivitelezés-Vállalkozás / 2: Gráftechnikai alapfogalmak VÁLLALKOZÁS. javított háttöltés Elõadás:Folia201.doc VÁLLALKOZÁS ( tervezés - bonyolítás - változásmenedzsment ) ideiglenes földút monolit vb.támfal javított háttöltés új földtöltés régi töltés humusz teherbíró talaj Tevékenység Sz Megnevezés

Részletesebben

1: Bevezetés: Internet, rétegmodell Alapok: aszimptótika, gráfok. HálózatokII, 2007

1: Bevezetés: Internet, rétegmodell Alapok: aszimptótika, gráfok. HálózatokII, 2007 Hálózatok II 2007 1: Bevezetés: Internet, rétegmodell Alapok: aszimptótika, gráfok 1 Az előadáshoz Előadás: Szerda 17:00 18:30 Gyakorlat: nincs Vizsga írásbeli Honlap: http://people.inf.elte.hu/lukovszki/courses/g/07nwii

Részletesebben

2. Milyen értéket határoz meg az alábbi algoritmus, ha A egy vektor?. (2 pont)

2. Milyen értéket határoz meg az alábbi algoritmus, ha A egy vektor?. (2 pont) A Név: l 2017.04.06 Neptun kód: Gyakorlat vezet : HG BP l 1. Az A vektor tartalmát az alábbi KUPACOL eljárással rendezzük át maximum kupaccá. A={28, 87, 96, 65, 55, 32, 51, 69} Mi lesz az értéke az A vektor

Részletesebben

Hálózatszámítási modellek

Hálózatszámítási modellek Hálózatszámítási modellek Dr. Rácz Ervin egyetemi docens Óbudai Egyetem, Kandó Kálmán Villamosmérnöki Kar Villamosenergetikai Intézet HÁLÓZATBELI FOLYAM VAGY ÁRAMLÁS ÁLTALÁNOS PROBLÉMÁJA Általános feladat

Részletesebben

A számítástudomány alapjai

A számítástudomány alapjai A számítástudomány alapjai Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem Legszélesebb utak Katona Gyula Y. (BME SZIT) A számítástudomány

Részletesebben

Permutáció n = 3 esetében: Eredmény: permutációk száma: P n = n! romámul: permutări, angolul: permutation

Permutáció n = 3 esetében: Eredmény: permutációk száma: P n = n! romámul: permutări, angolul: permutation Visszalépéses módszer (Backtracking) folytatás Permutáció n = 3 esetében: 1 2 3 2 3 1 3 1 2 Eredmény: 3 2 3 1 2 1 123 132 213 231 312 321 permutációk száma: P n = n! romámul: permutări, angolul: permutation

Részletesebben

Javító és majdnem javító utak

Javító és majdnem javító utak Javító és majdnem javító utak deficites Hall-tétel alapján elméletileg meghatározhatjuk, hogy egy G = (, ; E) páros gráfban mekkora a legnagyobb párosítás mérete. Ehhez azonban első ránézésre az összes

Részletesebben

Mátrixok, mátrixműveletek

Mátrixok, mátrixműveletek Mátrixok, mátrixműveletek 1 előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Mátrixok, mátrixműveletek p 1/1 Mátrixok definíciója Definíció Helyezzünk el n m elemet egy olyan téglalap

Részletesebben

Diszkrét Matematika GYAKORLAT, Levelező MSc hallgatók számára. 3. Feladatsor

Diszkrét Matematika GYAKORLAT, Levelező MSc hallgatók számára. 3. Feladatsor Diszkrét Matematika GYAKORLAT, Levelező MSc hallgatók számára 3. Feladatsor Gyakorlatvezetõ: Hajnal Péter 2011. november 2-ától 1. Párosítások gráfokban 1.1. Alapok 1. Feladat. (i) Bizonyítsuk be, hogy

Részletesebben

DISZKRÉT MATEMATIKA 2

DISZKRÉT MATEMATIKA 2 DISZKRÉT MATEMATIKA 2 KÉRDÉSEK Készítette: Molnár Krisztián (MOKOABI.ELTE) Aktualizálva: 2011. június 28. (1.) Mely tétel alapján számolhatjuk ki véges sok egész szám legnagyobb közös osztóját prímfelbontás

Részletesebben

DISZKRÉT MATEMATIKA 2 KIDOLGOZOTT TÉTELSOR 1. RÉSZ

DISZKRÉT MATEMATIKA 2 KIDOLGOZOTT TÉTELSOR 1. RÉSZ DISZKRÉT MATEMATIKA 2 KIDOLGOZOTT TÉTELSOR 1. RÉSZ B szakirány 2014 június Tartalom 1. Fák definíciója ekvivalens jellemzései... 3 2. Hamilton-kör Euler-vonal... 4 3. Feszítőfa és vágás... 6 4. Címkézett

Részletesebben

GRÁFELMÉLET. 7. előadás. Javító utak, javító utak keresése, Edmonds-algoritmus

GRÁFELMÉLET. 7. előadás. Javító utak, javító utak keresése, Edmonds-algoritmus GRÁFELMÉLET 7. előadás Javító utak, javító utak keresése, Edmonds-algoritmus Definíció: egy P utat javító útnak nevezünk egy M párosításra nézve, ha az út páratlan hosszú, kezdő- és végpontjai nem párosítottak,

Részletesebben

Gráfok, definíciók. Gráfok ábrázolása. Az adott probléma megoldásához ténylegesen mely műveletek szükségesek. Ábrázolások. Példa:

Gráfok, definíciók. Gráfok ábrázolása. Az adott probléma megoldásához ténylegesen mely műveletek szükségesek. Ábrázolások. Példa: Gráfok, definíciók Irányítatlan gráf: G = (V,E), ahol E rendezetlen (a,b),a,b V párok halmaza. Irányított gráf: G = (V,E) E rendezett (a,b) párok halmaza; E V V. Címkézett (súlyozott) gráf: G = (V,E,C)

Részletesebben

Ugrólisták. RSL Insert Example. insert(22) with 3 flips. Runtime?

Ugrólisták. RSL Insert Example. insert(22) with 3 flips. Runtime? Ugrólisták Ugrólisták Ugrólisták Ugrólisták RSL Insert Example insert(22) with 3 flips 13 8 29 20 10 23 19 11 2 13 22 8 29 20 10 23 19 11 2 Runtime? Ugrólisták Empirical analysis http://www.inf.u-szeged.hu/~tnemeth/alga2/eloadasok/skiplists.pdf

Részletesebben

Számítógép hálózatok, osztott rendszerek 2009

Számítógép hálózatok, osztott rendszerek 2009 Számítógép hálózatok, osztott rendszerek 2009 1: Bevezetés: Internet, rétegmodell Alapok: aszimptótika, gráfok 1 Az előadáshoz Előadás: Hétfő 10:00 12:00 óra Gyakorlat: Hétfő 14:00-16:00 óra Honlap: http://people.inf.elte.hu/lukovszki/courses/0910nwmsc

Részletesebben

Vektorterek. =a gyakorlatokon megoldásra ajánlott

Vektorterek. =a gyakorlatokon megoldásra ajánlott Vektorterek =a gyakorlatokon megoldásra ajánlott 40. Alteret alkotnak-e a valós R 5 vektortérben a megadott részhalmazok? Ha igen, akkor hány dimenziósak? (a) L = { (x 1, x 2, x 3, x 4, x 5 ) x 1 = x 5,

Részletesebben

Alapfogalmak a Diszkrét matematika II. tárgyból

Alapfogalmak a Diszkrét matematika II. tárgyból Alapfogalmak a Diszkrét matematika II. tárgyból (A szakirány, 2015-2016 tavaszi félév) A számonkérés során ezeknek a definícióknak, tételkimondásoknak az alapos megértését is számon kérjük. A példakérdések

Részletesebben

Amortizációs költségelemzés

Amortizációs költségelemzés Amortizációs költségelemzés Amennyiben műveleteknek egy M 1,...,M m sorozatának a futási idejét akarjuk meghatározni, akkor egy lehetőség, hogy külön-külön minden egyes művelet futási idejét kifejezzük

Részletesebben

Más szavakkal formálisan:, ahol olyan egész szám, hogy. Más szavakkal formálisan:, ahol olyan egész szám, hogy.

Más szavakkal formálisan:, ahol olyan egész szám, hogy. Más szavakkal formálisan:, ahol olyan egész szám, hogy. Bevezetés 1. Definíció. Az alsó egészrész függvény minden valós számhoz egy egész számot rendel hozzá, éppen azt, amely a tőle nem nagyobb egészek közül a legnagyobb. Az alsó egészrész függvény jele:,

Részletesebben

Bonyolultságelmélet. Monday 26 th September, 2016, 18:50

Bonyolultságelmélet. Monday 26 th September, 2016, 18:50 Bonyolultságelmélet Monday 26 th September, 2016, 18:50 A kiszámítás modelljei 2 De milyen architektúrán polinom? A kiszámításnak számos (matematikai) modellje létezik: Általános rekurzív függvények λ-kalkulus

Részletesebben

Gráfelméleti alapfogalmak

Gráfelméleti alapfogalmak KOMBINATORIKA GYAKORLAT osztatlan matematika tanár hallgatók számára Gráfelméleti alapfogalmak Gyakorlatvezetõ: Hajnal Péter 2014. 1. Feladat. Az alábbiakban egy-egy egyszerű gráfot definiálunk. Rajzoljuk

Részletesebben

Mátrixok 2017 Mátrixok

Mátrixok 2017 Mátrixok 2017 számtáblázatok" : számok rendezett halmaza, melyben a számok helye két paraméterrel van meghatározva. Például lineáris egyenletrendszer együtthatómátrixa 2 x 1 + 4 x 2 = 8 1 x 1 + 3 x 2 = 1 ( 2 4

Részletesebben

4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI

4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI 4. Fuzzy relációk Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 Klasszikus relációk Halmazok Descartes-szorzata Relációk 2 Fuzzy relációk Fuzzy relációk véges alaphalmazok

Részletesebben

1. Gráfmodellek. 1.1 Königsbergi hidak (Euler, 1736)

1. Gráfmodellek. 1.1 Königsbergi hidak (Euler, 1736) 1. Gráfmodellek 1.1 Königsbergi hidak (Euler, 1736) Probléma: Königsberg mellett volt egy Pregel nevû folyó, két szigettel. A folyó két partját és a szigeteket hét híd kötötte össze. Bejárhatjuk-e volt

Részletesebben

17. előadás: Vektorok a térben

17. előadás: Vektorok a térben 17. előadás: Vektorok a térben Szabó Szilárd A vektor fogalma A mai előadásban n 1 tetszőleges egész szám lehet, de az egyszerűség kedvéért a képletek az n = 2 esetben szerepelnek. Vektorok: rendezett

Részletesebben

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei A Gauss-Jordan elimináció, mátrixinvertálás Gauss-Jordan módszer Ugyanazzal a technikával, mint ahogy a k-adik oszlopban az a kk alatti elemeket kinulláztuk, a fölötte lévő elemeket is zérussá lehet tenni.

Részletesebben

Felvételi vizsga mintatételsor Informatika írásbeli vizsga

Felvételi vizsga mintatételsor Informatika írásbeli vizsga BABEȘ BOLYAI TUDOMÁNYEGYETEM MATEMATIKA ÉS INFORMATIKA KAR A. tételsor (30 pont) Felvételi vizsga mintatételsor Informatika írásbeli vizsga 1. (5p) Egy x biten tárolt egész adattípus (x szigorúan pozitív

Részletesebben

1. Gráfelmélet alapfogalmai

1. Gráfelmélet alapfogalmai 1. Gráfelmélet alapfogalmai Definíció: A gráf pontok és az őket összekötő élek együttese. Megjegyzés: A gráf pontjait szögpontoknak, illetve csúcsoknak is nevezzük. Ha a gráf élei irányítottak, irányított

Részletesebben

Algoritmuselmélet 11. előadás

Algoritmuselmélet 11. előadás Algoritmuselmélet 11. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Március 26. ALGORITMUSELMÉLET 11. ELŐADÁS 1 Kruskal

Részletesebben

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem) Vajda István Neumann János Informatika Kar Óbudai Egyetem 1 / 36 Bevezetés A komplex számok értelmezése Definíció: Tekintsük a valós számpárok R2 halmazát és értelmezzük ezen a halmazon a következo két

Részletesebben

Diszkrét Matematika MSc hallgatók számára 7. Előadás Párosítási tételek Előadó: Hajnal Péter Jegyzetelő: Kovácsházi Anna

Diszkrét Matematika MSc hallgatók számára 7. Előadás Párosítási tételek Előadó: Hajnal Péter Jegyzetelő: Kovácsházi Anna Diszkrét Matematika MSc hallgatók számára 7. Előadás Párosítási tételek Előadó: Hajnal Péter Jegyzetelő: Kovácsházi Anna 2010. 10. 18. 2 7. Párosítási tételek.nb 7. Előadás Emlékeztető: Javító út, Javító

Részletesebben

Alapfogalmak II. Def.: Egy gráf összefüggő, ha bármely pontjából bármely pontjába eljuthatunk egy úton.

Alapfogalmak II. Def.: Egy gráf összefüggő, ha bármely pontjából bármely pontjába eljuthatunk egy úton. lapfogalmak II Nézzük meg mégegyszer a königsbergi séták problémáját! város lakói vasárnaponként szerettek sétálni a szigeteken. Felvetődött a kérdés, hogy hogyan lehetne olyan sétát tenni a városban,

Részletesebben

Bonyolultságelmélet gyakorlat 06 Gráfos visszavezetések II.

Bonyolultságelmélet gyakorlat 06 Gráfos visszavezetések II. onyolultságelmélet gyakorlat 06 Gráfos visszavezetések II. 1. Feladat Mutassuk meg, hogy a n/-hosszú kör probléma NP-nehéz! n/-hosszú kör Input: (V, ) irányítatlan gráf Output: van-e G-ben a csúcsok felén

Részletesebben

10. tétel. Adatszerkezetek és algoritmusok vizsga Frissült: 2013. január 28.

10. tétel. Adatszerkezetek és algoritmusok vizsga Frissült: 2013. január 28. 10. tétel Adatszerkezetek és algoritmusok vizsga Frissült: 2013. január 28. 2-3 fák Hatékony keresőfa-konstrukció. Ez is fa, de a binárisnál annyival bonyolultabb hogy egy nem-levél csúcsnak 2 vagy 3 fia

Részletesebben

Gráfok. Programozás II. előadás. Szénási Sándor.

Gráfok. Programozás II. előadás.   Szénási Sándor. Gráfok előadás http://nik.uni-obuda.hu/prog2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar Tárolási módok Szélességi bejárás Mélységi bejárás Legrövidebb

Részletesebben

Sali Attila Budapest Műszaki és Gazdaságtudományi Egyetem. I. B. 137/b március 16.

Sali Attila Budapest Műszaki és Gazdaságtudományi Egyetem. I. B. 137/b március 16. Bevezetés a Számításelméletbe II. 6. előadás Sali Attila Budapest Műszaki és Gazdaságtudományi Egyetem Számítástudományi és Információelméleti Tsz. I. B. 7/b sali@cs.bme.hu 004 március 6. A kritikus út

Részletesebben