Diszkrét matematika II. gyakorlat
|
|
- Éva Takács
- 6 évvel ezelőtt
- Látták:
Átírás
1 Diszkrét matematika II. gyakorlat 9. Gyakorlat Szakács Nóra Helyettesít: Bogya Norbert Bolyai Intézet április 11. Bogya Norbert (Bolyai Intézet) Diszkrét matematika II. gyakorlat április / 30
2 Tartalom 1 Páros gráfok 2 Lefogó ponthalmaz, párosítás 3 Párosítás keresése páros gráfban 4 Síkgráfok Wagner tétele Euler tétele Négyszín-tétel 5 Vizsgafeladatok Bogya Norbert (Bolyai Intézet) Diszkrét matematika II. gyakorlat április / 30
3 Tartalom Páros gráfok 1 Páros gráfok 2 Lefogó ponthalmaz, párosítás 3 Párosítás keresése páros gráfban 4 Síkgráfok Wagner tétele Euler tétele Négyszín-tétel 5 Vizsgafeladatok Bogya Norbert (Bolyai Intézet) Diszkrét matematika II. gyakorlat április / 30
4 1. Feladat Páros gráfok-e az alábbi gráfok? b G 1 G 2 a b c d f a e g c e f g h h d Tétel A következ k ekvivalensek: 1 G páros gráf. 2 G nem tartalmaz páratlan hosszú kört. 3 G 2-színezhet (χ(g) = 2)
5 Páros gráfok Módszer: mélységi bejárás && mohó színezés. a b c d e f g h a b g h e f c d Bogya Norbert (Bolyai Intézet) Diszkrét matematika II. gyakorlat április / 30
6 Tartalom Lefogó ponthalmaz, párosítás 1 Páros gráfok 2 Lefogó ponthalmaz, párosítás 3 Párosítás keresése páros gráfban 4 Síkgráfok Wagner tétele Euler tétele Négyszín-tétel 5 Vizsgafeladatok Bogya Norbert (Bolyai Intézet) Diszkrét matematika II. gyakorlat április / 30
7 Deníciók Lefogó ponthalmaz, párosítás Lefogó ponthalmaz Csúcsoknak egy L halmaza lefogó ponthalmaz, ha minden élnek valamelyik végpontja az L-ben van. Minimális lefogó ponthalmaz Csúcsoknak egy L halmaza minimális lefogó ponthalmaz, ha nincs nála kisebb elemszámú lefogó ponthalmaz. τ(g) τ(g) = min{ L : L lefogó ponthalmaz} Bogya Norbert (Bolyai Intézet) Diszkrét matematika II. gyakorlat április / 30
8 Lefogó ponthalmaz, párosítás G 1 d a b c Lefogó ponthalmazok: {a, b, c, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}, {c, d}. Min. lefog. ponthalm.: {c, d}. τ(g 1 ) = 2 Bogya Norbert (Bolyai Intézet) Diszkrét matematika II. gyakorlat április / 30
9 Deníciók Lefogó ponthalmaz, párosítás Független élhalmaz = Párosítás Éleknek egy M halmaza párosítás, ha nincs olyan pontja a gráfnak, ami két M-beli élnek is végpontja. Maximális független élhalmaz = Maximális párosítás Éleknek egy M halmaza maximális párosítás, ha nincs nála nagyobb elemszámú párosítás. ν(g) ν(g) = max{ M : M párosítás} Bogya Norbert (Bolyai Intézet) Diszkrét matematika II. gyakorlat április / 30
10 Lefogó ponthalmaz, párosítás G 1 d a b c Párosítások: {ac}, {ad}, {bc}, {bd}, {cd}, {ac, bd}, {ad, bc}. Max. párosítások: {ac, bd}, {ad, bc}. ν(g 1 ) = 2 Bogya Norbert (Bolyai Intézet) Diszkrét matematika II. gyakorlat április / 30
11 Lefogó ponthalmaz, párosítás Állítás Bármely G gráf esetén ν(g) τ(g). K nig-tétel Bármely G páros gráfra ν(g) = τ(g). a b g h e f c d Bogya Norbert (Bolyai Intézet) Diszkrét matematika II. gyakorlat április / 30
12 1. Feladat f e G 2 g h d c a b 1 Adjon meg a G 2 gráfban egy minimális lefogó ponthalmazt! 2 Adjon meg a G 2 gráfban egy maximális párosítást! 3 Adja meg a τ(g 2 ) és ν(g 2 ) értékét! Megoldás: 1 Min. lefogó ponthalmaz: {f, h, b, d}. 2 Max. párosítás: {ah, gf, ed, cb}. 3 τ(g 2 ) = ν(g 2 ) = 4.
13 Tartalom Párosítás keresése páros gráfban 1 Páros gráfok 2 Lefogó ponthalmaz, párosítás 3 Párosítás keresése páros gráfban 4 Síkgráfok Wagner tétele Euler tétele Négyszín-tétel 5 Vizsgafeladatok Bogya Norbert (Bolyai Intézet) Diszkrét matematika II. gyakorlat április / 30
14 Párosítás keresése páros gráfban Magyar-módszer (Hungarian method) Javító alternáló út Legyen M egy párosítás G -ben. Az e 1, e 2,... e 2k, e 2k+1 élek által meghatározott (gráfelméleti) út alternáló javító út M-re nézve, ha e i / M, ha i páratlan, és e i M, ha i páros. (Tehát a javító útban felváltva lépkedünk "nem M-beli" és "M-beli" éleken úgy, hogy "nem M-belivel" kezdünk, és ilyennel is fejezzük be.) Algoritmus M tetsz leges párosítás G -ben while létezik alternáló javító út M-re do U javító út élhalmaza M M U end while return M Bogya Norbert (Bolyai Intézet) Diszkrét matematika II. gyakorlat április / 30
15 Párosítás keresése páros gráfban d e f a b c Párosítás: M = Javító út: U =
16 Párosítás keresése páros gráfban d e f a b c Párosítás: M = {ae} Javító út: U =
17 Párosítás keresése páros gráfban d e f a b c Párosítás: M = {ae} Javító út: U = {da, ae, eb}
18 Párosítás keresése páros gráfban d e f a b c Párosítás: M = {da, eb} Javító út: U =
19 Párosítás keresése páros gráfban d e f a b c Párosítás: M = {da, eb} Javító út: U = {fa, ad, db, be, ec}
20 Párosítás keresése páros gráfban d e f a b c Párosítás: M = {fa, db, ec} Javító út: U = Bogya Norbert (Bolyai Intézet) Diszkrét matematika II. gyakorlat április / 30
21 Párosítás keresése páros gráfban G 3 G 4 e f g h g h i j k l a b c d a b c d e f 2. Feladat Keressen maximális párosítást a fenti G 3 és G 4 gráfokban a magyar-módszer segítségével! Bogya Norbert (Bolyai Intézet) Diszkrét matematika II. gyakorlat április / 30
22 Tartalom Síkgráfok 1 Páros gráfok 2 Lefogó ponthalmaz, párosítás 3 Párosítás keresése páros gráfban 4 Síkgráfok Wagner tétele Euler tétele Négyszín-tétel 5 Vizsgafeladatok Bogya Norbert (Bolyai Intézet) Diszkrét matematika II. gyakorlat április / 30
23 Deníciók Síkgráfok Síkgráf Egy G gráf síkgráf, ha lerajzolható úgy, hogy az élei ne messék egymást (az élek bels pontjában). K 5 K 3,3 Bogya Norbert (Bolyai Intézet) Diszkrét matematika II. gyakorlat április / 30
24 Tartalom Síkgráfok Wagner tétele 1 Páros gráfok 2 Lefogó ponthalmaz, párosítás 3 Párosítás keresése páros gráfban 4 Síkgráfok Wagner tétele Euler tétele Négyszín-tétel 5 Vizsgafeladatok Bogya Norbert (Bolyai Intézet) Diszkrét matematika II. gyakorlat április / 30
25 Deníciók Síkgráfok Wagner tétele Minor A H gráf a G gráf minorja, ha H megkapható G -b l élek és csúcsok élhagyásával illetve élek összehúzásával. h d f a e G g c b h d f a e G 1 g c d e G 2 c v G 3 c f f h g h g a a Bogya Norbert (Bolyai Intézet) Diszkrét matematika II. gyakorlat április / 30
26 Deníciók Síkgráfok Wagner tétele Minor A H gráf a G gráf minorja, ha H megkapható G -b l élek és csúcsok élhagyásával illetve élek összehúzásával. Wagner tétele Egy G gráf pontosan akkor síkgráf, ha nem tartalmaz K 5 -öt vagy K 3,3-at minorként. Bogya Norbert (Bolyai Intézet) Diszkrét matematika II. gyakorlat április / 30
27 Síkgráfok Wagner tétele 3. Feladat Döntse el, hogy az alábbi három gráf síkgráf-e! h e G 5 g f e h G 6 f g c G 7 f d c b e a b c d a b a d Bogya Norbert (Bolyai Intézet) Diszkrét matematika II. gyakorlat április / 30
28 Síkgráfok Wagner tétele 4. Feladat Síkgráf-e a Petersen-gráf? a e j f g b i h d c Bogya Norbert (Bolyai Intézet) Diszkrét matematika II. gyakorlat április / 30
29 Tartalom Síkgráfok Euler tétele 1 Páros gráfok 2 Lefogó ponthalmaz, párosítás 3 Párosítás keresése páros gráfban 4 Síkgráfok Wagner tétele Euler tétele Négyszín-tétel 5 Vizsgafeladatok Bogya Norbert (Bolyai Intézet) Diszkrét matematika II. gyakorlat április / 30
30 Síkgráfok Euler tétele Euler tétele Összefügg síkra rajzolt gráfra érvényes a T + V = E + 2, (1) összefüggés, ahol T a gráf tartományainak száma, E az éleinek száma és V a csúcsainak száma. Bogya Norbert (Bolyai Intézet) Diszkrét matematika II. gyakorlat április / 30
31 Síkgráfok Euler tétele Euler tétele Összefügg síkra rajzolt gráfra érvényes a T + V = E + 2, (1) összefüggés, ahol T a gráf tartományainak száma, E az éleinek száma és V a csúcsainak száma. Bogya Norbert (Bolyai Intézet) Diszkrét matematika II. gyakorlat április / 30
32 Tartalom Síkgráfok Négyszín-tétel 1 Páros gráfok 2 Lefogó ponthalmaz, párosítás 3 Párosítás keresése páros gráfban 4 Síkgráfok Wagner tétele Euler tétele Négyszín-tétel 5 Vizsgafeladatok Bogya Norbert (Bolyai Intézet) Diszkrét matematika II. gyakorlat április / 30
33 Négyszín-tétel Négyszín-probléma (sejtés) (Francis Guthrie ) Anglia megyéi kiszínezhet k 4 színnel a térképen. Minden síkgráf 4-színezhet? ábra : Tartományok színezése 4 színnel Ötszín-tétel (Heawood és Kempe ) Hurokél nélküli G gráfra χ(g) 5.
34 Négyszín-tétel Négyszín-probléma (sejtés) (Francis Guthrie ) Anglia megyéi kiszínezhet k 4 színnel a térképen. Minden síkgráf 4-színezhet? ábra : Tartományok színezése 4 színnel Négyszín-tétel (Appel és Haken ) Hurokél nélküli G gráfra χ(g) 4.
35 Síkgráfok Négyszín-tétel a G 8 e b c 5. Feladat Páros gráf-e? τ(g 8 )? ν(g 8 )? χ(g 8 )? Maximális párosítás? Síkgráf-e? (Ha igen mennyi a tartományainak száma?) d Bogya Norbert (Bolyai Intézet) Diszkrét matematika II. gyakorlat április / 30
36 Tartalom Vizsgafeladatok 1 Páros gráfok 2 Lefogó ponthalmaz, párosítás 3 Párosítás keresése páros gráfban 4 Síkgráfok Wagner tétele Euler tétele Négyszín-tétel 5 Vizsgafeladatok Bogya Norbert (Bolyai Intézet) Diszkrét matematika II. gyakorlat április / 30
37 Vizsgafeladatok
38
Gráfelméleti feladatok programozóknak
Gráfelméleti feladatok programozóknak Nagy-György Judit 1. Lehet-e egy gráf fokszámsorozata 3, 3, 3, 3, 5, 6, 6, 6, 6, 6, 6? 2. Lehet-e egyszer gráf fokszámsorozata (a) 3, 3, 4, 4, 6? (b) 0, 1, 2, 2, 2,
Síkgráfok. 1. Részgráfok, topológikus részgráfok, minorok
Gráfelmélet/Diszkrét Matematika MSc hallgatók számára Síkgráfok 2013. El adó: Hajnal Péter 1. Részgráfok, topológikus részgráfok, minorok Emlékeztet. Egy gráf síkba rajzolható, ha lerajzolható úgy, az
Síkbarajzolható gráfok, duális gráf
Síkbarajzolható gráfok, duális gráf Papp László BME November 8, 2018 Gráfok lerajzolása Definíció: Egy G gráf diagramján a gráf olyan lerajzolását értjük ahol a csúcsok különböző síkbeli pontok, illetve
(6) (4) (2) (3) (11) (3) (5) (21) (9) (7) (3) (4) (4) (7) (4)
Bevezetés a számításelméletbe II. Zárthelyi feladatok 2013. március 21. 1. Legyenek a G gráf csúcsai egy 5 5-ös sakktábla mez i és két különböz csúcs akkor legyen összekötve G-ben, ha a megfelel mez k
Gráfok színezése Diszkrét matematika 2009/10 sz, 9. el adás
Gráfok színezése Diszkrét matematika 2009/10 sz, 9. el adás A jegyzetet készítette: Szabó Tamás 2009. november 9. 1. Alapfogalmak Egy gráf csúcsait vagy éleit bizonyos esetekben szeretnénk különböz osztályokba
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
GRÁFELMÉLET. 7. előadás. Javító utak, javító utak keresése, Edmonds-algoritmus
GRÁFELMÉLET 7. előadás Javító utak, javító utak keresése, Edmonds-algoritmus Definíció: egy P utat javító útnak nevezünk egy M párosításra nézve, ha az út páratlan hosszú, kezdő- és végpontjai nem párosítottak,
Diszkrét Matematika MSc hallgatók számára 7. Előadás Párosítási tételek Előadó: Hajnal Péter Jegyzetelő: Kovácsházi Anna
Diszkrét Matematika MSc hallgatók számára 7. Előadás Párosítási tételek Előadó: Hajnal Péter Jegyzetelő: Kovácsházi Anna 2010. 10. 18. 2 7. Párosítási tételek.nb 7. Előadás Emlékeztető: Javító út, Javító
Algoritmusok bonyolultsága
Algoritmusok bonyolultsága 9. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm 1 / 18 Közelítő algoritmusok ládapakolás (bin packing) Adott n tárgy (s i tömeggel) és végtelen sok 1 kapacitású láda
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.
Euler tétel következménye 1:ha G összefüggő síkgráf és legalább 3 pontja van, akkor: e 3
Síkgráfok Kuratowski-tétel: egy gráf akkor és csak akkor síkba rajzolható gráf, ha nincs olyan részgráfja, ami a K 5 -el, vagy a K 3,3 -altopologikusan izomorf (homeomorf). Euler síkgráfokra vonatkozó
Kombinatorika és gráfelmélet
Kombinatorika és gráfelmélet Pejó Balázs Tartalomjegyzék 1. leszámolási problémák 2 1.1. permutáció.............................................. 2 1.1.1. ismétlés nélküli........................................
Bevezetés a számításelméletbe II. 1. zh,
Bevezetés a számításelméletbe II. 1. zh, 2014.03.20. 1. Egy 59 csúcsú egyszer gráfban bármely két csúcs fokszámösszege 60- nál nagyobb páros szám. Igaz-e, hogy a gráfban biztosan van Eulerkörséta? 2. Egy
Síkgráfok (négyszín-tétel, Kuratowski-tétel, Euler-formula)
Síkgráfok (négyszín-tétel, Kuratowski-tétel, Euler-formula) Kombinatorika 11. előadás SZTE Bolyai Intézet Szeged, 2016. április 26. 11. ea. Síkgráfok 1/9 Definíció. Egy gráf síkgráf, ha lerajzolható úgy
Bevezetés a számításelméletbe II. Zárthelyi feladatok április 23.
evezetés a számításelméletbe II. Zárthelyi feladatok 2018. április 23. 1. G egyszerű gráf csúcshalmaza legyen V (G) = {1, 2,..., 10}. z x, y V (G), x y csúcsok pontosan akkor legyenek szomszédosak G-ben,
Diszkrét matematika 1. estis képzés
Diszkrét matematika 1. estis képzés 2019. tavasz 1. Diszkrét matematika 1. estis képzés 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Diszkrét matematika 2.
Diszkrét matematika 2. 2018. október 12. 1. Diszkrét matematika 2. 5. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. október 12. Diszkrét matematika
KOMBINATORIKA ELŐADÁS osztatlan matematikatanár hallgatók számára
KOMBINATORIKA ELŐADÁS osztatlan matematikatanár hallgatók számára Párosítások gráfokban Előadó: Hajnal Péter 2018 1. A párosítás alapfogalma Definíció. Egy G gráfban egy M élhalmaz párosítás, ha 2 M darab
Matematika. Számonkérés. Írásbeli vizsga januárban. 1. konzultáció. Irodalom
1 Matematika NYME KTK, Egyetemi kiegészítő alapképzés 2002/2003. tanév, I. évf. I.félév Budapest Előadó: Dr. Takách Géza NyME FMK Információ Technológia Tanszék 9400 Sopron, Bajcsy Zs. u. 9. GT fszt. 3.
Diszkrét matematika 2.
Diszkrét matematika 2. 2018. szeptember 21. 1. Diszkrét matematika 2. 2. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. szeptember 21. Gráfelmélet
Diszkrét Matematika GYAKORLAT, Levelező MSc hallgatók számára. 3. Feladatsor
Diszkrét Matematika GYAKORLAT, Levelező MSc hallgatók számára 3. Feladatsor Gyakorlatvezetõ: Hajnal Péter 2011. november 2-ától 1. Párosítások gráfokban 1.1. Alapok 1. Feladat. (i) Bizonyítsuk be, hogy
Gráfalgoritmusok és hatékony adatszerkezetek szemléltetése
Gráfalgoritmusok és hatékony adatszerkezetek szemléltetése Készítette: Bognár Gergő Témavezető: Veszprémi Anna Eötvös Loránd Tudományegyetem Informatikai Kar Algoritmusok és Alkalmazásaik Tanszék Budapest,
Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra:
Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra: C(T ) = (u,v) T c(u,v) Az F = (V,T) gráf minimális feszitőfája G-nek,
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. ősz 1. Diszkrét matematika 2.C szakirány 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2016. tavasz 1. Diszkrét matematika 2. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Diszkrét matematika II. gyakorlat
Diszkrét matematika II. gyakorlat Absztrakt algebra Bogya Norbert Bolyai Intézet 2014. április 23. Bogya Norbert (Bolyai Intézet) Diszkrét matematika II. gyakorlat 2014. április 23. 1 / 23 Tartalom 1 1.
Szabályos gráfok paraméterei
Eötvös Loránd Tudományegyetem Természettudományi Kar Szabályos gráfok paraméterei Szakdolgozat Témavezető: Dr. Sziklai Péter egyetemi docens Készítette: Deák Réka Budapest 2016 Szabályos gráfok paraméterei
Gráfelmélet/Diszkrét Matematika MSc hallgatók számára. Síkgráfok Előadó: Hajnal Péter
Gráfelmélet/Diszkrét Matematika MSc hallgatók számára Síkgráfok 2016. Előadó: Hajnal Péter Egy G gráf ρ lerajzolása egy (ρ V, ρ E ) leképzés-pár, ahol a következők teljesülnek: ρ V : V (G) R 2 injenktív
Algoritmuselmélet. Bonyolultságelmélet. Katona Gyula Y.
Algoritmuselmélet Bonyolultságelmélet Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 12. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet
Megoldások 7. gyakorlat Síkgráfok, dualitás, gyenge izomorfia, Whitney-tételei
Számítástudomány alapjai Megoldások 7. gyakorlat Síkgráfok, dualitás, gyenge izomorfia, Whitney-tételei 90. A konvex poliéder egyes lapjait határoló élek száma legyen k! Egy konvex poliéder egy tetszőleges
Gráfelméleti alapfogalmak
1 Gráfelméleti alapfogalmak Gráf (angol graph= rajz): pontokból és vonalakból álló alakzat. pontok a gráf csúcsai, a vonalak a gráf élei. GRÁ Irányítatlan gráf Vegyes gráf Irányított gráf G H Izolált pont
Gráf csúcsainak színezése. The Four-Color Theorem 4 szín tétel Appel és Haken bebizonyították, hogy minden térkép legfeljebb 4 színnel kiszínezhető.
Gráf csúcsainak színezése Kromatikus szám 2018. Április 18. χ(g) az ún. kromatikus szám az a szám, ahány szín kell a G gráf csúcsainak olyan kiszínezéséhez, hogy a szomszédok más színűek legyenek. 2 The
Algoritmusok bonyolultsága
Algoritmusok bonyolultsága 5. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm 1 / 27 Gazdaságos faváz Kruskal-algoritmus Joseph Kruskal (1928 2010) Legyen V = {v 1, v 2,..., v n }, E = {e 1, e 2,...,
Bevezetés. 1. fejezet. Algebrai feladatok. Feladatok
. fejezet Bevezetés Algebrai feladatok J. A számok gyakran használt halmazaira a következ jelöléseket vezetjük be: N a nemnegatív egész számok, N + a pozitív egész számok, Z az egész számok, Q a racionális
Diszkrét matematika 2.
Diszkrét matematika 2. 2018. március 9. 1. Diszkrét matematika 2. 4. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. március 9. Gráfelmélet Diszkrét
Síkbarajzolható gráfok Április 26.
Síkbarajzolható gráfok 2017. Április 26. Síkgráfok Egy gráf síkgráf=síkba rajzolható gráf, ha lerajzolható úgy a síkba, hogy élei csak a szögpontokban metszik egymást. Ha egy gráf lerajzolható a síkba,
1. tétel - Gráfok alapfogalmai
1. tétel - Gráfok alapfogalmai 1. irányítatlan gráf fogalma A G (irányítatlan) gráf egy (Φ, E, V) hátmas, ahol E az élek halmaza, V a csúcsok (pontok) halmaza, Φ: E {V-beli rendezetlen párok} illeszkedési
Gráfelméleti feladatok. c f
Gráfelméleti feladatok d e c f a b gráf, csúcsok, élek séta: a, b, c, d, e, c, a, b, f vonal: c, d, e, c, b, a út: f, b, a, e, d (walk, lanţ) (trail, lanţ simplu) (path, lanţ elementar) 1 irányított gráf,
Bevezetés a számításelméletbe II. 2. zh, ben egy maximális párosítást és egy minimális lefogó csúcshalmazt.
evezetés a számításelméletbe II. Zárthelyi feladatok 2015. március 19. 1. ány olyan 12 hosszúságú bet sorozat készíthet az angol abécé 26 bet jéb l, amelyben pontosan 4 darab X és 3 darab Y bet szerepel?
Algoritmuselmélet. Gráfok megadása, szélességi bejárás, összefüggőség, párosítás. Katona Gyula Y.
Algoritmuselmélet Gráfok megadása, szélességi bejárás, összefüggőség, párosítás Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 2. előadás
ALAPOK. 1. Fejezet. 1.1 Fogalmak, jelölések
1. Fejezet ALAPOK E munka célja, hogy a diszkrét optimalizálás néhány alapvető megközelítését, eredményét, fogalmát, algoritmusát és alkalmazását bemutassa. Ennek során megismerkedünk a Gráfelmélet, a
1. Szerencsére elmúlt a veszély, pánikra semmi ok. Luke Skywalker ugyan kivont lézerkarddal ment órára a jediképzőben, de a birodalmi gárda
1. ZH 2012. X. 11. 15 Mobiltelefon még kikapcsolt állapotban sem lehet a padon vagy a hallgató kezében. Minden egyes feladat helyes megoldása 10 pontot ér. A dolgozatok értékelése: 0-23 pont: 1, 24-32
Gubancok. Hajnal Péter. SZTE, Bolyai Intézet
Gubancok SZTE, Bolyai Intézet 2010 Bevezető feladat Három ház három kút feladat Adott a síkon három ház és három kút. Bevezető feladat Három ház három kút feladat Adott a síkon három ház és három kút.
GRÁFELMÉLET. 1. Alapfogalmak Definíciók: - irányítatlan és irányított gráf, csúcshalmaz, élhalmaz, szomszédsági reláció
GRÁFELMÉLET ALAPVETŐ FOGALMAK ÉS TÉTELEK 1. Alapfogalmak Definíciók: - irányítatlan és irányított gráf, csúcshalmaz, élhalmaz, szomszédsági reláció - gráfok reprezentációi: szomszédsági mátrix, illeszkedési
Hálózati folyamok. Tétel: A maximális folyam értéke megegyezik a minimális vágás értékével.
Hálózati folyamok Definíció: Legyen G = (V,E) egy irányított gráf, adott egy c: E R + {0} ún. kapacitásfüggvény, amely minden (u,v) ε E élhez hozzárendel egy nem negatív c(u,v) kapacitást. A gráfnak van
Feladatok. 6. A CYK algoritmus segítségével döntsük el, hogy aabbcc eleme-e a G = {a, b, c}, {S, A, B, C}, P, S nyelvtan által generált nyelvnek!
Feladatok 1. A CYK algoritmus segítségével döntsük el, hogy cabcab eleme-e a G = {a, b, c}, {S, A, B, C, D, E}, P, S nyelvtan által generált nyelvnek! P: S AD EB SS A AB a B DD b C CB c D EC a E AD b 2.
E jegyzet célja, hogy a gráfelméletnek a kombinatorikus optimalizálás szempontjából legfontosabb eredményeit
1. Fejezet ALAPOK E jegyzet célja, hogy a gráfelméletnek a kombinatorikus optimalizálás szempontjából legfontosabb eredményeit és módszereit bemutassa. Ebből adódóan nem érintjük a Ramsey elméletet, az
Diszkrét matematika II. feladatok
Diszkrét matematika II. feladatok 1. Gráfelmélet 1.1. Könnyebb 1. Rajzold le az összes, páronként nem izomorf 3, 4, illetve 5 csúcsú egyszerű gráfot! 2. Van-e olyan (legalább kétpontú) gráf, melyben minden
Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra:
Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra: C(T ) = (u,v) T c(u,v) Az F = (V,T) gráf minimális feszitőfája G-nek,
ELTE IK Esti képzés tavaszi félév. Tartalom
Diszkrét Matematika 2 vizsgaanyag ELTE IK Esti képzés 2017. tavaszi félév Tartalom 1. Számfogalom bővítése, homomorfizmusok... 2 2. Csoportok... 9 3. Részcsoport... 11 4. Generátum... 14 5. Mellékosztály,
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
3. el adás: Determinánsok
3. el adás: Determinánsok Wettl Ferenc 2015. február 27. Wettl Ferenc 3. el adás: Determinánsok 2015. február 27. 1 / 19 Tartalom 1 Motiváció 2 A determináns mint sorvektorainak függvénye 3 A determináns
A különböz lerajzolásokhoz különböz metszési szám tartozik: x(k 5, λ) = 5,
Gráfelmélet/Diszkrét Matematika MSc hallgatók számára Gráfok metszési paramétere és alkalmazásai 2013. El adó: Hajnal Péter 1. Gráfok metszési száma Az el adás a metszési szám nev gráfparaméterr l szól.
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.
Gráfalgoritmusok: összefüggőség, párosítás páros gráfban
Gráfalgoritmusok: összefüggőség, párosítás páros gráfban Horváth Gyula horvath@inf.elte.hu 1. Elvágópontok és hidak 1.1. definíció. Egy G = (V, E) összefüggő irányítatlan gráf p V pontját elvágópontnak
MATEK-INFO UBB verseny április 6.
BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR MATEK-INFO UBB verseny 219. április 6. Írásbeli próba matematikából FONTOS MEGJEGYZÉS: 1) Az A. részben megjelenő feleletválasztós
Építésikivitelezés-Vállalkozás / 2: Gráftechnikai alapfogalmak VÁLLALKOZÁS. javított háttöltés
Elõadás:Folia201.doc VÁLLALKOZÁS ( tervezés - bonyolítás - változásmenedzsment ) ideiglenes földút monolit vb.támfal javított háttöltés új földtöltés régi töltés humusz teherbíró talaj Tevékenység Sz Megnevezés
Bevezetés a számításelméletbe (MS1 BS)
Matematika szigorlat - konzultációs szeminárium Azoknak, akik másodszorra vagy többedszerre veszik fel a Matematika szigorlat (NAMMS1SAND) tárgyat. Bevezetés a számításelméletbe (MS1 BS) FŐBB TÉMAKÖRÖK
Gráfelmélet/Diszkrét Matematika MSc hallgatók számára. Párosítások. 1. ábra.
Gráfelmélet/Diszkrét Matematika MSc hallgatók számára Párosítások 2012. november 26. Előadó: Hajnal Péter 1. Javító utas algoritmusok Definíció. Legyen G gráf M párosítás G-ben, P : v 0, e 1, v 1,...,e
EÖTVÖS LORÁND TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI KAR. Párosítások. BSc Szakdolgozat. Németh Kinga. Matematika BSc Elemző szakirány
EÖTVÖS LORÁND TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI KAR Párosítások BSc Szakdolgozat Németh Kinga Matematika BSc Elemző szakirány Témavezető: Szőnyi Tamás Egyetemi tanár Budapest 2016 Tartalomjegyzék Bevezetés...
HAMILTON ÚT: minden csúcson PONTOSAN egyszer áthaladó út
SÍKBA RAJZOLHATÓ GRÁFOK ld. előadás diasorozat SZÍNEZÉS: ld. előadás diasorozat PÉLDA: Reguláris 5 gráf színezése 4 színnel Juhász, PPKE ITK, 007: http://users.itk.ppke.hu/~b_novak/dmat/juhasz_5_foku_graf.bmp
Algoritmuselmélet. Függvények nagyságrendje, elágazás és korlátozás, dinamikus programozás. Katona Gyula Y.
Algoritmuselmélet Függvények nagyságrendje, elágazás és korlátozás, dinamikus programozás Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem
Gráfelmélet. I. Előadás jegyzet (2010.szeptember 9.) 1.A gráf fogalma
Készítette: Laczik Sándor János Gráfelmélet I. Előadás jegyzet (2010.szeptember 9.) 1.A gráf fogalma Definíció: a G=(V,E) párt egyszerű gráfnak nevezzük, (V elemeit a gráf csúcsainak/pontjainak,e elemeit
Diszkrét matematika 1. estis képzés
Diszkrét matematika 1. estis képzés 2019. tavasz 1. Diszkrét matematika 1. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2015. tavasz 1. Diszkrét matematika 2.C szakirány 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu Komputeralgebra Tanszék 2015. tavasz Gráfelmélet Diszkrét
A változatlan. Invariánsok a matematikában. Szakács Nóra. Egyetemi Tavasz Bolyai Intézet
A változatlan Invariánsok a matematikában Szakács Nóra Bolyai Intézet Egyetemi Tavasz 2017. 04. 22. Egy egyszer kérdés Át tud-e haladni egy futó egy sakktábla összes mez jén úgy, hogy szabályosan lép,
Algoritmuselmélet. Függvények nagyságrendje, elágazás és korlátozás, dinamikus programozás. Katona Gyula Y.
Algoritmuselmélet Függvények nagyságrendje, elágazás és korlátozás, dinamikus programozás Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem
A számítástudomány alapjai
A számítástudomány alapjai Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem Legszélesebb utak Katona Gyula Y. (BME SZIT) A számítástudomány
Alapfogalmak a Diszkrét matematika II. tárgyból
Alapfogalmak a Diszkrét matematika II. tárgyból (A szakirány, 2015-2016 tavaszi félév) A számonkérés során ezeknek a definícióknak, tételkimondásoknak az alapos megértését is számon kérjük. A példakérdések
MM CSOPORTELMÉLET GYAKORLAT ( )
MM4122-1 CSOPORTELMÉLET GYAKORLAT (2008.12.01.) 1. Ismétlés szeptember 1.szeptember 8. 1.1. Feladat. Döntse el, hogy az alábbi állítások közül melyek igazak és melyek (1) Az A 6 csoportnak van 6-odrend
Diszkrét matematika 2.
Diszkrét matematika 2. Mérai László előadása alapján Készítette: Nagy Krisztián 4. előadás Eulerséta: Olyan séta, mely a gráf minden élét pontosan egyszer tartalmazza. Tétel: egy összefüggő gráf. Ha minden
Elmaradó óra. Az F = (V,T) gráf minimális feszitőfája G-nek, ha. F feszitőfája G-nek, és. C(T) minimális
Elmaradó óra A jövő heti, november 0-dikei óra elmarad. Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra: C(T ) = (u,v)
Relációk. 1. Descartes-szorzat. 2. Relációk
Relációk Descartes-szorzat. Relációk szorzata, inverze. Relációk tulajdonságai. Ekvivalenciareláció, osztályozás. Részbenrendezés, Hasse-diagram. 1. Descartes-szorzat 1. Deníció. Tetsz leges két a, b objektum
Algoritmuselmélet 11. előadás
Algoritmuselmélet 11. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Március 26. ALGORITMUSELMÉLET 11. ELŐADÁS 1 Kruskal
FELVÉTELI VIZSGA, július 21. Írásbeli próba MATEMATIKÁBÓL A. RÉSZ
BABE -BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR FELVÉTELI VIZSGA, 9. július. Írásbeli próba MATEMATIKÁBÓL FONTOS MEGJEGYZÉS: ) Az A. részben megjelen feleletválasztós feladatok esetén
angolul: greedy algorithms, románul: algoritmi greedy
Mohó algoritmusok angolul: greedy algorithms, románul: algoritmi greedy 1. feladat. Gazdaságos telefonhálózat építése Bizonyos városok között lehet direkt telefonkapcsolatot kiépíteni, pl. x és y város
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2015. ősz 1. Diszkrét matematika 2.C szakirány 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2015.
(a b)(c d)(e f) = (a b)[(c d) (e f)] = = (a b)[e(cdf) f(cde)] = (abe)(cdf) (abf)(cde)
2. házi feladat 1.feladat a b)c d)e f) = a b)[c d) e f)] = = a b)[ecdf) fcde)] = abe)cdf) abf)cde) 2.feladat a) Legyen a két adott pontunk helyzete A = 0, 0), B = 1, 0), továbbá legyen a távolságok aránya
Diszkrét Matematika MSc hallgatók számára. 11. Előadás. Előadó: Hajnal Péter Jegyzetelő: Szarvák Gábor november 29.
Diszkrét Matematika MSc hallgatók számára 11. Előadás Előadó: Hajnal Péter Jegyzetelő: Szarvák Gábor 2010. november 29. 1. Gráfok metszési száma z előadás a metszési szám nevű gráfparaméterről szól. Ez
Alapfogalmak II. Def.: Egy gráf összefüggő, ha bármely pontjából bármely pontjába eljuthatunk egy úton.
lapfogalmak II Nézzük meg mégegyszer a königsbergi séták problémáját! város lakói vasárnaponként szerettek sétálni a szigeteken. Felvetődött a kérdés, hogy hogyan lehetne olyan sétát tenni a városban,
1. ZH javítókulcs ( ) felidézése nem jelenti automatikusan az adott pontszám megszerzését. Az adott részpontszám
A Számítástudomány alapjai 1. ZH javítókulcs (2015.. 22.) Az útmutató mintamegoldásokat tartalmaz. A pontszámok tájékoztató jelleggel lettek megállapítva az értékelés egységesítése céljából. Egy pontszám
Í ÍÍÍ Í Í Í Ö Ö Ö Ö Ö Ö Ö Ö Ú É Í Ö Á Á É Ö É Ö É É Á Á Ö Ú Ö Ö Í Á É É Í Á É Í Ö Ö Á Á É Í Ö Ö Ö Ö Ö Ö Á É Ö É É Ö É Ö Í Á É É Ö Ö É Ö Í Í Í Í Ö Ö Ö Í Ö É Ö É É Ö Ö Í É Ö Í É É Ö Í É Á É É Ű Ö Í É É Ö
Laták Ivett. Gráfparaméterek. Matematika alapszakos szakdolgozat
Eötvös Loránd Tudományegyetem Természettudományi Kar, Matematikai Intézet Laták Ivett Gráfparaméterek Matematika alapszakos szakdolgozat Témavezető: Fancsali Szabolcs Levente Az ELTE-TTK Matematikai Intézet
Arany Dániel Matematikai Tanulóverseny 2008/2009-es tanév első (iskolai) forduló haladók I. kategória
Bolyai János Matematikai Társulat Oktatási és Kulturális Minisztérium Támogatáskezelő Igazgatósága támogatásával Arany Dániel Matematikai Tanulóverseny 2008/2009-es tanév első (iskolai) forduló haladók
Láthatjuk, hogy az els szám a 19, amelyre pontosan 4 állítás teljesül, tehát ez lesz a legnagyobb. 1/5
D1. Egy pozitív egész számról az alábbi 7 állítást tették: I. A szám kisebb, mint 23. II. A szám kisebb, mint 25. III. A szám kisebb, mint 27. IV. A szám kisebb, mint 29. V. A szám páros. VI. A szám hárommal
1. Legyen egy háromszög három oldalának a hossza a, b, c. Bizonyítsuk be, hogy Mikor állhat fenn egyenlőség? Kántor Sándorné, Debrecen
10. osztály 1. Legyen egy háromszög három oldalának a hossza a, b, c. Bizonyítsuk be, hogy ( a + b + c) 3 4 ab + bc + ca Mikor állhat fenn egyenlőség? Kántor Sándorné, Debrecen A feladatban szereplő kettős
A = {a 1,a 2,...,a 8 } és B = {b 1,b 2,...,b 8 }. Minden i,j 8 esetén az a i akkor legyen szomszédos b j -vel,
Bevezetés a számításelméletbe II. Zárthelyi feladatok 2012. március 12. 1. Egy 8 csúcsú egyszerű gráfban minden csúcs foka legalább 4. Mutassuk meg, hogy a gráfban van (pontosan) 4 hosszú kör. 2. Egy képzeletbeli
2) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont)
(11/1) Függvények 1 1) Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon! (pont) ) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont) 3) Ábrázolja + 1 - függvényt a [ ;] -on! (3pont)
Kártyázzunk véges geometriával
Kártyázzunk véges geometriával Bogya Norbert Bolyai Intézet Egyetemi tavasz, 2016 Tartalom Dobble Véges geometria Dobble újratöltve SET Kérdések Hogy tudunk ilyen kártyákat konstruálni? 8 helyett más
Szakdolgozat. Írta: Hermann Gábor. Matematika BSc Alkalmazott matematikus szakirány. Kovács Erika Renáta MTA-ELTE Egerváry Jenő Komb. Opt. Kut. Csop.
Végtelen gráfelméleti tételek Szakdolgozat Írta: Hermann Gábor Matematika BSc Alkalmazott matematikus szakirány Témavezető: Kovács Erika Renáta MTA-ELTE Egerváry Jenő Komb. Opt. Kut. Csop. Eötvös Loránd
VIII.4. PONT A RÁCSPONTOK? A feladatsor jellemzői
VIII.4. PONT A RÁCSPONTOK? Tárg, téma Geometria, algebra és számelmélet. Előzmének A feladatsor jellemzői Pontok ábrázolása koordináta-rendszerben, abszolút érték fogalma, oszthatóság fogalma, (skatula
SzA X/XI. gyakorlat, november 14/19.
SzA X/XI. gyakorlat, 2013. november 14/19. Színezünk és rajzolunk Drótos Márton drotos@cs.bme.hu 1. Mennyi a következő gráfok kromatikus száma: C 4, C 5, K 2,4, alábbi 2 gráf χ(c 4 ) = 2, páros hosszú
6. Előadás. 1. Párosítások Alapfogalmak Mohó algoritmus. Diszkrét Matematika MSc hallgatók számára
Diszkrét Matematika MSc hallgatók számára 6. Előadás Előadó: Hajnal Péter Jegyzetelő: Győrffy Lajos 2010. október 11. 1. Párosítások 1.1. Alapfogalmak Emlékeztető. Legyen G egy gráf, E(G) a G élhalmaza,
Arany Dániel Matematikai Tanulóverseny 2010/2011-es tanév 1. forduló haladók III. kategória
Bolyai János Matematikai Társulat Oktatásért Közalapítvány támogatásával Arany Dániel Matematikai Tanulóverseny 2010/2011-es tanév 1. forduló haladók III. kategória Megoldások és javítási útmutató 1. Határozzuk
Koordinátageometria. M veletek vektorokkal grakusan. Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1
Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1 Koordinátageometria M veletek vektorokkal grakusan 1. Az ABCD négyzet oldalvektorai közül a = AB és b = BC. Adja meg az AC és BD vektorokat a
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 7. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Számelmélet (2017. február 8.) Bogya Norbert, Kátai-Urbán Kamilla
Számelmélet (2017 február 8) Bogya Norbert, Kátai-Urbán Kamilla 1 Oszthatóság 1 Definíció Legyen a, b Z Az a osztója b-nek, ha létezik olyan c Z egész szám, melyre ac = b Jelölése: a b 2 Példa 3 12, 2
1. Ábrázolja az f(x)= x-4 függvényt a [ 2;10 ] intervallumon! (2 pont) 2. Írja fel az alábbi lineáris függvény grafikonjának egyenletét!
Függvények 1 1. Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon!. Írja fel az alábbi lineáris függvény grafikonjának egyenletét! 3. Ábrázolja + 1 - függvényt a [ ;] -on! 4. Az f függvényt a valós