Gubancok. Hajnal Péter. SZTE, Bolyai Intézet
|
|
- Árpád Zalán Jónás
- 8 évvel ezelőtt
- Látták:
Átírás
1 Gubancok SZTE, Bolyai Intézet 2010
2 Bevezető feladat Három ház három kút feladat Adott a síkon három ház és három kút.
3 Bevezető feladat Három ház három kút feladat Adott a síkon három ház és három kút. H 1,H 2,H 3,K 1,K 2,K 3
4 Bevezető feladat Három ház három kút feladat Adott a síkon három ház és három kút. H 1,H 2,H 3,K 1,K 2,K 3 Tervezhető-e kilenc út a házak és kutak közt,
5 Bevezető feladat Három ház három kút feladat Adott a síkon három ház és három kút. H 1,H 2,H 3,K 1,K 2,K 3 Tervezhető-e kilenc út a házak és kutak közt, H 1 K 1,H 1 K 2,H 1 K 3,H 2 K 1,H 2 K 2,H 2 K 3,H 3 K 1,H 3 K 2,H 3 K 3
6 Bevezető feladat Három ház három kút feladat Adott a síkon három ház és három kút. H 1,H 2,H 3,K 1,K 2,K 3 Tervezhető-e kilenc út a házak és kutak közt, H 1 K 1,H 1 K 2,H 1 K 3,H 2 K 1,H 2 K 2,H 2 K 3,H 3 K 1,H 3 K 2,H 3 K 3 hogy az utak csak közös végpontjukban találkozzanak?
7 Kezdeti észrevétel HA TERVEZHETŐ, AKKOR a bizonyítás egyszerű: fel kell mutatni egy tervrajzot
8 Kezdeti észrevétel HA TERVEZHETŐ, AKKOR a bizonyítás egyszerű: fel kell mutatni egy tervrajzot Csak rövid a bizonyítás! Hogy hogyan találjuk meg a tervrajzot, arról nem szóltunk.
9 Kezdeti észrevétel HA NEM TERVEZHETŐ, AKKOR A bizonyítás:???
10 Részfeladat Tervezzük meg a H 1 K 1,K 1 H 2,H 2 K 2,K 2 H 3,H 3 K 3,K 3 H 1 utakat.
11 Részfeladat Tervezzük meg a H 1 K 1,K 1 H 2,H 2 K 2,K 2 H 3,H 3 K 3,K 3 H 1 utakat. Vegyünk fel házakat/kutakat. Tervezzünk utakat.
12 Részfeladatmegoldása (folytatás) Tervezzük meg a H 1 K 1,K 1 H 2,H 2 K 2,K 2 H 3,H 3 K 3,K 3 H 1 utakat. Vegyünk fel házakat/kutakat. Tervezzünk utakat.
13 Részfeladat MÁSIK megoldása Egy másik jó tervrajz:
14 Lényeges (könnyen elhihető, nehezen bizonyítható) észrevétel Lényegében egyetlen megoldás van.
15 Lényeges (könnyen elhihető, nehezen bizonyítható) észrevétel Lényegében egyetlen megoldás van. Minden megoldás egyenértékű a következő STANDARD megoldással/lerajzolással:
16 Lényeges (könnyen elhihető, nehezen bizonyítható) észrevétel Lényegében egyetlen megoldás van. Minden megoldás egyenértékű a következő STANDARD megoldással/lerajzolással:
17 A három ház- három kút feladat megoldása Válasz: NINCS megfelelő lerajzolás.
18 A három ház- három kút feladat megoldása Válasz: NINCS megfelelő lerajzolás. INDIREKT bizonyítás.
19 A három ház- három kút feladat megoldása Válasz: NINCS megfelelő lerajzolás. INDIREKT bizonyítás. FELTEHETŐ, hogy a rész standard lerajzolásával kezdünk és próbáljuk a hiányzó három élt berajzolni.
20 A három ház- három kút feladat megoldása Válasz: NINCS megfelelő lerajzolás. INDIREKT bizonyítás. FELTEHETŐ, hogy a rész standard lerajzolásával kezdünk és próbáljuk a hiányzó három élt berajzolni. BELÜLre nem fér el két hiányzó él. KÍVÜLre sem.
21 A három ház- három kút feladat megoldása Válasz: NINCS megfelelő lerajzolás. INDIREKT bizonyítás. FELTEHETŐ, hogy a rész standard lerajzolásával kezdünk és próbáljuk a hiányzó három élt berajzolni. BELÜLre nem fér el két hiányzó él. KÍVÜLre sem. ELLENTMONDÁS.
22 A gráfelmélet nyelve Csúcsok (V ): Egy véges halmaz
23 A gráfelmélet nyelve Csúcsok (V ): Egy véges halmaz Élek (E): Csúcspárok halmaza ( egyszerű gráf)
24 A gráfelmélet nyelve Csúcsok (V ): Egy véges halmaz Élek (E): Csúcspárok halmaza ( egyszerű gráf) e = {u,v} olvasata: az u és v csúcsok szomszédosak e összeköti u-t és v-t u-nak v szomszédja u és v az e él két végpontja
25 A gráfelmélet nyelve Csúcsok (V ): Egy véges halmaz Élek (E): Csúcspárok halmaza ( egyszerű gráf) e = {u,v} olvasata: az u és v csúcsok szomszédosak e összeköti u-t és v-t u-nak v szomszédja u és v az e él két végpontja Lerajzolás: csúcsok helyett pontok, élek helyett élgörbék
26 A gráfelmélet nyelve Csúcsok (V ): Egy véges halmaz Élek (E): Csúcspárok halmaza ( egyszerű gráf) e = {u,v} olvasata: az u és v csúcsok szomszédosak e összeköti u-t és v-t u-nak v szomszédja u és v az e él két végpontja Lerajzolás: csúcsok helyett pontok, élek helyett élgörbék Szép lerajzolás: élgörbék nem metszik át egymást
27 A gráfelmélet nyelve Csúcsok (V ): Egy véges halmaz Élek (E): Csúcspárok halmaza ( egyszerű gráf) e = {u,v} olvasata: az u és v csúcsok szomszédosak e összeköti u-t és v-t u-nak v szomszédja u és v az e él két végpontja Lerajzolás: csúcsok helyett pontok, élek helyett élgörbék Szép lerajzolás: élgörbék nem metszik át egymást Síkgráf: gráf, ami lerajzolható szépen
28 A gráfelmélet nyelve (folytatás) Kör egy gráfban: olyan része a gráfnak, ami lerajzolható úgy, hogy a megfelelő élgörbék egy egyszerű körvonallá olvadnak össze.
29 A gráfelmélet nyelve (folytatás) Kör egy gráfban: olyan része a gráfnak, ami lerajzolható úgy, hogy a megfelelő élgörbék egy egyszerű körvonallá olvadnak össze. Körgráf: egy kör és más semmi.
30 A gráfelmélet nyelve (folytatás) Kör egy gráfban: olyan része a gráfnak, ami lerajzolható úgy, hogy a megfelelő élgörbék egy egyszerű körvonallá olvadnak össze. Körgráf: egy kör és más semmi. Jelölés: C n (n pontú/élű gráf)
31 A gráfelmélet nyelve (folytatás) Jelölés: C n (n pontú/élű gráf)
32 Egy gráfelméleti tétel Euler tétele G egyszerű síkgráf. Ekkor E < 3 V.
33 Egy másik gráfelméleti tétel Fáry tétele (Fáry tétele) G egyszerű síkgráf. Ekkor G lerajzolható úgy is, hogy minden élgörbéje EGYENES SZAKASZ.
34 Conway-lerajzolás Definíció G egy lerajzolása Conway-lerajzolás, ha
35 Conway-lerajzolás Definíció G egy lerajzolása Conway-lerajzolás, ha összefutó élpárok élgörbéi nem talákoznak (csak a közös végpontjukban),
36 Conway-lerajzolás Definíció G egy lerajzolása Conway-lerajzolás, ha összefutó élpárok élgörbéi nem talákoznak (csak a közös végpontjukban), nem összefutó élpárok élgörbéi pontosan egyszer átmetszik egymást.
37 Conway-lerajzolás Definíció G egy lerajzolása Conway-lerajzolás, ha összefutó élpárok élgörbéi nem talákoznak (csak a közös végpontjukban), nem összefutó élpárok élgörbéi pontosan egyszer átmetszik egymást.
38 Gubancok Definíció G egyszerű gráf gubanc/thrackle, ha van Conway-lerajzolása.
39 Gubancok-e a körgráfok?
40 Gubancok-e a körgráfok? C 3 gubanc:
41 Gubancok-e a körgráfok? C 3 gubanc: C 5,C 7,C 9,C 11,... gubanc
42 Gubancok-e a körgráfok? (folyatás) C 4
43 Gubancok-e a körgráfok? (folyatás) C 4 NEM gubanc.
44 Gubancok-e a körgráfok? (folyatás) C 4 NEM gubanc. C 6?
45 Gubancok-e a körgráfok? (folyatás) C 4 NEM gubanc. C 6? IGEN.
46 Gubancok-e a körgráfok? (folyatás) Tétel C l akkor és csak akkor gubanc, ha l NEM 4.
47 Gubancok-e a körgráfok? (folyatás) Tétel C l akkor és csak akkor gubanc, ha l NEM 4. BIZONYÍTÁS:Ha C l gubanc akkor C l+2 is az:
48 Betoldás Egy G gráf és gubanc lerajzolása:
49 Betoldás (folyatás) A G gráf egy e élének (piros) kijelölése:
50 Betoldás (folyatás) e felosztása két új ponttal.
51 Betoldás (folyatás) A toldott gráf gubanc lerajzolása:
52 Ághajtás Egy G gráf és gubanc lerajzolása:
53 Ághajtás (folyatás) A G gráfból egy ág (piros e él) kihajtása:
54 Ághajtás (folytatás) Az ághajtott gráf gubanc lerajzolása:
55 Lovász László, Pach János, Szegedy Márió tétele A következő gráf nem gubanc.
56 Lovász László, Pach János, Szegedy Márió tétele A következő gráf nem gubanc. Meglepően nehéz.
57 Conway-sejtés Conway sejtése Legyen G egy gubanc. Ekkor E V.
58 Conway-sejtés Conway sejtése Legyen G egy gubanc. Ekkor E V. Miért gondolkozzak rajta?
59 Conway-sejtés Conway sejtése Legyen G egy gubanc. Ekkor E V. Miért gondolkozzak rajta? Első korrekt megoldó jutalma: 1000$ + világhír
60 Egyenes-gubancok Definíció Egy gubanc egyenes-gubanc, ha van olyan gubanc lerajzolása, ahol minden élgörbe egyenes.
61 Egyenes-gubancok Definíció Egy gubanc egyenes-gubanc, ha van olyan gubanc lerajzolása, ahol minden élgörbe egyenes. C 2l+1 egyenes-gubanc.
62 Egyenes-gubancok Definíció Egy gubanc egyenes-gubanc, ha van olyan gubanc lerajzolása, ahol minden élgörbe egyenes. C 2l+1 egyenes-gubanc. C 6 NEM egyenes-gubanc.
63 Egyenes-gubancokra igaz a Conway-sejtés Lemma Egy egyenes-gubanc minden legalább 3 fokú csúcsának van 1 fokú szomszédja.
64 Egyenes-gubancokra igaz a Conway-sejtés Lemma Egy egyenes-gubanc minden legalább 3 fokú csúcsának van 1 fokú szomszédja. Lemma átfogalmazva Egy egyenes-gubancban van 1 fokú csúcs vagy minden fokszám legfeljebb 2.
65 Egyenes-gubancokra igaz a Conway-sejtés Lemma Egy egyenes-gubanc minden legalább 3 fokú csúcsának van 1 fokú szomszédja. Lemma átfogalmazva Egy egyenes-gubancban van 1 fokú csúcs vagy minden fokszám legfeljebb 2. A SEJTÉS BIZONYÍTÁSA EGYENES GUBANCOKRA: Lemma alapján a pontszámra vonatkozó teljes indukció.
66 Legjobb felső becslés gubancok élszámára Tétel (Lovász László Pach János Szegedy Márió, G. Cairns Y. Nikolayevsky, R. Fulek Pach János) Ha G egy gubanc, akkor E V.
67 Hajrá Az 1000$-os díj még mindig érvényes.
68 Köszönöm a figyelmet.
Síkgráfok. 1. Részgráfok, topológikus részgráfok, minorok
Gráfelmélet/Diszkrét Matematika MSc hallgatók számára Síkgráfok 2013. El adó: Hajnal Péter 1. Részgráfok, topológikus részgráfok, minorok Emlékeztet. Egy gráf síkba rajzolható, ha lerajzolható úgy, az
RészletesebbenSíkgráfok (négyszín-tétel, Kuratowski-tétel, Euler-formula)
Síkgráfok (négyszín-tétel, Kuratowski-tétel, Euler-formula) Kombinatorika 11. előadás SZTE Bolyai Intézet Szeged, 2016. április 26. 11. ea. Síkgráfok 1/9 Definíció. Egy gráf síkgráf, ha lerajzolható úgy
RészletesebbenGráfok színezése Diszkrét matematika 2009/10 sz, 9. el adás
Gráfok színezése Diszkrét matematika 2009/10 sz, 9. el adás A jegyzetet készítette: Szabó Tamás 2009. november 9. 1. Alapfogalmak Egy gráf csúcsait vagy éleit bizonyos esetekben szeretnénk különböz osztályokba
RészletesebbenGráfelméleti alapfogalmak-1
KOMBINATORIKA ELŐADÁS osztatlan matematika tanár hallgatók számára Gráfelméleti alapfogalmak Előadó: Hajnal Péter 2015 1. Egyszerű gráfok Nagyon sok helyzetben egy alaphalmaz elemei között kitűntetett
RészletesebbenDiszkrét Matematika MSc hallgatók számára. 11. Előadás. Előadó: Hajnal Péter Jegyzetelő: Szarvák Gábor november 29.
Diszkrét Matematika MSc hallgatók számára 11. Előadás Előadó: Hajnal Péter Jegyzetelő: Szarvák Gábor 2010. november 29. 1. Gráfok metszési száma z előadás a metszési szám nevű gráfparaméterről szól. Ez
RészletesebbenDiszkrét matematika 2.
Diszkrét matematika 2. 2018. október 12. 1. Diszkrét matematika 2. 5. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. október 12. Diszkrét matematika
RészletesebbenSíkbarajzolható gráfok Április 26.
Síkbarajzolható gráfok 2017. Április 26. Síkgráfok Egy gráf síkgráf=síkba rajzolható gráf, ha lerajzolható úgy a síkba, hogy élei csak a szögpontokban metszik egymást. Ha egy gráf lerajzolható a síkba,
RészletesebbenDiszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
RészletesebbenGráfelmélet/Diszkrét Matematika MSc hallgatók számára. Síkgráfok Előadó: Hajnal Péter
Gráfelmélet/Diszkrét Matematika MSc hallgatók számára Síkgráfok 2016. Előadó: Hajnal Péter Egy G gráf ρ lerajzolása egy (ρ V, ρ E ) leképzés-pár, ahol a következők teljesülnek: ρ V : V (G) R 2 injenktív
RészletesebbenDiszkrét matematika 2.
Diszkrét matematika 2. 2018. március 9. 1. Diszkrét matematika 2. 4. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. március 9. Gráfelmélet Diszkrét
RészletesebbenMegoldások 7. gyakorlat Síkgráfok, dualitás, gyenge izomorfia, Whitney-tételei
Számítástudomány alapjai Megoldások 7. gyakorlat Síkgráfok, dualitás, gyenge izomorfia, Whitney-tételei 90. A konvex poliéder egyes lapjait határoló élek száma legyen k! Egy konvex poliéder egy tetszőleges
RészletesebbenDiszkrét matematika 2.
Diszkrét matematika 2. Mérai László előadása alapján Készítette: Nagy Krisztián 1. előadás Gráfok halmaza, gráf, ahol a csúcsok halmaza, az élek illesztkedés reláció: illesztkedik az élre, ha ( -él illesztkedik
RészletesebbenA különböz lerajzolásokhoz különböz metszési szám tartozik: x(k 5, λ) = 5,
Gráfelmélet/Diszkrét Matematika MSc hallgatók számára Gráfok metszési paramétere és alkalmazásai 2013. El adó: Hajnal Péter 1. Gráfok metszési száma Az el adás a metszési szám nev gráfparaméterr l szól.
RészletesebbenDiszkrét matematika 2.
Diszkrét matematika 2. Mérai László előadása alapján Készítette: Nagy Krisztián 4. előadás Eulerséta: Olyan séta, mely a gráf minden élét pontosan egyszer tartalmazza. Tétel: egy összefüggő gráf. Ha minden
RészletesebbenDiszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.
RészletesebbenSíkbarajzolható gráfok, duális gráf
Síkbarajzolható gráfok, duális gráf Papp László BME November 8, 2018 Gráfok lerajzolása Definíció: Egy G gráf diagramján a gráf olyan lerajzolását értjük ahol a csúcsok különböző síkbeli pontok, illetve
RészletesebbenDiszkrét matematika II. gyakorlat
Diszkrét matematika II. gyakorlat 9. Gyakorlat Szakács Nóra Helyettesít: Bogya Norbert Bolyai Intézet 2013. április 11. Bogya Norbert (Bolyai Intézet) Diszkrét matematika II. gyakorlat 2013. április 11.
RészletesebbenDiszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. ősz 1. Diszkrét matematika 2.C szakirány 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.
RészletesebbenPÁROS HOSSZÚ KÖRÖK GRÁFOKBAN
PÁROS HOSSZÚ KÖRÖK GRÁFOKBAN CSIKVÁRI PÉTER Kivonat. Ebben a jegyzetben bebizonyítjuk Bondy és Simonovits következő tételét. Ha egy n csúcsú egyszerű gráf nem tartalmaz C k kört akkor az éleinek száma
RészletesebbenDiszkrét matematika 1. estis képzés
Diszkrét matematika 1. estis képzés 2019. tavasz 1. Diszkrét matematika 1. estis képzés 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
RészletesebbenDiszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2016. tavasz 1. Diszkrét matematika 2. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
RészletesebbenHogyan óvjuk meg értékes festményeinket?
Hogyan óvjuk meg értékes festményeinket? Hajnal Péter Bolyai Intézet, SZTE, Szeged 2013. április Bevezető példa I. Feladat Adott egy konvex nyolcszög. Bevezető példa I. Feladat Adott egy konvex nyolcszög.
RészletesebbenDiszkrét matematika 2.
Diszkrét matematika 2. 2018. szeptember 21. 1. Diszkrét matematika 2. 2. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. szeptember 21. Gráfelmélet
RészletesebbenSzabályos gráfok paraméterei
Eötvös Loránd Tudományegyetem Természettudományi Kar Szabályos gráfok paraméterei Szakdolgozat Témavezető: Dr. Sziklai Péter egyetemi docens Készítette: Deák Réka Budapest 2016 Szabályos gráfok paraméterei
RészletesebbenGráfelmélet. I. Előadás jegyzet (2010.szeptember 9.) 1.A gráf fogalma
Készítette: Laczik Sándor János Gráfelmélet I. Előadás jegyzet (2010.szeptember 9.) 1.A gráf fogalma Definíció: a G=(V,E) párt egyszerű gráfnak nevezzük, (V elemeit a gráf csúcsainak/pontjainak,e elemeit
RészletesebbenDiszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
RészletesebbenGráfelmélet jegyzet 2. előadás
Gráfelmélet jegyzet 2. előadás Készítette: Kovács Ede . Fák Tétel. : A következők ekvivalensek a T gráfra: (i) T összefüggő, e E. T e már nem összefüggő (ii) T összefüggő és körmentes. (iii) x, y V T!
RészletesebbenGráfelméleti alapfogalmak
1 Gráfelméleti alapfogalmak Gráf (angol graph= rajz): pontokból és vonalakból álló alakzat. pontok a gráf csúcsai, a vonalak a gráf élei. GRÁ Irányítatlan gráf Vegyes gráf Irányított gráf G H Izolált pont
RészletesebbenGráfelmélet/Diszkrét Matematika MSc hallgatók számára. 13. Előadás
Gráfelmélet/Diszkrét Matematika MSc hallgatók számára 13. Előadás Előadó: Hajnal Péter Jegyzetelő: Hajnal Péter 2009. december 7. Gráfok sajátértékei Definíció. Egy G egyszerű gráf sajátértékei az A G
RészletesebbenKOMBINATORIKA ELŐADÁS osztatlan matematikatanár hallgatók számára
KOMBINATORIKA ELŐADÁS osztatlan matematikatanár hallgatók számára Párosítások gráfokban Előadó: Hajnal Péter 2018 1. A párosítás alapfogalma Definíció. Egy G gráfban egy M élhalmaz párosítás, ha 2 M darab
Részletesebben1. tétel - Gráfok alapfogalmai
1. tétel - Gráfok alapfogalmai 1. irányítatlan gráf fogalma A G (irányítatlan) gráf egy (Φ, E, V) hátmas, ahol E az élek halmaza, V a csúcsok (pontok) halmaza, Φ: E {V-beli rendezetlen párok} illeszkedési
Részletesebben2. csoport, 8. tétel: Gráfok
Utolsó javítás: 2009. február 16. Áttekintés A gráfelmélet születése 1 A gráfelmélet születése 2 Csúcsok és élek Fokszámok Komplementer Izomorfia 3 Séták, utak, körök, összefüggőség Gráfbejárások Fagráfok
RészletesebbenHAMILTON ÚT: minden csúcson PONTOSAN egyszer áthaladó út
SÍKBA RAJZOLHATÓ GRÁFOK ld. előadás diasorozat SZÍNEZÉS: ld. előadás diasorozat PÉLDA: Reguláris 5 gráf színezése 4 színnel Juhász, PPKE ITK, 007: http://users.itk.ppke.hu/~b_novak/dmat/juhasz_5_foku_graf.bmp
RészletesebbenHAMILTON KÖR: minden csúcson PONTOSAN egyszer áthaladó kör. Forrás: (
HAMILTON KÖR: minden csúcson PONTOSAN egyszer áthaladó kör Teljes gráf: Páros gráf, teljes páros gráf és Hamilton kör/út Hamilton kör: Minden csúcson áthaladó kör Hamilton kör Forrás: (http://www.math.klte.hur/~tujanyi/komb_j/k_win_doc/g0603.doc
RészletesebbenSzA II. gyakorlat, szeptember 18.
SzA II. gyakorlat, 015. szeptember 18. Barátkozás a gráfokkal Drótos Márton drotos@cs.bme.hu 1. Az előre megszámozott (címkézett) n darab pont közé hányféleképp húzhatunk be éleket úgy, hogy egyszerű gráfhoz
RészletesebbenEuler tétel következménye 1:ha G összefüggő síkgráf és legalább 3 pontja van, akkor: e 3
Síkgráfok Kuratowski-tétel: egy gráf akkor és csak akkor síkba rajzolható gráf, ha nincs olyan részgráfja, ami a K 5 -el, vagy a K 3,3 -altopologikusan izomorf (homeomorf). Euler síkgráfokra vonatkozó
Részletesebben25. tétel: Bizonyítási módszerek és bemutatásuk tételek bizonyításában, tétel és megfordítása, szükséges és elégséges feltétel
5. tétel: Bizonyítási módszerek és bemutatásuk tételek bizonyításában, tétel és megfordítása, szükséges és elégséges feltétel Axióma: Bizonyítás: olyan állítás, amelynek igazságát bizonyítás nélkül elfogadjuk.
RészletesebbenSchnyder-címkézések és alkalmazásaik
Eötvös Loránd Tudományegyetem Természettudományi Kar Horváth Vanda Matematika BSc Schnyder-címkézések és alkalmazásaik Szakdolgozat Témavezető: Pap Júlia, tudományos segédmunkatárs Operációkutatási Tanszék
Részletesebben10. előadás. Konvex halmazok
10. előadás Konvex halmazok Konvex halmazok Definíció: A K ponthalmaz konvex, ha bármely két pontjának összekötő szakaszát tartalmazza. Állítás: Konvex halmazok metszete konvex. Konvex halmazok uniója
RészletesebbenGRÁFELMÉLET. 7. előadás. Javító utak, javító utak keresése, Edmonds-algoritmus
GRÁFELMÉLET 7. előadás Javító utak, javító utak keresése, Edmonds-algoritmus Definíció: egy P utat javító útnak nevezünk egy M párosításra nézve, ha az út páratlan hosszú, kezdő- és végpontjai nem párosítottak,
RészletesebbenDiszkrét matematika II. feladatok
Diszkrét matematika II. feladatok 1. Gráfelmélet 1.1. Könnyebb 1. Rajzold le az összes, páronként nem izomorf 3, 4, illetve 5 csúcsú egyszerű gráfot! 2. Van-e olyan (legalább kétpontú) gráf, melyben minden
Részletesebben10. Előadás P[M E ] = H
HALMAZRENDSZEREK 10. Előadás Matematika MSc hallgatók számára Előadó: Hajnal Péter Jegyzetelő: Hajnal Péter 2010. április 20. Halmazrendszerek színezése Egy halmazrendszer csúcshalmazának színezése jó
RészletesebbenDiszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2015. tavasz 1. Diszkrét matematika 2.C szakirány 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu Komputeralgebra Tanszék 2015. tavasz Gráfelmélet Diszkrét
RészletesebbenDiszkrét matematika 1. estis képzés
Diszkrét matematika 1. estis képzés 2019. tavasz 1. Diszkrét matematika 1. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
RészletesebbenGeometria 1 normál szint
Geometria 1 normál szint Naszódi Márton nmarci@math.elte.hu www.math.elte.hu/ nmarci ELTE TTK Geometriai Tsz. Budapest Geometria 1 p.1/4 Vizsga 1. Írásban, 90 perc. 2. Index nélkül nem lehet vizsgázni!
RészletesebbenDiszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 7. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
RészletesebbenDiszkrét Matematika MSc hallgatók számára 7. Előadás Párosítási tételek Előadó: Hajnal Péter Jegyzetelő: Kovácsházi Anna
Diszkrét Matematika MSc hallgatók számára 7. Előadás Párosítási tételek Előadó: Hajnal Péter Jegyzetelő: Kovácsházi Anna 2010. 10. 18. 2 7. Párosítási tételek.nb 7. Előadás Emlékeztető: Javító út, Javító
RészletesebbenGeometria 1 normál szint
Geometria 1 normál szint Naszódi Márton nmarci@math.elte.hu www.math.elte.hu/ nmarci ELTE TTK Geometriai Tsz. Budapest Geometria 1 p.1/4 Vizsga 1 Írásban, 90 perc. 2 Személyazonosságot igazoló okmány nélkül
RészletesebbenELTE IK Esti képzés tavaszi félév. Tartalom
Diszkrét Matematika 2 vizsgaanyag ELTE IK Esti képzés 2017. tavaszi félév Tartalom 1. Számfogalom bővítése, homomorfizmusok... 2 2. Csoportok... 9 3. Részcsoport... 11 4. Generátum... 14 5. Mellékosztály,
RészletesebbenMatematika. Számonkérés. Írásbeli vizsga januárban. 1. konzultáció. Irodalom
1 Matematika NYME KTK, Egyetemi kiegészítő alapképzés 2002/2003. tanév, I. évf. I.félév Budapest Előadó: Dr. Takách Géza NyME FMK Információ Technológia Tanszék 9400 Sopron, Bajcsy Zs. u. 9. GT fszt. 3.
RészletesebbenKOMBINATORIKA ElŐADÁS Matematika BSc hallgatók számára. Klikkek gráfokban-1. Definíció. Egy G gráfban egy K V(G) csúcshalmazt klikknek nevezünk, ha K
KOMBINATORIKA ElŐADÁS Matematika BSc hallgatók számára Klikkek gráfokban Előadó: Hajnal Péter 2017 1. Az alapkérdés Emlékeztetünk egy a gráfok színezésénél tárgyalt fontos fogalomra: Definíció. Egy G gráfban
RészletesebbenÉrdemes egy n*n-es táblázatban (sorok-lányok, oszlopok-fiúk) ábrázolni a két színnel, mely éleket húztuk be (pirossal, kékkel)
Kombi/2 Egy bizonyos bulin n lány és n fiú vesz részt. Minden fiú pontosan a darab lányt és minden lány pontosan b darab fiút kedvel. Milyen (a,b) számpárok esetén létezik biztosan olyan fiúlány pár, akik
RészletesebbenArany Dániel Matematikai Tanulóverseny 2015/2016-os tanév 1. forduló Haladók III. kategória
Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 2015/2016-os tanév 1. forduló Haladók III. kategória Megoldások és javítási útmutató 1. Az a és b befogójú derékszögű háromszögnek
RészletesebbenRamsey-féle problémák
FEJEZET 8 Ramsey-féle problémák "Az intelligens eljárást az jellemzi, hogy még a látszólag megközelíthetetlen célhoz is utat nyit, megfelelő segédproblémát talál ki és először azt oldja meg." Pólya György:
RészletesebbenOptimalizálási eljárások/operációkutatás MSc hallgatók számára
Optimalizálási eljárások/operációkutatás MSc hallgatók számára 7. Előadás: MP(G) tesztelése, Gomory Hu-fák Előadó: Hajnal Péter 2018. tavasz 1. Egy vektor MP(G)-be esésének tesztelése A MP(G) Edmonds-tételbeli
RészletesebbenFormális nyelvek - 9.
Formális nyelvek - 9. Csuhaj Varjú Erzsébet Algoritmusok és Alkalmazásaik Tanszék Informatikai Kar Eötvös Loránd Tudományegyetem H-1117 Budapest Pázmány Péter sétány 1/c E-mail: csuhaj@inf.elte.hu 1 Véges
RészletesebbenALGORITMUSOK ÉS BONYOLULTSÁGELMÉLET Matematika MSc hallgatók számára
ALGORITMUSOK ÉS BONYOLULTSÁGELMÉLET Matematika MSc hallgatók számára 8. Előadás: További N P-teljes problémák Előadó: Hajnal Péter 2015. tavasz Eddig több bonyolultsági osztályra láttunk teljes problémákat
RészletesebbenJátsszunk Zarankiewicz-csel!
Eötvös Loránd Tudományegyetem Természettudományi Kar Fábián Kata Matematika BSc Játsszunk Zarankiewicz-csel! Szakdolgozat Témavezetők: Héger Tamás, tudományos segédmunkatárs Szőnyi Tamás, egyetemi tanár
RészletesebbenDiszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2015. ősz 1. Diszkrét matematika 2.C szakirány 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2015.
Részletesebben22. GRÁFOK ÁBRÁZOLÁSA
22. GRÁFOK ÁBRÁZOLÁSA A megoldandó feladatok, problémák modellezése során sokszor gráfokat alkalmazunk. A gráf fogalmát a matematikából ismertnek vehetjük. A modellezés során a gráfok több változata is
RészletesebbenAlgoritmuselmélet. Mélységi keresés és alkalmazásai. Katona Gyula Y.
Algoritmuselmélet Mélységi keresés és alkalmazásai Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 9. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet
Részletesebben11. előadás. Konvex poliéderek
11. előadás Konvex poliéderek Konvex poliéder 1. definíció: Konvex poliédernek nevezzük a térben véges sok, nem egysíkú pont konvex burkát. 2. definíció: Konvex poliédernek nevezzük azokat a térbeli korlátos
Részletesebben1. gyakorlat ( ), Bevezető analízis 1., ősz (Besenyei Ádám csoportja)
1. gyakorlat (2016. 09. 12.), Bevezető analízis 1., 2016. ősz A színek jelentése: fekete az előzetes vázlat; piros, ami ehhez képest módosult. 1. Három matematikus bemegy egy kocsmába, és rendel. A nagy
RészletesebbenEötvös Loránd Tudományegyetem Természettudományi Kar. Gráfok színezése. BSc Szakdolgozat
Eötvös Loránd Tudományegyetem Természettudományi Kar Gráfok színezése BSc Szakdolgozat Készítette: Tóth Ádám Matematika BSc, Matematikai elemző szakirány Témavezető: Hermann György Doktorandusz, Számítógéptudományi
RészletesebbenNagyordó, Omega, Theta, Kisordó
A növekedés nagyságrendje, számosság Logika és számításelmélet, 6. gyakorlat 2009/10 II. félév Számításelmélet (6. gyakorlat) A növekedés nagyságrendje, számosság 2009/10 II. félév 1 / 1 Nagyordó, Omega,
RészletesebbenAlapfogalmak II. Def.: Egy gráf összefüggő, ha bármely pontjából bármely pontjába eljuthatunk egy úton.
lapfogalmak II Nézzük meg mégegyszer a königsbergi séták problémáját! város lakói vasárnaponként szerettek sétálni a szigeteken. Felvetődött a kérdés, hogy hogyan lehetne olyan sétát tenni a városban,
Részletesebben1. Az ábrán látható táblázat minden kis négyzete 1 cm oldalhosszúságú. A kis négyzetek határvonalait akarjuk lefedni. Meg lehet-e ezt tenni
1. Az ábrán látható táblázat minden kis négyzete 1 cm oldalhosszúságú. A kis négyzetek határvonalait akarjuk lefedni. Meg lehet-e ezt tenni a) 5 db 8 cm hosszú, b) 8 db 5 cm hosszú cérnával? Megoldás:
RészletesebbenGráfelmélet/Diszkrét Matematika MSc hallgatók számára. Párosítások. 1. ábra.
Gráfelmélet/Diszkrét Matematika MSc hallgatók számára Párosítások 2012. november 26. Előadó: Hajnal Péter 1. Javító utas algoritmusok Definíció. Legyen G gráf M párosítás G-ben, P : v 0, e 1, v 1,...,e
RészletesebbenKártyázzunk véges geometriával
Kártyázzunk véges geometriával Bogya Norbert Bolyai Intézet Egyetemi tavasz, 2016 Tartalom Dobble Véges geometria Dobble újratöltve SET Kérdések Hogy tudunk ilyen kártyákat konstruálni? 8 helyett más
RészletesebbenFeladatok, amelyek gráfokkal oldhatók meg 1) A königsbergi hidak problémája (Euler-féle probléma) a
Feladatok, amelyek gráfokkal oldhatók meg ) A königsbergi hidak problémája (Euler-féle probléma) a b d c A megfelelő gráf: d a b c ) Egy szórakoztató feladat (Hamilton-féle probléma) Helyezzük el az,,,...,
RészletesebbenAlapfogalmak. Ha a gráf valamely két csúcsát egynél több él köti össze, akkor azt többszörös élnek nevezzük.
Alapfogalmak A gráfelmélet a matematika tudományának viszonylag fiatal részterülete. Az első gráfelméleti probléma a XVIII. sz. elején lépett fel ennek megoldása Euler nevéhez fűződik. A Königsberg (mai
RészletesebbenSzA X/XI. gyakorlat, november 14/19.
SzA X/XI. gyakorlat, 2013. november 14/19. Színezünk és rajzolunk Drótos Márton drotos@cs.bme.hu 1. Mennyi a következő gráfok kromatikus száma: C 4, C 5, K 2,4, alábbi 2 gráf χ(c 4 ) = 2, páros hosszú
RészletesebbenBrósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Gráfelmélet
Gráfelmélet DEFINÍCIÓ: (Gráf) Az olyan alakzatot, amely pontokból és bizonyos pontpárokat összekötő vonaldarabokból áll, gráfnak nevezzük. A pontokat a gráf csúcsainak, a vonalakat a gráf éleinek nevezzük.
RészletesebbenSéta, út, vonal, kör
KOMBINATORIKA GYAKORLAT osztatlan matematika tanár hallgatók számára Séta, út, vonal, kör Gyakorlatvezetõ: Hajnal Péter 2014. 1. Feladat. Legyen G egy gráf. Az a, b pontokra azt mondjuk, hogy a-ból elérhető
RészletesebbenBevezetés a számításelméletbe (MS1 BS)
Matematika szigorlat - konzultációs szeminárium Azoknak, akik másodszorra vagy többedszerre veszik fel a Matematika szigorlat (NAMMS1SAND) tárgyat. Bevezetés a számításelméletbe (MS1 BS) FŐBB TÉMAKÖRÖK
RészletesebbenGráf csúcsainak színezése. The Four-Color Theorem 4 szín tétel Appel és Haken bebizonyították, hogy minden térkép legfeljebb 4 színnel kiszínezhető.
Gráf csúcsainak színezése Kromatikus szám 2018. Április 18. χ(g) az ún. kromatikus szám az a szám, ahány szín kell a G gráf csúcsainak olyan kiszínezéséhez, hogy a szomszédok más színűek legyenek. 2 The
RészletesebbenLogika és számításelmélet. 11. előadás
Logika és számításelmélet 11. előadás NP-teljesség Emlékeztetőül: NP-teljes nyelv Egy L probléma NP-teljes (a polinom idejű visszavezetésre nézve), ha L NP L NP-nehéz, azaz minden L NP esetén L p L. Azaz
RészletesebbenDiszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
RészletesebbenAlgoritmuselmélet. Bonyolultságelmélet. Katona Gyula Y.
Algoritmuselmélet Bonyolultságelmélet Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 12. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet
RészletesebbenAnalízis I. Vizsgatételsor
Analízis I. Vizsgatételsor Programtervező Informatikus szak 2008-2009. 2. félév Készítette: Szabó Zoltán SZZNACI.ELTE zotyo@bolyaimk.hu v.0.6 RC 004 Forrás: Oláh Gábor: ANALÍZIS I.-II. VIZSGATÉTELSOR 2006-2007-/2
RészletesebbenHalmazrendszerek alapvető extremális problémái. 1. Sperner-rendszerek és Sperner-tétel
Gráfelmélet/Diszkrét Matematika MSc hallgatók számára Halmazrendszerek alapvető extremális problémái 2014. Előadó: Hajnal Péter 1. Sperner-rendszerek és Sperner-tétel Definíció. S Sperner-rendszer V (n
RészletesebbenAlgoritmuselmélet. Függvények nagyságrendje, elágazás és korlátozás, dinamikus programozás. Katona Gyula Y.
Algoritmuselmélet Függvények nagyságrendje, elágazás és korlátozás, dinamikus programozás Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem
RészletesebbenA híres Riemann-sejtés
A híres Riemann-sejtés Szakács Nóra Bolyai Intézet, Szegedi Tudományegyetem Egyetemi Tavasz 205. 04. 8. A Riemann-sejtés története Tartalom A Riemann-sejtés története 2 A n s alakú összegek 3 Komplex számok
RészletesebbenPapp Dorottya. Gráfok favastagsága
Eötvös Loránd Tudományegyetem Természettudományi Kar Papp Dorottya Matematika B.Sc. Alkalmazott matematikus szakirány Gráfok favastagsága Szakdolgozat Témavezet : Lukács András Számítógéptudományi Tanszék
Részletesebben24. tétel. Kombinatorika. A grá fok.
2009/2010 1 Huszk@ Jenő 24. tétel. Kombinatorika. A grá fok. 1.Kombinatorika A kombinatorika a véges halmazokkal foglalkozik. Olyan problémákat vizsgál, amelyek függetlenek a halmazok elemeinek mibenlététől.
RészletesebbenKoordináta-geometria feladatgyűjtemény
Koordináta-geometria feladatgyűjtemény A feladatok megoldásai a dokumentum végén találhatók Vektorok 1. Egy négyzet két szemközti csúcsának koordinátái: A( ; 7) és C(4 ; 1). Határozd meg a másik két csúcs
RészletesebbenGráfelméleti feladatok. c f
Gráfelméleti feladatok d e c f a b gráf, csúcsok, élek séta: a, b, c, d, e, c, a, b, f vonal: c, d, e, c, b, a út: f, b, a, e, d (walk, lanţ) (trail, lanţ simplu) (path, lanţ elementar) 1 irányított gráf,
RészletesebbenDiszkrét matematika I.
Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 10. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Felhívás Diszkrét matematika I. középszint 2014.
RészletesebbenDISZKRÉT MATEMATIKA 2 KIDOLGOZOTT TÉTELSOR 1. RÉSZ
DISZKRÉT MATEMATIKA 2 KIDOLGOZOTT TÉTELSOR 1. RÉSZ B szakirány 2014 június Tartalom 1. Fák definíciója ekvivalens jellemzései... 3 2. Hamilton-kör Euler-vonal... 4 3. Feszítőfa és vágás... 6 4. Címkézett
RészletesebbenEGYSZERŰ, NEM IRÁNYÍTOTT (IRÁNYÍTATLAN) GRÁF
Összefoglaló Gráfok / EGYSZERŰ, NEM IRÁNYÍTOTT (IRÁNYÍTATLAN) GRÁF Adott a G = (V, E) gráf ahol a V a csomópontok, E az élek halmaza E = {(x, y) x, y V, x y (nincs hurokél) és (x, y) = (y, x)) Jelölések:
Részletesebben1. Részcsoportok (1) C + R + Q + Z +. (2) C R Q. (3) Q nem részcsoportja C + -nak, mert más a művelet!
1. Részcsoportok A részcsoport fogalma. 2.2.15. Definíció Legyen G csoport. A H G részhalmaz részcsoport, ha maga is csoport G műveleteire nézve. Jele: H G. Az altér fogalmához hasonlít. Példák (1) C +
RészletesebbenAlgoritmuselmélet 7. előadás
Algoritmuselmélet 7. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Március 11. ALGORITMUSELMÉLET 7. ELŐADÁS 1 Múltkori
RészletesebbenIván Szabolcs október 6.
Automaták irányítása II. Iván Szabolcs 2009. október 6. Tartalom 1 Alapfogalmak (ismét) 2 Egy kiterjesztés és egy ellenpélda 3 Pozitív részeredmények 4 A Road Coloring Problem Véges automaták Automata
RészletesebbenGráfok csúcsszínezései
Gráfelmélet/Diszkrét Matematika MSc hallgatók számára Gráfok csúcsszínezései 2012. október 1. Előadó: Hajnal Péter 1. (Csúcs)színezések alapfogalmai Emlékeztetőként idézzünk fel néhány korábban tanult
RészletesebbenSzimmetrikus kombinatorikus struktúrák MSc hallgatók számára. Ramsey-gráfok
Szimmetrikus kombinatorikus struktúrák MSc hallgatók számára Ramsey-gráfok Előadó: Hajnal Péter 1.hét 1. Ramsey-számok Definíció. Legyen Ram(G) = max{ω(g), α(g)} = max{ω(g), ω(g)}, azaz a legnagyobb halmaz
RészletesebbenAlgoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 13.
Algoritmuselmélet NP-teljes problémák Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 13. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet
RészletesebbenAlgoritmuselmélet 11. előadás
Algoritmuselmélet 11. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Március 26. ALGORITMUSELMÉLET 11. ELŐADÁS 1 Kruskal
Részletesebben3. Gráfok színezései
Diszkrét Matematika levelező MSc hallgatók számára 3. ráfok színezései Előadó: Hajnal Péter 2011 12. őszi félév 1. Síkgráfok és élszínezések A párosításoknál szereplő Petersen-tétel azt állította, hog
RészletesebbenAntimagic gráfok. Szakdolgozat. Írta: Herczeg Bonifác. Matematika BSc Alkalmazott matematikus szakirány
Antimagic gráfok Szakdolgozat Írta: Herczeg Bonifác Matematika BSc Alkalmazott matematikus szakirány Témavezető: Bérczi Kristóf Operációkutatási Tanszék Eötvös Loránd Tudományegyetem Termeszettudományi
RészletesebbenHáromszögek, négyszögek, sokszögek 9. évfolyam
Háromszögek, négyszögek, sokszögek 9. évfolyam I. Pontok, egyenesek, síkok és ezek kölcsönös helyzetet 1) a pont, az egyenes, a sík és az illeszkedés alapfogalmak 2) két egyenes metsző, ha van közös pontjuk
Részletesebben