2. Milyen értéket határoz meg az alábbi algoritmus, ha A egy vektor?. (2 pont)
|
|
- Dezső Balla
- 5 évvel ezelőtt
- Látták:
Átírás
1 A Név: l Neptun kód: Gyakorlat vezet : HG BP l 1. Az A vektor tartalmát az alábbi KUPACOL eljárással rendezzük át maximum kupaccá. A={28, 87, 96, 65, 55, 32, 51, 69} Mi lesz az értéke az A vektor elemeinek, amikor az eljárás befejezi mûködését?. (2 pont) A={96, 87, 51, 69, 55, 32, 28, 65} (helyes_pozícióban_lévõ_értékek_száma/4 pont). procedure KUPACOL(K) procedure SÜLLYESZT_REK(K, honnan, vége) 1. i [méret(k)/2] 2. while i > 0 do 3. SÜLLYESZT(K, i, méret(k)) 4. i i 1 5. end while 1. gyermek honnan + honnan 2. if gyermek < vége és K[gyermek + 1] > K[gyermek] then 3. gyermek gyermek if gyermek vége és K[gyermek] > K[honnan] then 6. K[gyermek] és K[honnan] felcserélése 7. SÜLLYESZT_REK(K, gyermek, vége) 2. Milyen értéket határoz meg az alábbi algoritmus, ha A egy vektor?. (2 pont) function MIEZ(A) 1. if méret(a) > 0 then 2. i j A[1] 3. else 4. return 0 5. end if 6. for k 2 to méret(a) do 7. if k > 0 then 8. j A[k] 9. else if k < 0 then 10. i A[k] 11. end if 12. end for 13. return j i Az A vektor utolsó és elsõ elemének különbségét. (1.5 pont) Ha üres a vektor, akkor 0-t. (0.5 pont) 3. Írjon eljárást, amely megnöveli 1-gyel a paraméterként kapott fejmutató által címzett cirkuláris lista minden negatív értékû elemét!. (4 pont) procedure NÖVEL(listafej) 1. if listafej 6= NIL then 2. x listafej 3. repeat 4. if x! adat < 0 then 5. x! adat 1 + x! adat 6. end if 7. x x! következõ 8. until x = listafej 9. end if
2 B Név: l 1. Az M mátrixot a V vektorban ábrázoltuk: V={ 70, 1 88, 2 20, 3 16, 4 74, 5 71, 6 6, 7 57, 8 12, 9 13, 10 17, 11 91, 12 91, 13 65, 14 94, 15 75, 16 21, 17 97, 18 80, 19 97, 20 51, 21 47, 22 38, 23 34, 24 88, 25 56, 26 9, } 1. Mennyi x=m[3,4]+m[3,2] értéke, ha M egy helytakarékosan ábrázolt szimmetrikus mátrix? x=v[9]+v[5]=86.. (1 pont) 2. Mennyi y=m[2,5]m[2,2] értéke, ha M egy sorfolytonosan ábrázolt 4x7-es (4 sora és 7 oszlopa van) mátrix? y=v[12]v[9]=79.. (1 pont) Milyen értéket határoz meg az alábbi algoritmus, ha A egy vektor?. (2 pont) function MIEZ(A) 1. i 0 2. if méret(a) > 0 then 3. i A[1] - MIEZ ( A[2.. méret(a)] ) 5. return i Az A vektor páros és páratlan indexû elemei összegéneknek különbségét. (1.5 pont) Ha üres a vektor, akkor 0-t. (0.5 pont) 4. Írjon függvényt, amely meghatározza a paraméterként kapott fejmutató által címzett egyirányban láncolt lista elsõ és utolsó pozitív elemének összegét! (Pozitív értékû elem hiányában legyen 0 a függvényérték!).. (4 pont) function ÖSSZEG(listafej) 1. x listafej 2. elsõ NIL 3. while x 6= NIL do 4. if x! adat > 0 then 5. if elsõ = NIL then 6. elsõ x 7. end if 8. utolsó x 9. end if 10. x x! következõ 11. end while 12. if elsõ = NIL then 13. return else 15. return elsõ! adat + utolsó! adat 16. end if
3 C Név: l 1. Az A vektor tartalmát az alábbi KUPACOL eljárással rendezzük át maximum kupaccá. A={32, 44, 72, 30, 93, 38, 16, 6} Mi lesz az értéke az A vektor elemeinek, amikor az eljárás befejezi mûködését?. (2 pont) A={93, 44, 72, 30, 32, 38, 16, 6} (helyes_pozícióban_lévõ_értékek_száma/4 pont). procedure KUPACOL(K) procedure SÜLLYESZT_REK(K, honnan, vége) 1. i [méret(k)/2] 2. while i > 0 do 3. SÜLLYESZT(K, i, méret(k)) 4. i i 1 5. end while 1. gyermek honnan + honnan 2. if gyermek < vége és K[gyermek + 1] > K[gyermek] then 3. gyermek gyermek if gyermek vége és K[gyermek] > K[honnan] then 6. K[gyermek] és K[honnan] felcserélése 7. SÜLLYESZT_REK(K, gyermek, vége) 2. return 0 3. else if listafej! következõ = NIL then 4. return listafej! adat + MIEZ(listafej! következõ) 5. else 6. return listafej! adat + MIEZ(listafej! következõ) listafej! következõ! adat 7. end if A lista elsõ elemének értékét. (1.5 pont) Ha a lista üres, akkor 0-t. (0.5 pont) 3. Írjon függvényt, amely meghatározza a paraméterként kapott vektor elsõ és utolsó pozitív elemének összegét! (Pozitív értékû elem hiányában a függvényérték legyen 0!). (4 pont) function ÖSSZEG(A) 1. elsõ 0 2. for i 1 to méret(a) do 3. if A[i] > 0 then 4. if elsõ = 0 then 5. elsõ i 6. end if 7. utolsó i 9. end for 10. if elsõ = 0 then 11. return else 13. return A[elsõ] + A[utolsó] 1
4 D Név: l 1. Az M mátrixot a V vektorban ábrázoltuk: V={ 70, 1 88, 2 20, 3 16, 4 74, 5 71, 6 6, 7 57, 8 12, 9 13, 10 17, 11 91, 12 91, 13 65, 14 94, 15 75, 16 21, 17 97, 18 80, 19 97, 20 51, 21 47, 22 38, 23 34, 24 88, 25 56, 26 9, } 1. Mennyi x=m[3,4]+m[3,2] értéke, ha M egy helytakarékosan ábrázolt szimmetrikus mátrix? x=v[9]+v[5]=86.. (1 pont) 2. Mennyi y=m[7,2]m[5,2] értéke, ha M egy sorfolytonosan ábrázolt 7x4-es (7 sora és 4 oszlopa van) mátrix? y=v[26]v[18]=41.. (1 pont) 2. return 0 4. x listafej! adat 5. y listafej! következõ 6. z MIEZ(y) 7. if y = NIL then 8. return x 9. else 10. return z 11. end if A lista utolsó elemének értékét. (1.5 pont) Ha a lista üres, akkor 0-t. (0.5 pont) 3. Írjon függvényt, amely megnöveli 1-gyel a paraméterként kapott vektor minden negatív értékû elemét, és függvényértékként visszaadja a végrehajtott módosítások számát!. (4 pont) function NÖVEL(A) 1. v 0 2. for i 1 to méret(a) do 3. if A[i] < 0 then 4. A[i] A[i] v v end if 7. end for 8. return v
5 E Név: l 1. Az A vektor tartalmát az alábbi KUPACOL eljárással rendezzük át maximum kupaccá. A={68, 52, 38, 24, 90, 75, 11, 27} Mi lesz az értéke az A vektor elemeinek, amikor az eljárás befejezi mûködését?. (2 pont) A={90, 68, 75, 27, 52, 38, 11, 24} (helyes_pozícióban_lévõ_értékek_száma/4 pont). procedure KUPACOL(K) procedure SÜLLYESZT_REK(K, honnan, vége) 1. i [méret(k)/2] 2. while i > 0 do 3. SÜLLYESZT(K, i, méret(k)) 4. i i 1 5. end while 1. gyermek honnan + honnan 2. if gyermek < vége és K[gyermek + 1] > K[gyermek] then 3. gyermek gyermek if gyermek vége és K[gyermek] > K[honnan] then 6. K[gyermek] és K[honnan] felcserélése 7. SÜLLYESZT_REK(K, gyermek, vége) function MIEZ(listafej, e) 2. return 1 3. else if listafej! adat = e then 4. return 2 * MIEZ(listafej! következõ, e) 5. else 6. return MIEZ(listafej! következõ, e) 7. end if 2-nek az annyiadik hatványát, ahány e értékû eleme van a listának. (1.5 pont) Ha a lista üres, ill. nincs ilyen eleme, akkor 1-t. (0.5 pont) 3. Írjon eljárást, amely a beszúrásos rendezés algoritmusával csökkenõ sorrendbe rakja a paraméterül kapott vektor elemeit!. (4 pont) procedure BESZÚRÁSOS_RENDEZ(A) 1. for i 2 to méret(a) do 2. kulcs A[i] 3. j i 1 4. while j 1 és A[j] < kulcs do 5. A[j + 1] A[j] 6. j j 1 7. end while 8. A[j + 1] kulcs 9. end for
6 F Név: l 1. Az M mátrixot a V vektorban ábrázoltuk: V={ 70, 1 88, 2 20, 3 16, 4 74, 5 71, 6 6, 7 57, 8 12, 9 13, 10 17, 11 91, 12 91, 13 65, 14 94, 15 75, 16 21, 17 97, 18 80, 19 97, 20 51, 21 47, 22 38, 23 34, 24 88, 25 56, 26 9, } 1. Mennyi x=m[1,6]+m[4,1] értéke, ha M egy helytakarékosan ábrázolt szimmetrikus mátrix? x=v[16]+v[7]=81.. (1 pont) 2. Mennyi y=m[3,1]m[4,2] értéke, ha M egy oszlopfolytonosan ábrázolt 7x4-es (7 sora és 4 oszlopa van) mátrix? y=v[3]v[11]=3.. (1 pont) 2. return NIL 4. a MIEZ(listafej! következõ) 5. if a = NIL vagy a! adat <= listafej! adat then 6. return listafej 7. else 8. return a 9. end if A lista legnagyobb értékû elemének címét. (1.4 pont) Ha több ilyen érték is van, akkor az elsõt. (0.3 pont) Ha a lista üres, akkor NIL-t. (0.3 pont) 3. Írjon függvényt, amely megnöveli 1-gyel a paraméterként kapott vektor legkisebb értékû elemét! Ha az adott érték többször is elõfordul, akkor minden elõfordulást növeljen meg! Függvényértékként adja vissza a végrehajtott módosítások számát!. (4 pont) function NÖVEL(A) 1. if méret(a) = 0 then 2. return 0 4. min A[1] 5. for i 2 to méret(a) do 6. if A[i] < min then 7. min A[i] 9. end for 1. v! for i 1 to méret(a) do 12. if A[i] = min then 13. A[i] A[i] v v end if 16. end for 17. return v
7 G Név: l 1. Az A vektor tartalmát az alábbi KUPACOL eljárással rendezzük át maximum kupaccá. A={43, 12, 63, 1, 87, 23, 69, 90} Mi lesz az értéke az A vektor elemeinek, amikor az eljárás befejezi mûködését?. (2 pont) A={90, 87, 69, 12, 43, 23, 63, 1} (helyes_pozícióban_lévõ_értékek_száma/4 pont). procedure KUPACOL(K) procedure SÜLLYESZT_REK(K, honnan, vége) 1. i [méret(k)/2] 2. while i > 0 do 3. SÜLLYESZT(K, i, méret(k)) 4. i i 1 5. end while 1. gyermek honnan + honnan 2. if gyermek < vége és K[gyermek + 1] > K[gyermek] then 3. gyermek gyermek if gyermek vége és K[gyermek] > K[honnan] then 6. K[gyermek] és K[honnan] felcserélése 7. SÜLLYESZT_REK(K, gyermek, vége) 2. return NIL 4. z MIEZ(listafej! következõ) 5. if z = NIL vagy z! adat > listafej! adat then 6. return listafej 7. else 8. return z 9. end if A lista legkisebb értékû elemének címét. (1.4 pont) Ha több ilyen érték is van, akkor az utolsót. (0.3 pont) Ha a lista üres, akkor NIL-t. (0.3 pont) 3. Írjon eljárást, amely a beszúrásos rendezés algoritmusával csökkenõ sorrendbe rakja a paraméterül kapott vektor elemeit!. (4 pont) procedure BESZÚRÁSOS_RENDEZ(A) 1. for i 2 to méret(a) do 2. kulcs A[i] 3. j i 1 4. while j 1 és A[j] < kulcs do 5. A[j + 1] A[j] 6. j j 1 7. end while 8. A[j + 1] kulcs 9. end for
8 H Név: l 1. Az M mátrixot a V vektorban ábrázoltuk: V={ 70, 1 88, 2 20, 3 16, 4 74, 5 71, 6 6, 7 57, 8 12, 9 13, 10 17, 11 91, 12 91, 13 65, 14 94, 15 75, 16 21, 17 97, 18 80, 19 97, 20 51, 21 47, 22 38, 23 34, 24 88, 25 56, 26 9, } 1. Mennyi x=m[7,2]+m[5,3] értéke, ha M egy helytakarékosan ábrázolt szimmetrikus mátrix? x=v[23]+v[13]=129.. (1 pont) 2. Mennyi y=m[6,3]m[3,1] értéke, ha M egy oszlopfolytonosan ábrázolt 7x4-es (7 sora és 4 oszlopa van) mátrix? y=v[20]v[3]=77.. (1 pont) 2. return 0 3. else if listafej! adat > 0 then 4. return listafej! adat + MIEZ(listafej! következõ) 5. else 6. return MIEZ(listafej! következõ) listafej! adat 7. end if A lista elemek abszolút értékeinek az összegét. (1.5 pont) Ha a lista üres, akkor 0-t. (0.5 pont) 3. Írjon függvényt, amely a bináris keresésre alapozva megkeresi a paraméterként megadott értéket a szintén paraméterként megadott vektorban!. (4 pont) function BINÁRIS_KERES(A, érték) 1. return BINÁRIS_KERES3(A, érték, 1, méret(a)) function BINÁRIS_KERES3(A, érték, alsó, felsõ) - - bináris keresés rekurzívan, részvektorok nélkül 1. if alsó > felsõ then 2. KIVÉTEL "nincs ilyen értékû elem" 4. középsõ [(alsó + felsõ) / 2] 5. if A[középsõ] = érték then 6. return középsõ 7. else if A[középsõ] > érték then 8. return BINÁRIS_KERES3(A, érték, alsó, középsõ 1) 9. else 10. return BINÁRIS_KERES3(A, érték, középsõ + 1, felsõ) 11. end if
end function Az A vektorban elõforduló legnagyobb és legkisebb értékek indexeinek különbségét.. (1.5 pont) Ha üres a vektor, akkor 0-t..
A Név: l 2014.04.09 Neptun kód: Gyakorlat vezető: HG BP MN l 1. Adott egy (12 nem nulla értékû elemmel rendelkezõ) 6x7 méretû ritka mátrix hiányos 4+2 soros reprezentációja. SOR: 1 1 2 2 2 3 3 4 4 5 6
RészletesebbenAlgoritmusok vektorokkal keresések 1
Algoritmusok vektorokkal keresések 1 function TELJES_KERES1(A, érték) - - teljes keresés while ciklussal 1. i 1 2. while i méret(a) és A[i] érték do 3. i i + 1 4. end while 5. if i > méret(a) then 6. KIVÉTEL
RészletesebbenTáblázatok fontosabb műveletei 1
Táblázatok fontosabb műveletei 1 - - Soros táblázat procedure BESZÚR1(TÁBLA, újelem) - - beszúrás soros táblázatba - - a táblázatot egy rekordokat tartalmazó dinamikus vektorral reprezentáljuk - - a rekordok
RészletesebbenFelvételi tematika INFORMATIKA
Felvételi tematika INFORMATIKA 2016 FEJEZETEK 1. Természetes számok feldolgozása számjegyenként. 2. Számsorozatok feldolgozása elemenként. Egydimenziós tömbök. 3. Mátrixok feldolgozása elemenként/soronként/oszloponként.
RészletesebbenKupac adatszerkezet. A[i] bal fia A[2i] A[i] jobb fia A[2i + 1]
Kupac adatszerkezet A bináris kupac egy majdnem teljes bináris fa, amely minden szintjén teljesen kitöltött kivéve a legalacsonyabb szintet, ahol balról jobbra haladva egy adott csúcsig vannak elemek.
RészletesebbenKupac adatszerkezet. 1. ábra.
Kupac adatszerkezet A bináris kupac egy majdnem teljes bináris fa, amely minden szintjén teljesen kitöltött kivéve a legalacsonyabb szintet, ahol balról jobbra haladva egy adott csúcsig vannak elemek.
RészletesebbenProgramozás alapjai II. (7. ea) C++ Speciális adatszerkezetek. Tömbök. Kiegészítő anyag: speciális adatszerkezetek
Programozás alapjai II. (7. ea) C++ Kiegészítő anyag: speciális adatszerkezetek Szeberényi Imre BME IIT M Ű E G Y E T E M 1 7 8 2 C++ programozási nyelv BME-IIT Sz.I. 2016.04.05. - 1
RészletesebbenSpeciális adatszerkezetek. Programozás alapjai II. (8. ea) C++ Tömbök. Tömbök/2. N dimenziós tömb. Nagyméretű ritka tömbök
Programozás alapjai II. (8. ea) C++ Kiegészítő anyag: speciális adatszerkezetek Szeberényi Imre BME IIT Speciális adatszerkezetek A helyes adatábrázolás választása, a helyes adatszerkezet
RészletesebbenProgramozás alapjai II. (7. ea) C++
Programozás alapjai II. (7. ea) C++ Kiegészítő anyag: speciális adatszerkezetek Szeberényi Imre BME IIT M Ű E G Y E T E M 1 7 8 2 C++ programozási nyelv BME-IIT Sz.I. 2016.04.05. - 1
RészletesebbenUgrólisták. RSL Insert Example. insert(22) with 3 flips. Runtime?
Ugrólisták Ugrólisták Ugrólisták Ugrólisták RSL Insert Example insert(22) with 3 flips 13 8 29 20 10 23 19 11 2 13 22 8 29 20 10 23 19 11 2 Runtime? Ugrólisták Empirical analysis http://www.inf.u-szeged.hu/~tnemeth/alga2/eloadasok/skiplists.pdf
RészletesebbenFelvételi vizsga mintatételsor Informatika írásbeli vizsga
BABEȘ BOLYAI TUDOMÁNYEGYETEM MATEMATIKA ÉS INFORMATIKA KAR A. tételsor (30 pont) Felvételi vizsga mintatételsor Informatika írásbeli vizsga 1. (5p) Egy x biten tárolt egész adattípus (x szigorúan pozitív
RészletesebbenAlgoritmuselmélet 2. előadás
Algoritmuselmélet 2. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Február 12. ALGORITMUSELMÉLET 2. ELŐADÁS 1 Buborék-rendezés
Részletesebben14. Mediánok és rendezett minták
14. Mediánok és rendezett minták Kiválasztási probléma Bemenet: Azonos típusú (különböző) elemek H = {a 1,...,a n } halmaza, amelyeken értelmezett egy lineáris rendezési reláció és egy i (1 i n) index.
RészletesebbenINFORMATIKA javítókulcs 2016
INFORMATIKA javítókulcs 2016 ELMÉLETI TÉTEL: Járd körbe a tömb fogalmát (Pascal vagy C/C++): definíció, egy-, két-, több-dimenziós tömbök, kezdőértékadás definíciókor, tömb típusú paraméterek átadása alprogramoknak.
RészletesebbenBBTE Matek-Infó verseny mintatételsor Informatika írásbeli vizsga
BABEȘ BOLYAI TUDOMÁNYEGYETEM MATEMATIKA ÉS INFORMATIKA KAR A. tételsor (30 pont) 1. (5p) Tekintsük a következő alprogramot: Alprogram f(a): Ha a!= 0, akkor visszatérít: a + f(a - 1) különben visszatérít
RészletesebbenEdényrendezés. Futási idő: Tegyük fel, hogy m = n, ekkor: legjobb eset Θ(n), legrosszabb eset Θ(n 2 ), átlagos eset Θ(n).
Edényrendezés Tegyük fel, hogy a rendezendő H = {a 1,...,a n } halmaz elemei a [0,1) intervallumba eső valós számok. Vegyünk m db vödröt, V [0],...,V [m 1] és osszuk szét a rendezendő halmaz elemeit a
Részletesebben1. ábra. Egy rekurzív preorder bejárás. Egy másik rekurzív preorder bejárás
Preorder ejárás Fa bejárásán olyan algoritmust értünk, amelynek bemenete egy F fa és egy M művelet, és az algoritmus adott sorrendben pontosan egyszer végrehajtja az M műveletet a fa pontjaiban lévő adatokra.
RészletesebbenAlgoritmusok és adatszerkezetek gyakorlat 07
Algoritmusok és adatszerkezetek gyakorlat 0 Keresőfák Fák Fa: összefüggő, körmentes gráf, melyre igaz, hogy: - (Általában) egy gyökér csúcsa van, melynek 0 vagy több részfája van - Pontosan egy út vezet
Részletesebben1. Feladat: beolvas két számot úgy, hogy a-ba kerüljön a nagyobb
1. Feladat: beolvas két számot úgy, hogy a-ba kerüljön a nagyobb #include main() { int a, b; printf( "a=" ); scanf( "%d", &a ); printf( "b=" ); scanf( "%d", &b ); if( a< b ) { inttmp = a; a =
RészletesebbenRendezések. Összehasonlító rendezések
Rendezések Összehasonlító rendezések Remdezés - Alapfeladat: Egy A nevű N elemű sorozat elemeinek nagyság szerinti sorrendbe rendezése - Feltételezzük: o A sorozat elemei olyanok, amelyekre a >, relációk
RészletesebbenAdatbázis rendszerek Gy: Algoritmusok C-ben
Adatbázis rendszerek 1. 1. Gy: Algoritmusok C-ben 53/1 B ITv: MAN 2015.09.08 Alapalgoritmusok Összegzés Megszámlálás Kiválasztás Kiválasztásos rendezés Összefésülés Szétválogatás Gyorsrendezés 53/2 Összegzés
RészletesebbenAdatszerkezetek 7a. Dr. IványiPéter
Adatszerkezetek 7a. Dr. IványiPéter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér () Nincsennek hurkok!!! 2 Bináris fák Azokat a
RészletesebbenKeresés és rendezés. A programozás alapjai I. Hálózati Rendszerek és Szolgáltatások Tanszék Farkas Balázs, Fiala Péter, Vitéz András, Zsóka Zoltán
Keresés Rendezés Feladat Keresés és rendezés A programozás alapjai I. Hálózati Rendszerek és Szolgáltatások Tanszék Farkas Balázs, Fiala Péter, Vitéz András, Zsóka Zoltán 2016. november 7. Farkas B., Fiala
RészletesebbenÉrdekes informatika feladatok
A keres,kkel és adatbázissal ellátott lengyel honlap számos díjat kapott: Spirit of Delphi '98, Delphi Community Award, Poland on the Internet, Golden Bagel Award stb. Az itt megtalálható komponenseket
RészletesebbenSzámjegyes vagy radix rendezés
Számláló rendezés Amennyiben a rendezendő elemek által felvehető értékek halmazának számossága kicsi, akkor megadható lineáris időigényű algoritmus. A bemenet a rendezendő elemek egy n méretű A tömbben
RészletesebbenÖsszetett programozási tételek Rendezések Keresések PT egymásra építése. 10. előadás. Programozás-elmélet. Programozás-elmélet 10.
Összetett programozási tételek Sorozathoz sorozatot relő feladatokkal foglalkozunk. A bemenő sorozatot le kell másolni, s közben az elemekre vonatkozó átalakításokat lehet végezni rajta: Input : n N 0,
Részletesebben15. tétel. Adatszerkezetek és algoritmusok vizsga Frissült: 2013. január 30.
15. tétel Adatszerkezetek és algoritmusok vizsga Frissült: 2013. január 30. Edényrendezés Tegyük fel, hogy tudjuk, hogy a bemenő elemek (A[1..n] elemei) egy m elemű U halmazból kerülnek ki, pl. " A[i]-re
RészletesebbenProgramozási segédlet
Programozási segédlet Programozási tételek Az alábbiakban leírtam néhány alap algoritmust, amit ismernie kell annak, aki programozásra adja a fejét. A lista korántsem teljes, ám ennyi elég kell legyen
RészletesebbenTartalom Keresés és rendezés. Vektoralgoritmusok. 1. fejezet. Keresés adatvektorban. A programozás alapjai I.
Keresés Rendezés Feladat Keresés Rendezés Feladat Tartalom Keresés és rendezés A programozás alapjai I. Hálózati Rendszerek és Szolgáltatások Tanszék Farkas Balázs, Fiala Péter, Vitéz András, Zsóka Zoltán
RészletesebbenPermutáció n = 3 esetében: Eredmény: permutációk száma: P n = n! romámul: permutări, angolul: permutation
Visszalépéses módszer (Backtracking) folytatás Permutáció n = 3 esetében: 1 2 3 2 3 1 3 1 2 Eredmény: 3 2 3 1 2 1 123 132 213 231 312 321 permutációk száma: P n = n! romámul: permutări, angolul: permutation
RészletesebbenAdatszerkezetek 1. előadás
Adatszerkezetek 1. előadás Irodalom: Lipschutz: Adatszerkezetek Morvay, Sebők: Számítógépes adatkezelés Cormen, Leiserson, Rives, Stein: Új algoritmusok http://it.inf.unideb.hu/~halasz http://it.inf.unideb.hu/adatszerk
RészletesebbenMegoldott feladatok. Informatika
Megoldott feladatok Informatika I.81. Egy autóbuszjegyen az n*n-es négyzethálóban összesen k lyukasztás lehet. Ha a buszjegyet fordítva helyezzük a lyukasztóba, akkor a jegy tükörképét kapjuk. (Csak egyféleképpen
RészletesebbenKözismereti informatika 2.zh T-M szakirány
1. feladat: Az alábbi algoritmus egy szövegnek meghatározza a leghosszabb szavát és annak hosszát. Írja át időben hatékonyabbra! Írja meg az időben hatékonyabb Pascal programot! Eljárás Maxkiv(S:Szöveg;
RészletesebbenEgyirányban láncolt lista
Egyirányban láncolt lista A tárhely (listaelem) az adatelem értékén kívül egy mutatót tartalmaz, amely a következő listaelem címét tartalmazza. A láncolt lista első elemének címét egy, a láncszerkezeten
RészletesebbenGráfelméleti feladatok. c f
Gráfelméleti feladatok d e c f a b gráf, csúcsok, élek séta: a, b, c, d, e, c, a, b, f vonal: c, d, e, c, b, a út: f, b, a, e, d (walk, lanţ) (trail, lanţ simplu) (path, lanţ elementar) 1 irányított gráf,
RészletesebbenAdatszerkezetek. Nevezetes algoritmusok (Keresések, rendezések)
Adatszerkezetek Nevezetes algoritmusok (Keresések, rendezések) Keresések A probléma általános megfogalmazása: Adott egy N elemű sorozat, keressük meg azt az elemet (határozzuk meg a helyét a sorozatban),
RészletesebbenC# feladatok gyűjteménye
C# feladatok gyűjteménye Készítette: Fehérvári Károly I6YF6E Informatika tanár ma levelező tagozat 1) Feladat: ALAPMŰVELETEK Készítsünk programot, amely bekér két egész számot. Majd kiszámolja a két szám
RészletesebbenMatlab alapok. Baran Ágnes. Baran Ágnes Matlab alapok Elágazások, függvények 1 / 15
Matlab alapok Baran Ágnes Elágazások, függvények Baran Ágnes Matlab alapok Elágazások, függvények 1 / 15 Logikai kifejezések =, ==, = (két mátrixra is alkalmazhatóak, ilyenkor elemenként történik
RészletesebbenAlgoritmuselmélet. Gráfok megadása, szélességi bejárás, összefüggőség, párosítás. Katona Gyula Y.
Algoritmuselmélet Gráfok megadása, szélességi bejárás, összefüggőség, párosítás Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 2. előadás
Részletesebben6. gyakorlat Egydimenziós numerikus tömbök kezelése, tömbi algoritmusok
6. gyakorlat Egydimenziós numerikus tömbök kezelése, tömbi algoritmusok 1. feladat: Az EURO árfolyamát egy negyedéven keresztül hetente nyilvántartjuk (HUF / EUR). Írjon C programokat az alábbi kérdések
RészletesebbenAlgoritmuselmélet 1. előadás
Algoritmuselmélet 1. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Február 11. ALGORITMUSELMÉLET 1. ELŐADÁS 1 Források
RészletesebbenA félév során előkerülő témakörök
A félév során előkerülő témakörök rekurzív algoritmusok rendező algoritmusok alapvető adattípusok, adatszerkezetek, és kapcsolódó algoritmusok dinamikus programozás mohó algoritmusok gráf algoritmusok
Részletesebben1. ábra. Számláló rendezés
1:2 2:3 1:3 1,2,3 1:3 1,3,2 3,1,2 2,1,3 2:3 2,3,1 3,2,1 1. ábra. Alsó korlát rendezési algoritmusokra Minden olyan rendezési algoritmusnak a futását, amely elempárok egymással
RészletesebbenI. ALAPALGORITMUSOK. I. Pszeudokódban beolvas n prim igaz minden i 2,gyök(n) végezd el ha n % i = 0 akkor prim hamis
I. ALAPALGORITMUSOK 1. Prímszámvizsgálat Adott egy n természetes szám. Írjunk algoritmust, amely eldönti, hogy prímszám-e vagy sem! Egy számról úgy fogjuk eldönteni, hogy prímszám-e, hogy megvizsgáljuk,
Részletesebben2018, Funkcionális programozás
Funkcionális programozás 6. előadás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2018, tavaszi félév Miről volt szó? Haskell modulok, kompilálás a
RészletesebbenA MAXIMUM-KUPACOL eljárás helyreállítja az A[i] elemre a kupactulajdonságot. Az elemet süllyeszti cserékkel mindaddig, amíg a tulajdonság sérül.
Kiválasztás kupaccal A bináris kupac egy majdnem teljes bináris fa, amely minden szintjén teljesen kitöltött kivéve a legalacsonyabb szintet, ahol balról jobbra haladva egy adott csúcsig vannak elemek.
RészletesebbenAlgoritmusok és adatszerkezetek I. 1. előadás
Algoritmusok és adatszerkezetek I 1 előadás Típusok osztályozása Összetettség (strukturáltság) szempontjából: elemi (vagy skalár, vagy strukturálatlan) összetett (más szóval strukturált) Strukturálási
RészletesebbenHaladó rendezések. PPT 2007/2008 tavasz.
Haladó rendezések szenasi.sandor@nik.bmf.hu PPT 2007/2008 tavasz http://nik.bmf.hu/ppt 1 Témakörök Alapvető összehasonlító rendezések Shell rendezés Kupacrendezés Leszámláló rendezés Radix rendezés Edényrendezés
RészletesebbenMesterséges intelligencia 1 előadások
VÁRTERÉSZ MAGDA Mesterséges intelligencia 1 előadások 2006/07-es tanév Tartalomjegyzék 1. A problémareprezentáció 4 1.1. Az állapottér-reprezentáció.................................................. 5
RészletesebbenAlgoritmusok bonyolultsága
Algoritmusok bonyolultsága 5. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm 1 / 27 Gazdaságos faváz Kruskal-algoritmus Joseph Kruskal (1928 2010) Legyen V = {v 1, v 2,..., v n }, E = {e 1, e 2,...,
Részletesebben10. tétel. Adatszerkezetek és algoritmusok vizsga Frissült: 2013. január 28.
10. tétel Adatszerkezetek és algoritmusok vizsga Frissült: 2013. január 28. 2-3 fák Hatékony keresőfa-konstrukció. Ez is fa, de a binárisnál annyival bonyolultabb hogy egy nem-levél csúcsnak 2 vagy 3 fia
RészletesebbenBABEŞ BOLYAI TUDOMÁNYEGYETEM MATEMATIKA ÉS INFORMATIKA KAR BBTE Matek-Infó verseny 1. tételsor INFORMATIKA írásbeli. A versenyzők figyelmébe:
BABEŞ BOLYAI TUDOMÁNYEGYETEM MATEMATIKA ÉS INFORMATIKA KAR BBTE Matek-Infó verseny 1. tételsor INFORMATIKA írásbeli A versenyzők figyelmébe: 1. A tömböket 1-től kezdődően indexeljük. 2. A rácstesztekre
Részletesebben// keressük meg a legnagyobb faktoriális értéket, ami kisebb, // mint százmillió
BME MOGI Gépészeti informatika 3. 1. feladat Végezze el a következő feladatokat! Kérjen be számokat 0 végjelig, és határozza meg az átlagukat! A feladat megoldásához írja meg a következő metódusokat! a.
RészletesebbenAmortizációs költségelemzés
Amortizációs költségelemzés Amennyiben műveleteknek egy M 1,...,M m sorozatának a futási idejét akarjuk meghatározni, akkor egy lehetőség, hogy külön-külön minden egyes művelet futási idejét kifejezzük
RészletesebbenProgramozási módszertan. Mohó algoritmusok
PM-08 p. 1/17 Programozási módszertan Mohó algoritmusok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu PM-08 p. 2/17 Bevezetés Dinamikus programozás
RészletesebbenFüggvények. Programozás alapjai C nyelv 7. gyakorlat. LNKO függvény. Függvények(2) LNKO függvény (2) LNKO függvény (3)
Programozás alapjai C nyelv 7. gyakorlat Szeberényi Imre BME IIT Függvények C program egymás mellé rendelt függvényekből áll. A függvény (alprogram) jó absztrakciós eszköz a programok
RészletesebbenProgramozás alapjai C nyelv 7. gyakorlat. Függvények. Függvények(2)
Programozás alapjai C nyelv 7. gyakorlat Szeberényi Imre BME IIT Programozás alapjai I. (C nyelv, gyakorlat) BME-IIT Sz.I. 2005.11.05. -1- Függvények C program egymás mellé rendelt függvényekből
RészletesebbenRakov(34125)=34152. Rakov(12543)=13245. Rakov(14532)=15234. Rakov(54321)=-
Kombinatorikus feladatok Ládák: Egy vállalat udvarán egyetlen sorban vannak az elszállításra várakozó üres ládák. Három különböző típusú láda van, jelölje ezeket A, B és C. Minden láda a felső oldalán
Részletesebben1. numere.txt n (1 n 10000) n növekvő kilenc a) Pascal/C++ Például: NUMERE.TXT
Az informatika érettségi harmadik tételsora tartalmaz egy feladatot, melyet hatékonyan kell megoldani. A program megírása mellett követelmény a megoldásban használt módszer rövid leírása, kitérve a módszer
Részletesebben10. előadás Speciális többágú fák
10. előadás Adatszerkezetek és algoritmusok előadás 2018. április 17., és Debreceni Egyetem Informatikai Kar 10.1 A többágú fák kezelésére nincsenek általános elvek, implementációjuk elsősorban alkalmazásfüggő.
RészletesebbenSzámláló rendezés. Példa
Alsó korlát rendezési algoritmusokra Minden olyan rendezési algoritmusnak a futását, amely elempárok egymással való összehasonlítása alapján működik leírja egy bináris döntési fa. Az algoritmus által a
Részletesebbenangolul: greedy algorithms, románul: algoritmi greedy
Mohó algoritmusok angolul: greedy algorithms, románul: algoritmi greedy 1. feladat. Gazdaságos telefonhálózat építése Bizonyos városok között lehet direkt telefonkapcsolatot kiépíteni, pl. x és y város
RészletesebbenAlkalmazott modul: Programozás. Programozási tételek, rendezések. Programozási tételek Algoritmusok és programozási tételek
Eötvös Loránd Tudományegyetem Informatikai Kar Alkalmazott modul: Programozás, rendezések 2015 Giachetta Roberto groberto@inf.elte.hu http://people.inf.elte.hu/groberto Algoritmusok és programozási tételek
RészletesebbenAdatbányászati szemelvények MapReduce környezetben
Adatbányászati szemelvények MapReduce környezetben Salánki Ágnes salanki@mit.bme.hu 2014.11.10. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Felügyelt
Részletesebbenértékel függvény: rátermettségi függvény (tness function)
Genetikus algoritmusok globális optimalizálás sok lehetséges megoldás közül keressük a legjobbat értékel függvény: rátermettségi függvény (tness function) populáció kiválasztjuk a legrátermettebb egyedeket
RészletesebbenAlgoritmuselmélet 1. előadás
Algoritmuselmélet 1. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Február 11. ALGORITMUSELMÉLET 1. ELŐADÁS 1 Források
Részletesebbenhatására hátra lép x egységgel a toll
Ciklusszervező utasítások minden programozási nyelvben léteznek, így például a LOGO-ban is. LOGO nyelven, (vagy legalábbis LOGO-szerű nyelven) írt programok gyakran szerepelnek az iskola számítástechnikai
RészletesebbenProgramozás alapjai C nyelv 8. gyakorlat. Mutatók és címek (ism.) Indirekció (ism)
Programozás alapjai C nyelv 8. gyakorlat Szeberényi Imre BME IIT Programozás alapjai I. (C nyelv, gyakorlat) BME-IIT Sz.I. 2005.11.07. -1- Mutatók és címek (ism.) Minden változó és függvény
RészletesebbenDinamikus programozás vagy Oszd meg, és uralkodj!
Dinamikus programozás Oszd meg, és uralkodj! Mohó stratégia Melyiket válasszuk? Dinamikus programozás vagy Oszd meg, és uralkodj! Háromszögfeladat rekurzívan: c nj := a nj ha 1 j n c ij := a ij + max{c
RészletesebbenINFORMATIKA tétel 2019
INFORMATIKA tétel 2019 ELIGAZÍTÁS: 1 pont hivatalból; Az 1-4 feladatokban (a pszeudokód programrészletekben): (1) a kiír \n utasítás újsorba ugratja a képernyőn a kurzort; (2) a / operátor osztási hányadost
RészletesebbenTuesday, March 6, 12. Hasító táblázatok
Hasító táblázatok Halmaz adattípus U (kulcsuniverzum) K (aktuális kulcsok) Függvény adattípus U (univerzum) ÉT (értelmezési tartomány) ÉK (érték készlet) Milyen az univerzum? Közvetlen címzésű táblázatok
RészletesebbenAlgoritmizálás. Horváth Gyula Szegedi Tudományegyetem Természettudományi és Informatikai Kar
Algoritmizálás Horváth Gyula Szegedi Tudományegyetem Természettudományi és Informatikai Kar horvath@inf.u-szeged.hu 0.1. Az algoritmikus tudás szintjei Ismeri (a megoldó algoritmust) Érti Le tudja pontosan
Részletesebben2. Visszalépéses keresés
2. Visszalépéses keresés Visszalépéses keresés A visszalépéses keresés egy olyan KR, amely globális munkaterülete: egy út a startcsúcsból az aktuális csúcsba (az útról leágazó még ki nem próbált élekkel
RészletesebbenKnuth-Morris-Pratt algoritmus
Knuth-Morris-ratt algoritmus KM féle sztringkezelő algoritmus Szükséges matematikai fogalmak: Legyen Ω egy ábécé és x=x 1 x 2 x n, k N karakterekből álló sztring, melynek elemei (x i ) az Ω ábécé betűi.
RészletesebbenAlgoritmusok és adatszerkezetek gyakorlat 03 Oszd meg és uralkodj. Nagy
Algoritmusok és adatszerkezetek gyakorlat 03 Oszd meg és uralkodj Divide & Conquer (,,Oszd meg és uralkodj ) paradigma Divide: Osszuk fel az adott problémát kisebb problémákra. Conquer: Oldjuk meg a kisebb
RészletesebbenBonyolultságelmélet. Monday 26 th September, 2016, 18:50
Bonyolultságelmélet Monday 26 th September, 2016, 18:50 A kiszámítás modelljei 2 De milyen architektúrán polinom? A kiszámításnak számos (matematikai) modellje létezik: Általános rekurzív függvények λ-kalkulus
Részletesebben2018, Diszkrét matematika
Diszkrét matematika 3. előadás mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia 2018, őszi félév Miről volt szó az elmúlt előadáson? számtartományok: természetes
RészletesebbenAlkalmazott modul: Programozás 4. előadás. Procedurális programozás: iteratív és rekurzív alprogramok. Alprogramok. Alprogramok.
Eötvös Loránd Tudományegyetem Informatikai Kar Alkalmazott modul: Programozás 4. előadás Procedurális programozás: iteratív és rekurzív alprogramok Giachetta Roberto groberto@inf.elte.hu http://people.inf.elte.hu/groberto
RészletesebbenMutatók és címek (ism.) Programozás alapjai C nyelv 8. gyakorlat. Indirekció (ism) Néhány dolog érthetőbb (ism.) Változók a memóriában
Programozás alapjai C nyelv 8. gyakorlat Szeberényi mre BME T Programozás alapjai. (C nyelv, gyakorlat) BME-T Sz.. 2005.11.07. -1- Mutatók és címek (ism.) Minden változó és függvény
RészletesebbenEgyszerű példaprogramok gyakorláshoz
Egyszerű példaprogramok gyakorláshoz Tartalom Feladatok... 2 For ciklus... 2 Szorzótábla... 2 Szorzótábla részlet... 3 Pascal háromszög... 4 Pascal háromszög szebben... 5 DO-LOOP ciklus... 6 Véletlen sorsolás...
RészletesebbenKupacrendezés. Az s sorban lévő elemeket rendezzük a k kupac segítségével! k.empty. not s.isempty. e:=s.out k.insert(e) not k.
10. Előadás Beszúró rendezés Használjuk a kupacokat rendezésre! Szúrd be az elemeket egy kupacba! Amíg a sor ki nem ürül, vedd ki a kupacból a maximális elemet, és tedd az eredmény (rendezett) sorba! 2
Részletesebben2. Visszalépéses stratégia
2. Visszalépéses stratégia A visszalépéses keres rendszer olyan KR, amely globális munkaterülete: út a startcsúcsból az aktuális csúcsba (ezen kívül a még ki nem próbált élek nyilvántartása) keresés szabályai:
RészletesebbenAlkalmazott modul: Programozás. Programozási tételek, rendezések Giachetta Roberto
Eötvös Loránd Tudományegyetem Informatikai Kar Alkalmazott modul: Programozás Programozási tételek, rendezések 2015 Giachetta Roberto groberto@inf.elte.hu http://people.inf.elte.hu/groberto Algoritmusok
Részletesebben<... < s n. Írjuk le a megoldási módszert, és adjunk meg egy megjegyzésekkel ellátott Pascal-programot. A bemeneti adatokat helyesnek tekintjük.
Informatika felvételi feladatok - megoldásokkal A kolozsvári Babes-Bolyai Tudományegyetem Matematika és Informatika Karán először az idén lehetett informatikából felvételizni. Az új felvételi rendszer
RészletesebbenBABEŞ-BOLYAI TUDOMÁNYEGYETEM MATEMATIKA-INFORMATIKA KAR Felvételi verseny - minta Informatika írásbeli
BABEŞ-BOLYAI TUDOMÁNYEGYETEM MATEMATIKA-INFORMATIKA KAR Felvételi verseny - minta Informatika írásbeli A versenyzők figyelmébe: 1. Minden tömböt 1-től kezdődően indexelünk. 2. A rácstesztekre (A rész)
RészletesebbenAlgoritmizálás + kódolás C++ nyelven és Pascalban
Algoritmizálás + kódolás nyelven és ban Motiváció A Programozási alapismeretek tárgyban az algoritmizáláshoz struktogramot, a kódoláshoz nyelvet használunk, a Közismereti informatikában (a közoktatásban
RészletesebbenSpecifikáció. B logikai formula, a bemeneti feltétel, K logikai formula, a kimeneti feltétel, A az algoritmus, amelyre az állítás vonatkozik.
Algoritmus Az algoritmus olyan elemi műveletekből kompozíciós szabályok szerint felépített összetett művelet, amelyet megadott feltételt teljesítő bemeneti adatra végrehajtva, a megkívánt kimeneti adatot
RészletesebbenMatlab alapok. Baran Ágnes
Matlab alapok Mátrixok Baran Ágnes Mátrixok megadása Mátrix megadása elemenként A = [1, 2, 3; 4, 5, 6; 7, 8, 9] vagy A = [1 2 3; 4 5 6; 7 8 9] eredménye: A = 1 2 3 4 5 6 7 8 9 (Az egy sorban álló elemeket
RészletesebbenAdatszerkezetek 2. Dr. Iványi Péter
Adatszerkezetek 2. Dr. Iványi Péter 1 Hash tábla A bináris fáknál O(log n) a legjobb eset a keresésre. Ha valamilyen közvetlen címzést használunk, akkor akár O(1) is elérhető. A hash tábla a tömb általánosításaként
RészletesebbenSmalltalk 2. Készítette: Szabó Éva
Smalltalk 2. Készítette: Szabó Éva Blokkok Paraméter nélküli blokk [műveletek] [ x := 5. 'Hello' print. 2+3] Kiértékelés: [művelet] value az értéke az utolsó művelet értéke lesz, de mindet kiírja. x :=
RészletesebbenApple Swift kurzus 3. gyakorlat
Készítette: Jánki Zoltán Richárd Dátum: 2016.09.20. Apple Swift kurzus 3. gyakorlat Kollekciók: Tömb: - let array = [] - üres konstans tömb - var array = [] - üres változó tömb - var array = [String]()
Részletesebbenü É Í ü ü ü Í ü ű ü ü ü ű ü ű ű ű ü ü ü ű ü Í ü ű ü ü ü Ű Í É É Á Ő Á Ó Á Á Á Á É Á Á Á Á É Á Í Á Á Í Í ű Á É É Á Á Ö Í Á Á Á Á Á É Á Á Ó ű Í ü ü ü ű ű ü ü ű ü Á ü ű ü Í Í Í ü Í Í ű ű ü ü ü ü ű ü ű ü ü
RészletesebbenÍ Á Á É ö ö ö ö ö ű ü ö ű ű ű ö ö ö ü ö ü í ü í í í ü í ü Á ü ö ö ü ö ü ö ö ü ö í ö ö ü ö ü í ö ü ű ö ü ö ü í ö í ö ű ű ö ö ú ö ü ö ű ű ű í ö ű í ű ö ű ü ö í ű í í ö í ö ö Ó Í ö ű ű ű ű í í ű ű í í Ü ö
RészletesebbenŰ Í ó Ü Ö Á Á Ó Ö Ü Ü Ü Ü Á Í Ü Á Á Ü Ü Ü Ü Ü Ü Ö Ü Í Ü Ü Ü Ü Ü Ü Ü Ü Ü Ü Á Í Ü Í Í Á Í Í Ü Í Í Ü Á Ü Ü Ü Ü Ü Ü Ü Ü Ő Ö Á ÁÍ Á Ü Ü Á Í Ü Í Á Ü Á Í ó Í Í Ü Ü ő Í Ü Ű Ü Ü Ü Ü Í Ü Ü Ü Ü Ü Ü Ü Í Ü Á Ü Ö Á
Részletesebbenű í ú ü Á ü ü ü ü ü É É É Ü í ü Á í í ű í ú É É É Ü Í í í í Á í í Á í Á Í É Ő Ú ú Ú í í í íí í ú í í Í í Í Í É í í Í Í í ú í ü Ó í Í ú Í Í ű í ű í í í Í É Ü ű í ü ű í ú É É É Ü ű í í í í ü í Í í Ú Í í
Részletesebbenértékel függvény: rátermettségi függvény (tness function)
Genetikus algoritmusok globális optimalizálás sok lehetséges megoldás közül keressük a legjobbat értékel függvény: rátermettségi függvény (tness function) populáció kiválasztjuk a legrátermettebb egyedeket
RészletesebbenMatematikai problémák vizsgálata a Maple programcsomag segítségével
Matematikai problémák vizsgálata a Maple programcsomag segítségével Tengely Szabolcs tengely@science.unideb.hu http://www.math.unideb.hu/~tengely Tengely Szabolcs 2014.04.26 Matematikai problémák és a
RészletesebbenTömbök kezelése. Példa: Vonalkód ellenőrzőjegyének kiszámítása
Tömbök kezelése Példa: Vonalkód ellenőrzőjegyének kiszámítása A számokkal jellemzett adatok, pl. személyi szám, adószám, taj-szám, vonalkód, bankszámlaszám esetében az elírásból származó hibát ún. ellenőrző
RészletesebbenMegoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1
Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =
Részletesebben8. Mohó algoritmusok. 8.1. Egy esemény-kiválasztási probléma. Az esemény-kiválasztási probléma optimális részproblémák szerkezete
8. Mohó algoritmusok Optimalizálási probléma megoldására szolgáló algoritmus gyakran olyan lépések sorozatából áll, ahol minden lépésben adott halmazból választhatunk. Sok optimalizálási probléma esetén
Részletesebben