Adatbányászati szemelvények MapReduce környezetben
|
|
- Máté Kiss
- 6 évvel ezelőtt
- Látták:
Átírás
1 Adatbányászati szemelvények MapReduce környezetben Salánki Ágnes Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék
2 Felügyelt és nem felügyelt tanulás Felügyelt tanulás o Adott néhány pontra az elvárt kimenet is o a tanuló példákból való általánosítás o Output: függvény a meglévő mintapontokra jól képez le megfelelően általánosítható Nem felügyelt tanulás o Nincs meg az elvárt kimenet o Visszajelzés nélkül építi a modellt o szabályok, összefüggések keresése (ismeretfeltárás)
3 Felügyelt és nem felügyelt tanulás Felügyelt tanulás o Adott néhány pontra az elvárt kimenet is o a tanuló példákból való általánosítás o Output: függvény a meglévő mintapontokra Tanulóhalmaz jól képez amin le építjük a modellt megfelelően általánosítható Teszthalmaz amin ellenőrizzük Nem felügyelt tanulás o Nincs meg az elvárt kimenet o Visszajelzés nélkül építi a modellt o szabályok, összefüggések keresése (ismeretfeltárás)
4 Osztályozás és csoportosítás alapfeladat Kép forrása: Ramaswamy S, Golub T R JCO 2002;20:
5 Osztályozás alapfeladat Képosztályozás: a képen látható objektum madár vagy repülő?
6 Osztályozás alapfeladat Levelek osztályozása: SPAM vagy nem SPAM?
7 Osztályozás alapfeladat Szabályok alapján Severity osztályozása Kép forrása:
8 Csoportosítási alapfeladat Csoportosítás (clustering) megtalálni az egymáshoz hasonló elemeket o Output: klaszterek
9 Csoportosítási alapfeladat Csoportosítás (clustering) megtalálni az egymáshoz hasonló elemeket o Output: klaszterek Egymáshoz hasonló?
10 k-means Adatpontok: vektortér Klaszter reprezentációja: súlyponttal / középponttal (vektor-átlag) r(c i ): i-edik klaszter reprezentánsa Minimalizálandó a négyzetes távolságösszeg, mint hiba: E C = k i=1 u C i d u, r C i 2
11 Egy megoldás {r C 1, r C 2,, r(c k )} repr. kezdeti halmaza while r(c i ) változik do for u D adott sorrendben do h u klaszter-indexe j argmin i d(u, r(c i )) if h j then { C j C j u C i C i u r(c j ) 1 C j v C j v r(c h ) 1 C h v C h v} return C
12 Egy megoldás {r C 1, r C 2,, r(c k )} repr. kezdeti halmaza while r(c i ) változik do for u D adott sorrendben do return C h u klaszter-indexe j argmin i d(u, r(c i )) if h j then { C j C j u C i C i u r(c j ) 1 C j r(c h ) 1 C h v C j v v C h v} Régi klaszter
13 Egy megoldás {r C 1, r C 2,, r(c k )} repr. kezdeti halmaza while r(c i ) változik do for u D adott sorrendben do return C h u klaszter-indexe j argmin i d(u, r(c i )) if h j then { C j C j u C i C i u r(c j ) 1 C j r(c h ) 1 C h v C j v v C h v} Régi klaszter Új klaszter
14 Egy megoldás {r C 1, r C 2,, r(c k )} repr. kezdeti halmaza while r(c i ) változik do for u D adott sorrendben do return C h u klaszter-indexe j argmin i d(u, r(c i )) if h j then { C j C j u C i C i u r(c j ) 1 C j r(c h ) 1 C h v C j v v C h v} Régi klaszter Új klaszter Itt rögtön újra is számoljuk
15 k-means rmr2/blob/master/pkg/tests/kmeans.r dist.fun = function(c, P){ apply(c, 1, function(x) colsums((t(p) - x)^2))}
16 k-means rmr2/blob/master/pkg/tests/kmeans.r P pont C i klasztertől vett távolsága dist.fun = function(c, P){ apply(c, 1, function(x) colsums((t(p) - x)^2))}
17 k-means rmr2/blob/master/pkg/tests/kmeans.r P pont C i klasztertől vett távolsága dist.fun = function(c, P){ apply(c, 1, function(x) A klaszter középpontok mátrixának minden sorára colsums((t(p) - x)^2))}
18 k-means: map kmeans.map = function(., P) { nearest = { if(is.null(c)) sample(1:num.clusters,nrow(p), replace = T) else { D = dist.fun(c, P) nearest = max.col(-d)}} if(!(combine in.memory.combine)) keyval(nearest, P) else keyval(nearest, cbind(1, P))}
19 k-means: map A Map kap néhány kmeans.map = pontot function(., P) { nearest = { if(is.null(c)) sample(1:num.clusters,nrow(p), replace = T) else { D = dist.fun(c, P) nearest = max.col(-d)}} if(!(combine in.memory.combine)) keyval(nearest, P) else keyval(nearest, cbind(1, P))}
20 k-means: map A Map kap néhány kmeans.map = pontot function(., P) { nearest = { Első kör: inicializálás if(is.null(c)) sample(1:num.clusters,nrow(p), replace = T) else { D = dist.fun(c, P) nearest = max.col(-d)}} if(!(combine in.memory.combine)) keyval(nearest, P) else keyval(nearest, cbind(1, P))}
21 kmeans.map = function(., P) { nearest = { if(is.null(c)) k-means: map A Map kap néhány pontot Első kör: inicializálás sample(1:num.clusters,nrow(p), replace = T) Legközelebbi klaszter else { D = dist.fun(c, P) nearest = max.col(-d)}} if(!(combine in.memory.combine)) keyval(nearest, P) else keyval(nearest, cbind(1, P))}
22 k-means: map Kulcs: P ponthoz legközelebbi klaszter-centrum o C normál R objektum o scoping miatt elérhető a map-ben o P: HDFS-ből Érték: P Ha még nincsenek klaszter-centrumok: mintavétel visszahelyezéssel Vektorizált keyval ismét in.memory.combine, combine: nem a mapreduce függvényé!
23 k-means: reduce kmeans.reduce = { if (!(combine in.memory.combine)) else function(., P) t(as.matrix(apply(p, 2, mean))) function(k, P) keyval( k, k klaszterközépponthoz lekérjük az összes P pontot Előbb csak összeget számolunk.. t(as.matrix(apply(p,2,sum))))}
24 k-means: reduce Azonos kulcshoz (középpont) tartozó vektorok átlaga Azaz: o Map: a legközelebbi klaszterbe sorol (középpont) o Reduce: kialakult új középpontok Szemlétesen: a középpontokat tologatjuk Beragadhat lokális minimumba! (aut. megállásnál) Algoritmust lásd (aut. megállással): [8], p 1422
25 kmeans.mr: törzs (1)
26 kmeans.mr: törzs (1) Iterációk C felüldefiniálásával Minden menetben mapreduce-szal új középpontok
27 f függvény, bemenet: az attribútumok értéke, kimenet: megfigyelések legjobb közelítése ökölszabály Példa: testtömeg/magasság együttes eloszlás valójában egyenesre illeszthető, Regresszió
28 Regressziós módszerek Alapelv: Véletlen változó Közelítés t Y f t Hiba Jósolt esemény Átlagos hiba (mean error) Becsült érték Y f ( X1, X 2,..., X n ) ME n t1 Y t n F t Megfigyelhető változók Mért érték
29 Lineáris regresszió Egyszerű lin. függvény illesztése az adatokra o nem vár alapvető változást a rendszer viselkedésében Y a bx Legkisebb négyzetek módszere o keressük azokat az a,b paramétereket, amelyekre n n 2 t t t t1 t1 minimális (Sum of Squared Errors) 2 SSE Y F cél: n n 2 2 Y F Y a bx minimalizálása t t t t t1 t1
30 Levezetés (parc. deriválás) n 2 d Y t a bx t n t1 2 Yt a bx t 0 da n 2 t1 t1 d Y t a bx t n t1 X t Yt a bx t 0 db t1 n na Y bx a Y bx t t t t t t t t t t t t t1 n t1 t1 n t1 t1 n t1 t1 t n n X Y Y bx bx X Y X Y b X X bxt 0 t1 n n n n n n b n n n n X Y X Y t t t t t1 t1 t1 n n 2 2 nx t X t t1 t1 Xi, Yi a mért értékpárok (pl. idő, terhelés)
31 Anscombe négyese Legjobban illeszkedő egyenes mindenre van
32 Anscombe négyese Legjobban illeszkedő egyenes mindenre van Minőségileg különböző adatpontokra is
33 y = Θ T x Lineáris regresszió: általános alak Solve: Θ = min Θ i=1 m (Θ T x i y i ) X R m n : design matrix - tanító-minták a sorok y = y 1,, y m m : target labels Θ = X T X 1 X T y
34 Summation form Θ = X T X 1 X T y Θ = A 1 b A = m i=1 x i y T i és b = m i=1 x i y i és ezek a szummák már párhuzamosíthatóak m- ben.
Keresés képi jellemzők alapján. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék
Keresés képi jellemzők alapján Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Lusta gépi tanulási algoritmusok Osztályozás: k=1: piros k=5: kék k-legközelebbi szomszéd (k=1,3,5,7)
Számítógépes képelemzés 7. előadás. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék
Számítógépes képelemzés 7. előadás Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Momentumok Momentum-alapú jellemzők Tömegközéppont Irányultáság 1 2 tan 2 1 2,0 1,1 0, 2 Befoglaló
Az adatelemzés alapfeladatai
Az adatelemzés alapfeladatai 2017 ősz 6./7. alkalom Kocsis Imre ikocsis@mit.bme.hu Budapesti Műszaki és Gazdaságtudományi Egyetem Hibatűrő Rendszerek Kutatócsoport Budapesti Műszaki és Gazdaságtudományi
end function Az A vektorban elõforduló legnagyobb és legkisebb értékek indexeinek különbségét.. (1.5 pont) Ha üres a vektor, akkor 0-t..
A Név: l 2014.04.09 Neptun kód: Gyakorlat vezető: HG BP MN l 1. Adott egy (12 nem nulla értékû elemmel rendelkezõ) 6x7 méretû ritka mátrix hiányos 4+2 soros reprezentációja. SOR: 1 1 2 2 2 3 3 4 4 5 6
Gépi tanulási (MachineLearning) módszerek alkalmazása
Gépi tanulási (MachineLearning) módszerek alkalmazása Hullám Gábor (hullam.gabor@ ) Salánki Ágnes, Kocsis Imre salanki@, ikocsis@ 2016.11.03. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika
Gépi tanulás. Féligellenőrzött tanulás. Pataki Béla (Bolgár Bence)
Gépi tanulás Féligellenőrzött tanulás Pataki Béla (Bolgár Bence) BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Féligellenőrzött tanulás Mindig kevés az adat, de
Modellek paraméterezése: regresszió, benchmarkok
Modellek paraméterezése: regresszió, benchmarkok Rendszermodellezés 2017. Budapest University of Technology and Economics Fault Tolerant Systems Research Group Budapest University of Technology and Economics
Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János
Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 12. Regresszió- és korrelációanaĺızis Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision
RHadoop. Kocsis Imre Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék
RHadoop Kocsis Imre ikocsis@mit.bme.hu Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Házi feladat Csapatépítés o 2 fő, tetszőleges kombinációkban http://goo.gl/m8yzwq
Irányításelmélet és technika II.
Irányításelmélet és technika II. Legkisebb négyzetek módszere Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék amagyar@almos.vein.hu 200 november
Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31.
Regresszió Csorba János Nagyméretű adathalmazok kezelése 2010. március 31. A feladat X magyarázó attribútumok halmaza Y magyarázandó attribútumok) Kérdés: f : X -> Y a kapcsolat pár tanítópontban ismert
Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )
Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 8 VIII. REGREssZIÓ 1. A REGREssZIÓs EGYENEs Két valószínűségi változó kapcsolatának leírására az eddigiek alapján vagy egy numerikus
Gépi tanulás a gyakorlatban. Bevezetés
Gépi tanulás a gyakorlatban Bevezetés Motiváció Nagyon gyakran találkozunk gépi tanuló alkalmazásokkal Spam detekció Karakter felismerés Fotó címkézés Szociális háló elemzés Piaci szegmentáció analízis
Gépi tanulás a gyakorlatban. Lineáris regresszió
Gépi tanulás a gyakorlatban Lineáris regresszió Lineáris Regresszió Legyen adott egy tanuló adatbázis: Rendelkezésünkre áll egy olyan előfeldolgozott adathalmaz, aminek sorai az egyes ingatlanokat írják
Közösség detektálás gráfokban
Közösség detektálás gráfokban Önszervező rendszerek Hegedűs István Célkitűzés: valamilyen objektumok halmaza felett minták, csoportok detektálása csakis az egyedek közötti kapcsolatok struktúrájának a
Gépi tanulás Gregorics Tibor Mesterséges intelligencia
Gépi tanulás Tanulás fogalma Egy algoritmus akkor tanul, ha egy feladat megoldása során olyan változások következnek be a működésében, hogy később ugyanazt a feladatot vagy ahhoz hasonló más feladatokat
Gépi tanulás a gyakorlatban. Kiértékelés és Klaszterezés
Gépi tanulás a gyakorlatban Kiértékelés és Klaszterezés Hogyan alkalmazzuk sikeresen a gépi tanuló módszereket? Hogyan válasszuk az algoritmusokat? Hogyan hangoljuk a paramétereiket? Precízebben: Tegyük
Számítógépes döntéstámogatás. Genetikus algoritmusok
BLSZM-10 p. 1/18 Számítógépes döntéstámogatás Genetikus algoritmusok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu BLSZM-10 p. 2/18 Bevezetés 1950-60-as
Algoritmusok bonyolultsága
Algoritmusok bonyolultsága 9. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm 1 / 18 Közelítő algoritmusok ládapakolás (bin packing) Adott n tárgy (s i tömeggel) és végtelen sok 1 kapacitású láda
Mérési adatok illesztése, korreláció, regresszió
Mérési adatok illesztése, korreláció, regresszió Korreláció, regresszió Két változó mennyiség közötti kapcsolatot vizsgálunk. Kérdés: van-e kapcsolat két, ugyanabban az egyénben, állatban, kísérleti mintában,
2. Milyen értéket határoz meg az alábbi algoritmus, ha A egy vektor?. (2 pont)
A Név: l 2017.04.06 Neptun kód: Gyakorlat vezet : HG BP l 1. Az A vektor tartalmát az alábbi KUPACOL eljárással rendezzük át maximum kupaccá. A={28, 87, 96, 65, 55, 32, 51, 69} Mi lesz az értéke az A vektor
Nagy méretű adathalmazok vizualizációja
Nagy méretű adathalmazok vizualizációja Big Data elemzési módszerek Kocsis Imre, Salánki Ágnes ikocsis, salanki@mit.bme.hu 2014.10.15. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs
ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó június
GAZDASÁGSTATISZTIKA GAZDASÁGSTATISZTIKA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi
Osztályozás, regresszió. Nagyméretű adathalmazok kezelése Tatai Márton
Osztályozás, regresszió Nagyméretű adathalmazok kezelése Tatai Márton Osztályozási algoritmusok Osztályozás Diszkrét értékkészletű, ismeretlen attribútumok értékének meghatározása ismert attribútumok értéke
angolul: greedy algorithms, románul: algoritmi greedy
Mohó algoritmusok angolul: greedy algorithms, románul: algoritmi greedy 1. feladat. Gazdaságos telefonhálózat építése Bizonyos városok között lehet direkt telefonkapcsolatot kiépíteni, pl. x és y város
Gyakorló feladatok adatbányászati technikák tantárgyhoz
Gyakorló feladatok adatbányászati technikák tantárgyhoz Buza Krisztián Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem Klaszterezés kiértékelése Feladat:
Statisztika I. 12. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 1. előadás Előadó: Dr. Ertsey Imre Regresszió analízis A korrelációs együttható megmutatja a kapcsolat irányát és szorosságát. A kapcsolat vizsgálata során a gyakorlatban ennél messzebb
Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió
SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás
Numerikus matematika vizsga
1. Az a = 2, t = 4, k = 3, k + = 2 számábrázolási jellemzők mellett hány pozitív, normalizált lebegőpontos szám ábrázolható? Adja meg a legnagyobb ábrázolható számot! Mi lesz a 0.8-hoz rendelt lebegőpontos
Numerikus matematika. Irodalom: Stoyan Gisbert, Numerikus matematika mérnököknek és programozóknak, Typotex, Lebegőpontos számok
Numerikus matematika Irodalom: Stoyan Gisbert, Numerikus matematika mérnököknek és programozóknak, Typotex, 2007 Lebegőpontos számok Normák, kondíciószámok Lineáris egyenletrendszerek Legkisebb négyzetes
Korreláció és lineáris regresszió
Korreláció és lineáris regresszió Két folytonos változó közötti összefüggés vizsgálata Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi Fizika és Statisztika I. előadás 2016.11.02.
Összetett programozási tételek Rendezések Keresések PT egymásra építése. 10. előadás. Programozás-elmélet. Programozás-elmélet 10.
Összetett programozási tételek Sorozathoz sorozatot relő feladatokkal foglalkozunk. A bemenő sorozatot le kell másolni, s közben az elemekre vonatkozó átalakításokat lehet végezni rajta: Input : n N 0,
Lineáris regressziós modellek 1
Lineáris regressziós modellek 1 Ispány Márton és Jeszenszky Péter 2016. szeptember 19. 1 Az ábrák C.M. Bishop: Pattern Recognition and Machine Learning c. könyvéből származnak. Tartalom Bevezető példák
Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei
A Gauss-Jordan elimináció, mátrixinvertálás Gauss-Jordan módszer Ugyanazzal a technikával, mint ahogy a k-adik oszlopban az a kk alatti elemeket kinulláztuk, a fölötte lévő elemeket is zérussá lehet tenni.
Kísérlettervezés alapfogalmak
Kísérlettervezés alapfogalmak Rendszermodellezés Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Kísérlettervezés Cél: a modell paraméterezése a valóság alapján
Programozási segédlet
Programozási segédlet Programozási tételek Az alábbiakban leírtam néhány alap algoritmust, amit ismernie kell annak, aki programozásra adja a fejét. A lista korántsem teljes, ám ennyi elég kell legyen
Bevezetés a Korreláció &
Bevezetés a Korreláció & Regressziószámításba Petrovics Petra Doktorandusz Statisztikai kapcsolatok Asszociáció 2 minőségi/területi ismérv között Vegyes kapcsolat minőségi/területi és egy mennyiségi ismérv
Intelligens Rendszerek Elmélete. Versengéses és önszervező tanulás neurális hálózatokban
Intelligens Rendszerek Elmélete : dr. Kutor László Versengéses és önszervező tanulás neurális hálózatokban http://mobil.nik.bmf.hu/tantargyak/ire.html Login név: ire jelszó: IRE07 IRE 9/1 Processzor Versengéses
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék. Neurális hálók. Pataki Béla
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék Neurális hálók Előadó: Előadás anyaga: Hullám Gábor Pataki Béla Dobrowiecki Tadeusz BME I.E. 414, 463-26-79
Lineáris leképezések. Wettl Ferenc március 9. Wettl Ferenc Lineáris leképezések március 9. 1 / 31
Lineáris leképezések Wettl Ferenc 2015. március 9. Wettl Ferenc Lineáris leképezések 2015. március 9. 1 / 31 Tartalom 1 Mátrixleképezés, lineáris leképezés 2 Alkalmazás: dierenciálhatóság 3 2- és 3-dimenziós
Regresszió számítás. Tartalomjegyzék: GeoEasy V2.05+ Geodéziai Kommunikációs Program
Regresszió számítás GeoEasy V2.05+ Geodéziai Kommunikációs Program DigiKom Kft. 2006-2010 Tartalomjegyzék: Egyenes x változik Egyenes y változik Egyenes y és x változik Kör Sík z változik Sík y, x és z
Az UPPAAL egyes modellezési lehetőségeinek összefoglalása. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék
Az UPPAAL egyes modellezési lehetőségeinek összefoglalása Majzik István BME Méréstechnika és Információs Rendszerek Tanszék Résztvevők együttműködése (1) Automaták interakciói üzenetküldéssel Szinkron
1. Görbe illesztés a legkisebb négyzetek módszerével
1 GÖRBE ILLESZTÉS A LEGKISEBB NÉGYZETEK MÓDSZERÉVEL 1. Görbe illesztés a legkisebb négyzetek módszerével Az el z gyakorlaton megismerkedtünk a korrelációs együttható fogalmával és számítási módjával. A
Számítógépes döntéstámogatás. Statisztikai elemzés
SZDT-03 p. 1/22 Számítógépes döntéstámogatás Statisztikai elemzés Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Előadás SZDT-03 p. 2/22 Rendelkezésre
Regresszió számítás az SPSSben
Regresszió számítás az SPSSben Kvantitatív statisztikai módszerek Petrovics Petra Lineáris regressziós modell X és Y közötti kapcsolatot ábrázoló egyenes. Az Y függ: x 1, x 2,, x p p db magyarázó változótól
Intelligens Rendszerek Gyakorlata. Neurális hálózatok I.
: Intelligens Rendszerek Gyakorlata Neurális hálózatok I. dr. Kutor László http://mobil.nik.bmf.hu/tantargyak/ir2.html IRG 3/1 Trend osztályozás Pnndemo.exe IRG 3/2 Hangulat azonosítás Happy.exe IRG 3/3
PONTFELHŐ REGISZTRÁCIÓ
PONTFELHŐ REGISZTRÁCIÓ ITERATIVE CLOSEST POINT Cserteg Tamás, URLGNI, 2018.11.22. TARTALOM Röviden Alakzatrekonstrukció áttekintés ICP algoritmusok Projektfeladat Demó FORRÁSOK Cikkek Efficient Variants
Gépi tanulás. Hány tanítómintára van szükség? VKH. Pataki Béla (Bolgár Bence)
Gépi tanulás Hány tanítómintára van szükség? VKH Pataki Béla (Bolgár Bence) BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Induktív tanulás A tanítás folyamata: Kiinduló
Matlab alapok. Baran Ágnes. Baran Ágnes Matlab alapok Elágazások, függvények 1 / 15
Matlab alapok Baran Ágnes Elágazások, függvények Baran Ágnes Matlab alapok Elágazások, függvények 1 / 15 Logikai kifejezések =, ==, = (két mátrixra is alkalmazhatóak, ilyenkor elemenként történik
Algoritmuselmélet. Legrövidebb utak, Bellmann-Ford, Dijkstra. Katona Gyula Y.
Algoritmuselmélet Legrövidebb utak, Bellmann-Ford, Dijkstra Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 3. előadás Katona Gyula Y. (BME
A félév során előkerülő témakörök
A félév során előkerülő témakörök rekurzív algoritmusok rendező algoritmusok alapvető adattípusok, adatszerkezetek, és kapcsolódó algoritmusok dinamikus programozás mohó algoritmusok gráf algoritmusok
Permutáció n = 3 esetében: Eredmény: permutációk száma: P n = n! romámul: permutări, angolul: permutation
Visszalépéses módszer (Backtracking) folytatás Permutáció n = 3 esetében: 1 2 3 2 3 1 3 1 2 Eredmény: 3 2 3 1 2 1 123 132 213 231 312 321 permutációk száma: P n = n! romámul: permutări, angolul: permutation
Konjugált gradiens módszer
Közelítő és szimbolikus számítások 12. gyakorlat Konjugált gradiens módszer Készítette: Gelle Kitti Csendes Tibor Vinkó Tamás Faragó István Horváth Róbert jegyzetei alapján 1 LINEÁRIS EGYENLETRENDSZEREK
Gyakorló feladatok. Agbeko Kwami Nutefe és Nagy Noémi
Gyakorló feladatok Agbeko Kwami Nutefe és Nagy Noémi 25 Tartalomjegyzék. Klasszikus hibaszámítás 3 2. Lineáris egyenletrendszerek 3 3. Interpoláció 4 4. Sajátérték, sajátvektor 6 5. Lineáris és nemlineáris
4/24/12. Regresszióanalízis. Legkisebb négyzetek elve. Regresszióanalízis
1. feladat Regresszióanalízis. Legkisebb négyzetek elve 2. feladat Az iskola egy évfolyamába tartozó diákok átlagéletkora 15,8 év, standard deviációja 0,6 év. A 625 fős évfolyamból hány diák fiatalabb
Speciális adatszerkezetek. Programozás alapjai II. (8. ea) C++ Tömbök. Tömbök/2. N dimenziós tömb. Nagyméretű ritka tömbök
Programozás alapjai II. (8. ea) C++ Kiegészítő anyag: speciális adatszerkezetek Szeberényi Imre BME IIT Speciális adatszerkezetek A helyes adatábrázolás választása, a helyes adatszerkezet
Programozás alapjai II. (7. ea) C++ Speciális adatszerkezetek. Tömbök. Kiegészítő anyag: speciális adatszerkezetek
Programozás alapjai II. (7. ea) C++ Kiegészítő anyag: speciális adatszerkezetek Szeberényi Imre BME IIT M Ű E G Y E T E M 1 7 8 2 C++ programozási nyelv BME-IIT Sz.I. 2016.04.05. - 1
Adatok statisztikai értékelésének főbb lehetőségei
Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció
Line aris f uggv enyilleszt es m arcius 19.
Lineáris függvényillesztés 2018. március 19. Illesztett paraméterek hibája Eddig azt néztük, hogy a mérési hiba hogyan propagál az illesztett paraméterekbe, ha van egy konkrét függvényünk. a hibaterjedés
Programozás alapjai II. (7. ea) C++
Programozás alapjai II. (7. ea) C++ Kiegészítő anyag: speciális adatszerkezetek Szeberényi Imre BME IIT M Ű E G Y E T E M 1 7 8 2 C++ programozási nyelv BME-IIT Sz.I. 2016.04.05. - 1
3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás
3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás 15. Digitális Alakzatrekonstrukció Méréstechnológia, Ponthalmazok regisztrációja http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiiav54
Egyenletek, egyenletrendszerek, matematikai modell. 1. Oldja meg az Ax=b egyenletrendszert Gauss módszerrel és adja meg az A mátrix LUfelbontását,
Egyenletek egyenletrendszerek matematikai modell Oldja meg az A=b egyenletrendszert Gauss módszerrel és adja meg az A mátri LUfelbontását ahol 8 b 8 Oldja meg az A=b egyenletrendszert és határozza meg
14. Mediánok és rendezett minták
14. Mediánok és rendezett minták Kiválasztási probléma Bemenet: Azonos típusú (különböző) elemek H = {a 1,...,a n } halmaza, amelyeken értelmezett egy lineáris rendezési reláció és egy i (1 i n) index.
A LEGKÖZELEBBI SZOMSZÉD ANALÍZISHEZ SZÜKSÉGES TERÜLETI ADATBÁZISOK KIALAKÍTÁSÁNAK MÓDSZERTANI KÉRDÉSEI
A LEGKÖZELEBBI SZOMSZÉD ANALÍZISHEZ SZÜKSÉGES TERÜLETI ADATBÁZISOK KIALAKÍTÁSÁNAK MÓDSZERTANI KÉRDÉSEI Pfening Viola ELTE TTK Regionális Tudományi Tanszék Társadalom és térinformatika Innovatív módszerek
Intelligens Rendszerek Elmélete
Intelligens Rendszerek Elmélete Dr. Kutor László : Mesterséges neurális hálózatok felügyelt tanítása hiba visszateresztő Back error Propagation algoritmussal Versengéses tanulás http://mobil.nik.bmf.hu/tantargyak/ire.html
Anyagvizsgálati módszerek Mérési adatok feldolgozása. Anyagvizsgálati módszerek
Anyagvizsgálati módszerek Mérési adatok feldolgozása Anyagvizsgálati módszerek Pannon Egyetem Mérnöki Kar Anyagvizsgálati módszerek Statisztika 1/ 22 Mérési eredmények felhasználása Tulajdonságok hierarchikus
Tanulás az idegrendszerben. Structure Dynamics Implementation Algorithm Computation - Function
Tanulás az idegrendszerben Structure Dynamics Implementation Algorithm Computation - Function Tanulás pszichológiai szinten Classical conditioning Hebb ötlete: "Ha az A sejt axonja elég közel van a B sejthez,
Idősorok elemzése. Salánki Ágnes
Idősorok elemzése Salánki Ágnes salanki.agnes@gmail.com 2012.04.13. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék 1 Idősorok analízise Alapfogalmak Komponenselemzés
Algoritmusok vektorokkal keresések 1
Algoritmusok vektorokkal keresések 1 function TELJES_KERES1(A, érték) - - teljes keresés while ciklussal 1. i 1 2. while i méret(a) és A[i] érték do 3. i i + 1 4. end while 5. if i > méret(a) then 6. KIVÉTEL
Matematika gyógyszerészhallgatók számára. A kollokvium főtételei tanév
Matematika gyógyszerészhallgatók számára A kollokvium főtételei 2015-2016 tanév A1. Függvénytani alapfogalmak. Kölcsönösen egyértelmű függvények és inverzei. Alkalmazások. Alapfogalmak: függvény, kölcsönösen
Felvételi tematika INFORMATIKA
Felvételi tematika INFORMATIKA 2016 FEJEZETEK 1. Természetes számok feldolgozása számjegyenként. 2. Számsorozatok feldolgozása elemenként. Egydimenziós tömbök. 3. Mátrixok feldolgozása elemenként/soronként/oszloponként.
Regressziós vizsgálatok
Regressziós vizsgálatok Regresszió (regression) Általános jelentése: visszaesés, hanyatlás, visszafelé mozgás, visszavezetés. Orvosi területen: visszafejlődés, involúció. A betegség tünetei, vagy maga
Numerikus módszerek 1.
Numerikus módszerek 1. 11. előadás: A Newton-módszer és társai Lócsi Levente ELTE IK 2013. november 25. Tartalomjegyzék 1 A Newton-módszer és konvergenciatételei 2 Húrmódszer és szelőmódszer 3 Általánosítás
Programozási módszertan. Mohó algoritmusok
PM-08 p. 1/17 Programozási módszertan Mohó algoritmusok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu PM-08 p. 2/17 Bevezetés Dinamikus programozás
7. Régió alapú szegmentálás
Digitális képek szegmentálása 7. Régió alapú szegmentálás Kató Zoltán http://www.cab.u-szeged.hu/~kato/segmentation/ Szegmentálási kritériumok Particionáljuk a képet az alábbi kritériumokat kielégítő régiókba
Kísérlettervezés alapfogalmak
Kísérlettervezés alapfogalmak Rendszermodellezés Budapest University of Technology and Economics Fault Tolerant Systems Research Group Budapest University of Technology and Economics Department of Measurement
Demográfiai modellek (folytatás)
Demográfiai modellek (folytatás) 4. A teljesebb anyag 4.1. A megoldás egy változata Alábbiakban az előző gyakorlaton szereplő keretprogramból kapható egy lehetséges megoldást részletezzük. (Ha már a sajátja
Babeş Bolyai Tudományegyetem, Kolozsvár Matematika és Informatika Kar Magyar Matematika és Informatika Intézet
/ Babeş Bolyai Tudományegyetem, Kolozsvár Matematika és Informatika Kar Magyar Matematika és Informatika Intézet / Tartalom 3/ kernelek segítségével Felügyelt és félig-felügyelt tanulás felügyelt: D =
1. Görbe illesztés a legkissebb négyzetek módszerével
GÖRBE ILLESZTÉS A LEGKISSEBB ÉGYZETEK MÓDSZERÉVEL. Görbe illesztés a legkissebb négyzetek módszerével Az előző gyakorlaton megismerkedtünk a korrelációs együttható fogalmával és számítási módjával. A korrelációs
Fordítás Kódoptimalizálás
Fordítás Kódoptimalizálás Kód visszafejtés. Izsó Tamás 2016. október 20. Izsó Tamás Fordítás Kódoptimalizálás / 1 Aktív változók Angol irodalomban a Live Variables kifejezést használják, míg az azt felhasználó
MISKOLCI EGYETEM GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR
MISKOLCI EGYETEM GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR Korszerű információs technológiák Klaszteranalízis Tompa Tamás tanársegéd Általános Informatikai Intézeti Tanszék Miskolc, 2018. október 20. Tartalom
Irányításelmélet és technika II.
Irányításelmélet és technika II. Modell-prediktív szabályozás Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék amagyar@almos.vein.hu 2010 november
Többváltozós lineáris regressziós modell feltételeinek
Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Petrovics Petra Doktorandusz Többváltozós lineáris regressziós modell x 1, x 2,, x p
Mesterséges Intelligencia I.
Mesterséges Intelligencia I. 10. elıadás (2008. november 10.) Készítette: Romhányi Anita (ROANAAT.SZE) - 1 - Statisztikai tanulás (Megfigyelések alapján történı bizonytalan következetésnek tekintjük a
A szimplex tábla. p. 1
A szimplex tábla Végződtetés: optimalitás és nem korlátos megoldások A szimplex algoritmus lépései A degeneráció fogalma Komplexitás (elméleti és gyakorlati) A szimplex tábla Példák megoldása a szimplex
3D számítógépes geometria és alakzatrekonstrukció
3D számítógépes geometria és alakzatrekonstrukció 15. Digitális Alakzatrekonstrukció Méréstechnológia, Ponthalmazok regisztrációja http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiima01
Klaszterezés. Kovács Máté március 22. BME. Kovács Máté (BME) Klaszterezés március / 37
Klaszterezés Kovács Máté BME 2012. március 22. Kovács Máté (BME) Klaszterezés 2012. március 22. 1 / 37 Mi a klaszterezés? Intuitív meghatározás Adott dolgokból halmazokat klasztereket alakítunk ki úgy,
Mit látnak a robotok? Bányai Mihály Matemorfózis, 2017.
Mit látnak a robotok? Bányai Mihály Matemorfózis, 2017. Vizuális feldolgozórendszerek feladatai Mesterséges intelligencia és idegtudomány Mesterséges intelligencia és idegtudomány Párhuzamos problémák
2. Rugalmas állandók mérése jegyzőkönyv javított. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:
2. Rugalmas állandók mérése jegyzőkönyv javított Zsigmond Anna Fizika Bsc II. Mérés dátuma: 2008. 09. 17. Leadás dátuma: 2008. 10. 08. 1 1. Mérések ismertetése Az első részben egy téglalap keresztmetszetű
FELÜGYELT ÉS MEGERŐSÍTÉSES TANULÓ RENDSZEREK FEJLESZTÉSE
FELÜGYELT ÉS MEGERŐSÍTÉSES TANULÓ RENDSZEREK FEJLESZTÉSE Dr. Aradi Szilárd, Fehér Árpád Mesterséges intelligencia kialakulása 1956 Dartmouth-i konferencián egy maroknyi tudós megalapította a MI területét
c adatpontok és az ismeretlen pont közötti kovariancia vektora
1. MELLÉKLET: Alkalmazott jelölések A mintaterület kiterjedése, területe c adatpontok és az ismeretlen pont közötti kovariancia vektora C(0) reziduális komponens varianciája C R (h) C R Cov{} d( u, X )
Neurális hálózatok.... a gyakorlatban
Neurális hálózatok... a gyakorlatban Java NNS Az SNNS Javás változata SNNS: Stuttgart Neural Network Simulator A Tübingeni Egyetemen fejlesztik http://www.ra.cs.unituebingen.de/software/javanns/ 2012/13.
Bonyolultságelmélet. Monday 26 th September, 2016, 18:50
Bonyolultságelmélet Monday 26 th September, 2016, 18:50 A kiszámítás modelljei 2 De milyen architektúrán polinom? A kiszámításnak számos (matematikai) modellje létezik: Általános rekurzív függvények λ-kalkulus
Bánsághi Anna 2014 Bánsághi Anna 1 of 68
IMPERATÍV PROGRAMOZÁS Bánsághi Anna anna.bansaghi@mamikon.net 3. ELŐADÁS - PROGRAMOZÁSI TÉTELEK 2014 Bánsághi Anna 1 of 68 TEMATIKA I. ALAPFOGALMAK, TUDOMÁNYTÖRTÉNET II. IMPERATÍV PROGRAMOZÁS Imperatív
Egyszerű programozási tételek
Egyszerű programozási tételek 2. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2011. szeptember 15. Sergyán (OE NIK) AAO 02 2011. szeptember 15.
Smalltalk 2. Készítette: Szabó Éva
Smalltalk 2. Készítette: Szabó Éva Blokkok Paraméter nélküli blokk [műveletek] [ x := 5. 'Hello' print. 2+3] Kiértékelés: [művelet] value az értéke az utolsó művelet értéke lesz, de mindet kiírja. x :=
Számítógépes geometria (mester kurzus)
2010 sz, Debreceni Egyetem Csuklós szerkezetek animációja (Kép 1985-b l: Tony de Peltrie) Csontváz-modellek Csuklós szerkezet (robotkar) A robotkar részei: csuklók (joints) rotációs prizmatikus (transzlációs)
Felvételi vizsga mintatételsor Informatika írásbeli vizsga
BABEȘ BOLYAI TUDOMÁNYEGYETEM MATEMATIKA ÉS INFORMATIKA KAR A. tételsor (30 pont) Felvételi vizsga mintatételsor Informatika írásbeli vizsga 1. (5p) Egy x biten tárolt egész adattípus (x szigorúan pozitív
Statisztika I. 13. előadás Idősorok elemzése. Előadó: Dr. Ertsey Imre
Statisztika I. 13. előadás Idősorok elemzése Előadó: Dr. Ertse Imre A társadalmi - gazdasági jelenségek időbeli alakulásának törvénszerűségeit kell vizsgálni a változás, a fejlődés tendenciáját. Ezek a