Számítógépes geometria (mester kurzus)
|
|
- Léna Orbánné
- 9 évvel ezelőtt
- Látták:
Átírás
1 2010 sz, Debreceni Egyetem
2 Csuklós szerkezetek animációja (Kép 1985-b l: Tony de Peltrie)
3 Csontváz-modellek
4 Csuklós szerkezet (robotkar) A robotkar részei: csuklók (joints) rotációs prizmatikus (transzlációs) szegmensek (links) végberendezés (end eector) csukló végberendezés szegmens robotkar rotációs csuklókkal
5 A robotkar leírása Állapotvektor Független paraméterek vektora, amely a csuklók és a végberendezés helyzetét egyértelm en megadja. Az állapotvektor komponenseinek száma a szabadsági fokok száma (DOF). Az összes lehetséges állapotvektor az állapotteret alkotja. Kinematika vs. inverz kinematika direkt probléma (kinematika): az állapotvektorból határozzuk meg a végberendezés helyzetét: E = f (Θ) inverz probléma (inverz kinematika): a végberendezés helyzetéb l következtetünk az állapotvektorra: E Θ
6 2 szabadsági fokú 2D robotkar leírása az állapotvektorral Prizmatikus csukló nélkül: Θ = (θ 1, θ 2 ) R 2. a 2 θ 2 a 1 θ 1 start 1. lépés 2. lépés J 1 = (0, 0) - - J 2 = (a 1, 0) J 2 rot J1 (θ 1 )J 2 - E = (a 1 + a 2, 0) E rot J1 (θ 1 )E E rot J2 (θ 2 )E E = (a 2 cos (θ 2 + θ 1 ) + a 1 cos θ 1, a 2 sin (θ 2 + θ 1 ) + a 1 sin θ 1 )
7 3D robotkar leírása: DenavitHartenberg (DH) paraméterek x i a (z i, z i+1 ) normáltranszverzálisa, a csukló a z tengely körül forog. a i = d(z i, z i+1 ) α i = (z i, z i+1 ) d i+1 = d(x i, x i+1 ) θ i+1 = (x i, x i+1 ) z i+1 x i+1 link i z i d i+1 x i a i
8 3D robotkar megadása az állapotvektorral start 1. lépés n. lépés (n = 2,... N) N + 1 J 0 J 1 = J 0 J n = J n 1 + a n 1e 1 E = J N + a N e 1 e 3 = (0, 0, 1) e 3 rot(e 1, α 0)e 3 e 3 rot(e 1, α n 1)e 3 e 1 = (1, 0, 0) e 1 rot(e 3, θ 1)e 1 e 1 rot(e 3, θ n)e 1 J n J n + d ne 3
9 Forgatás a térben Origón áthaladó tengely körüli elforgatás A p pont elforgatása n irányvektorú ( n = 1) tengely körül θ szöggel: R(p) = cos(θ) p + (1 cos(θ)) n n, p + sin(θ) n p Innitezimális elforgatás R kifejezésében a szögfüggvényeket 0 körül Taylor sorba fejtjük és az els Taylor polinomjukkal helyettesítjük: sin θ θ, cos θ 1: R inf. (p) = p + θ n p
10 Csuklós szerkezet animációja Csuklós szerkezet animációja a végberendezés meghatározása az állapotvektorból: E = f (Θ) R n görbe az állapottérben: c : [a, b] R N, c(t) = (θ 1 (t),..., θ N (t)) animáció: E : [a, b] R n, E(t) = f (Θ(t)) = f (θ 1 (t),..., θ N (t)). Az állapottér görbéje kulcs-fázisok: t 1 = a < t 2 < < t m = b, az i-edik kulcsfázis c i = (θ i,1,..., θ i,n ). a kulcs-fázisok összekötése interpolációs görbével (pl. harmadfokú szplájnnal): θ j (t): [a, b] R, θ j (t i ) = θ i,j
11 Inverz kinematika f : R N R n, E = f (Θ), E Θ? Ötlet f nemlineáris (sin, cos függvények) analitikus megoldás általában nem lehetséges b megoldáshalmaz (redundancia, ugyanazt a térbeli helyzetet a végberendezés az állapottér több pontján is felveheti) üres megoldástér (elérhetetlen cél) numerikus megoldásra van szükség Linearizáció!
12 Inverz kinematika: Jacobi-mátrix módszer f : R N R n, E = f (Θ) = de = df (Θ)dΘ, df (Θ) M n N Jacobi-mátrix: lineáris approximáció f -re df (Θ) = f 1 f 1 θ 1 f 2 f 2 θ 1. f n θ 1 θ 2... θ f n θ 2... f 1 θ N f 2 θ N. f n θ N Θ
13 3D csuklós szerkezet Jacobi mátrixa Mozgó tengely formula J i = i θ j n j (J i J j 1 ) = j=1 df (Θ) = n 1 (P i P 0 ) n 2 (P i P 1 ). n i (P i Pi 1)
14 Inverz kinematika: Jacobi-mátrix módszer Elemzés ha n = N és df (Θ) invertálható, akkor dθ = df (Θ) 1 de : iteratív módszer alkalmazható df (Θ) invertálhatósága az állapotvektortól függ az iterációs lépés hibája df (Θ)dΘ de) ha N > n, akkor a rendszer kinematikailag redundáns, általában végtelen sok megoldása létezik általánosított invertálás eljárások adnak megoldást: dθ = df (Θ) de (Pl. Moore Penrose pszeudoinverz) másodlagos kritérium beiktatása
15 Inverz kinematika: invertálható Jacobi-mátrix Pszeudokód Input: Θ 0, T Output: Θ, melyre f (Θ) = T Θ Θ 0 de = (T f (Θ 0 ))/k for i = 1 to k do Θ Θ + df (Θ) 1 de return Θ
16 A Jacobi-módszer hibája Piros: az optimális pálya, piros háromszög: a cél Egy iterációs lépés hibája (tracking error): df (dθ) de
17 A tracking error javítása Az iterációs lépés hibájának gyelése (közbens cél kijelölése) és a célirány folyamatos korrekciója: Pszeudokód Input: Θ 0, T,, δ Output: Θ, melyre f (Θ) = T Θ Θ 0 de = T f (Θ) while T f (Θ) > do if df (df (Θ) 1 de) de < δ then Θ Θ + df (Θ) 1 de de = T f (Θ) else de (de)/2 return Θ
18 Redundáns/szinguláris esetek Általánosított inverz X a J általánosított inverze, ha az alábbi tulajdonságok valamelyike teljesül: JXJ = J XJX = X (XJ) t = XJ (JX ) t = JX X a J mátrix pseudoinverze, ha mind a négy tulajdonság teljesül. Jelölés: X = J. + a pszeudoinverz egyértelm - (relatíve) lassú a kiszámolása - szingularitásoknál instabil J t általánosított inverz és jó eredményt ad!
19 Inverz kinematika: minimum módszer f : R N R n, E = f (Θ); D : R N R, D(Θ) = E(Θ) T 2 A végberendezés a célban van D(Θ) = 0, azaz Θ a D függvény abszolút minimumhelye. Function v u
20 Inverz kinematika: minimum módszer Numerikus megoldás a minimumra: a legmeredekebb lejt módszere (gradiens módszer) Θ k+1 = Θ k hdd(θ k )
21 Feladatok Feladat 2D csuklós szerkezet megrajzolása az állapotvektor ismeretében. A szegmensek hosszát a program input adatként kérje. 2D csuklós szerkezet animációjának megvalósítása az állapovektor paraméterezésével. (Kulcsfázisokból.) 3D csukló megrajzolása (pl. ortogonális axonometriában) az állapotvektor ismeretében. A program tartalmazza a gömbcsukló lehet ségét is. Inverz kinematika (2D): egérrel kijelölt cél megtalálása. Inverz kinematika (2D): egeret követ csuklós szerkezet. Inverz kinematika (2D): Animáció, melyben egy csuklós szerkezet végberendezése egy adott görbén mozog. Inverz kinematika: a Jacobi-mátrix módszer és a minimum módszer hibájának összehasonlítása. Inverz kinematika: két különböz általánosított inverz módszer összehasonlítása.
Infobionika ROBOTIKA. X. Előadás. Robot manipulátorok II. Direkt és inverz kinematika. Készült a HEFOP P /1.0 projekt keretében
Infobionika ROBOTIKA X. Előadás Robot manipulátorok II. Direkt és inverz kinematika Készült a HEFOP-3.3.1-P.-2004-06-0018/1.0 projekt keretében Tartalom Direkt kinematikai probléma Denavit-Hartenberg konvenció
RészletesebbenRobotika. Kinematika. Magyar Attila
Robotika Kinematika Magyar Attila amagyar@almos.vein.hu Miről lesz szó? Bevezetés Merev test pozíciója és orientációja Rotáció Euler szögek Homogén transzformációk Direkt kinematika Nyílt kinematikai lánc
RészletesebbenRobotszerkezetek animációja
Robotszerkezetek animációja Kovács Zoltán 1. Bevezetés A számítógépi animáció megvalósításakor valamely virtuális világbeli adatot időfüggően adunk meg. Pédául egy felfúvódó léggömb esetében a (gömbbel
RészletesebbenAz ipari robotok definíciója
Robot manipulátorok Az ipari robotok definíciója Mechanikai struktúra vagy manipulátor, amely merev testek (szegmensek) sorozatából áll, melyeket összeillesztések (csuklók, ízületek) kapcsolnak össze A
RészletesebbenRobotok inverz geometriája
Robotok inverz geometriája. A gyakorlat célja Inverz geometriai feladatot megvalósító függvények implementálása. A megvalósított függvénycsomag tesztelése egy kétszabadságfokú kar előírt végberendezés
RészletesebbenInfobionika ROBOTIKA. XI. Előadás. Robot manipulátorok III. Differenciális kinematika. Készült a HEFOP P /1.0 projekt keretében
Infobionika ROBOTIKA XI. Előadás Robot manipulátorok III. Differenciális kinematika Készült a HEFOP-3.3.1-P.-2004-06-0018/1.0 projekt keretében Tartalom A forgatási mátrix időbeli deriváltja A geometriai
RészletesebbenLineáris leképezések. Wettl Ferenc március 9. Wettl Ferenc Lineáris leképezések március 9. 1 / 31
Lineáris leképezések Wettl Ferenc 2015. március 9. Wettl Ferenc Lineáris leképezések 2015. március 9. 1 / 31 Tartalom 1 Mátrixleképezés, lineáris leképezés 2 Alkalmazás: dierenciálhatóság 3 2- és 3-dimenziós
RészletesebbenDenavit-Hartenberg konvenció alkalmazása térbeli 3DoF nyílt kinematikai láncú hengerkoordinátás és gömbi koordinátás robotra
Budapesti M szaki És Gazdaságtudományi Egyetem Gépészmérnöki Kar M szaki Mechanikai Tanszék Denavit-Hartenberg konvenció alkalmazása térbeli 3DoF nyílt kinematikai láncú hengerkoordinátás és gömbi koordinátás
RészletesebbenSzámítási feladatok a Számítógépi geometria órához
Számítási feladatok a Számítógépi geometria órához Kovács Zoltán Copyright c 2012 Last Revision Date: 2012. október 15. kovacsz@nyf.hu Technikai útmutató a jegyzet használatához A jegyzet képernyőbarát
RészletesebbenHaladó lineáris algebra
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Haladó lineáris algebra BMETE90MX54 Lineáris leképezések 2017-02-21 IB026 Wettl Ferenc
RészletesebbenVIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag. Mátrix rangja
VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag 2019. március 21. Mátrix rangja 1. Számítsuk ki az alábbi mátrixok rangját! (d) 1 1 2 2 4 5 1 1 1 1 1 1 1 1 2 1 2 1 1 0 1 1 2 1 0 1 1 1 1 2 3 1 3
RészletesebbenNumerikus módszerek beugró kérdések
1. Definiálja a gépi számok halmazát (a tanult modellnek megfelelően)! Adja meg a normalizált lebegőpontos szám alakját. (4 pont) Az alakú számot normalizált lebegőpontos számnak nevezik, ha Ahol,,,. Jelöl:
RészletesebbenKonjugált gradiens módszer
Közelítő és szimbolikus számítások 12. gyakorlat Konjugált gradiens módszer Készítette: Gelle Kitti Csendes Tibor Vinkó Tamás Faragó István Horváth Róbert jegyzetei alapján 1 LINEÁRIS EGYENLETRENDSZEREK
Részletesebbenx 2 e x dx c) (3x 2 2x)e 2x dx x sin x dx f) x cosxdx (1 x 2 )(sin 2x 2 cos 3x) dx e 2x cos x dx k) e x sin x cosxdx x ln x dx n) (2x + 1) ln 2 x dx
Integrálszámítás II. Parciális integrálás. g) i) l) o) e ( + )(e e ) cos h) e sin j) (sin 3 cos) m) arctg p) arcsin e (3 )e sin f) cos ( )(sin cos 3) e cos k) e sin cos ln n) ( + ) ln. e 3 e cos 3 3 cos
Részletesebben1. feladatsor: Vektorfüggvények deriválása (megoldás)
Matematika A gyakorlat Energetika és Mechatronika BSc szakok 016/17 ősz 1. feladatsor: Vektorfüggvények deriválása megoldás) 1. Tekintsük azt az L : R R lineáris leképezést ami az 1 0) vektort az 1 0 )
RészletesebbenInfobionika ROBOTIKA. IX. Előadás. Robot manipulátorok I. Alapfogalmak. Készült a HEFOP P /1.0 projekt keretében
Infobionika ROBOTIKA IX. Előadás Robot manipulátorok I. Alapfogalmak Készült a HEFOP-3.3.1-P.-2004-06-0018/1.0 projekt keretében Tartalom Robot manipulátorok definíciója és alkalmazásai Manipulátorok szerkezete
Részletesebben"Flat" rendszerek. definíciók, példák, alkalmazások
"Flat" rendszerek definíciók, példák, alkalmazások Hangos Katalin, Szederkényi Gábor szeder@scl.sztaki.hu, hangos@scl.sztaki.hu 2006. október 18. flatness - p. 1/26 FLAT RENDSZEREK: Elméleti alapok 2006.
RészletesebbenMátrixok 2017 Mátrixok
2017 számtáblázatok" : számok rendezett halmaza, melyben a számok helye két paraméterrel van meghatározva. Például lineáris egyenletrendszer együtthatómátrixa 2 x 1 + 4 x 2 = 8 1 x 1 + 3 x 2 = 1 ( 2 4
RészletesebbenNumerikus módszerek 1.
Numerikus módszerek 1. Tantárgy kódja: IP-08bNM1E, IP-08bNM1G (2+2) Az elsajátítandó ismeretanyag rövid leírása: A lebegıpontos számábrázolás egy modellje. A hibaszámítás elemei. Lineáris egyenletrendszerek
RészletesebbenMer legesség. Wettl Ferenc 2015-03-13. Wettl Ferenc Mer legesség 2015-03-13 1 / 40
Mer legesség Wettl Ferenc 2015-03-13 Wettl Ferenc Mer legesség 2015-03-13 1 / 40 Tartalom 1 Pszeudoinverz 2 Ortonormált bázis ortogonális mátrix 3 Komplex és véges test feletti terek 4 Diszkrét Fourier-transzformált
Részletesebbencos 2 (2x) 1 dx c) sin(2x)dx c) cos(3x)dx π 4 cos(2x) dx c) 5sin 2 (x)cos(x)dx x3 5 x 4 +11dx arctg 11 (2x) 4x 2 +1 π 4
Integrálszámítás I. Végezze el a következő integrálásokat:. α, haα sin() cos() e f) a sin h) () cos ().. 5 4 ( ) e + 4 sin h) (+) sin() sin() cos() + f) 5 i) cos ( +) 7 4. 4 (+) 6 4 cos() 5 +7 5. ( ) sin()cos
RészletesebbenA végeselem módszer alapjai. 2. Alapvető elemtípusok
A végeselem módszer alapjai Előadás jegyzet Dr. Goda Tibor 2. Alapvető elemtípusok - A 3D-s szerkezeteket vagy szerkezeti elemeket gyakran egyszerűsített formában modellezzük rúd, gerenda, 2D-s elemek,
RészletesebbenPneumatika az ipari alkalmazásokban
Pneumatika az ipari alkalmazásokban Manipulátorok Balanszer technika Pneumatikus pozícionálás Anyagmozgatási és Logisztikai Rendszerek Tanszék Manipulátorok - Mechanikai struktúra vagy manipulátor, amely
RészletesebbenGyakorló feladatok. Agbeko Kwami Nutefe és Nagy Noémi
Gyakorló feladatok Agbeko Kwami Nutefe és Nagy Noémi 25 Tartalomjegyzék. Klasszikus hibaszámítás 3 2. Lineáris egyenletrendszerek 3 3. Interpoláció 4 4. Sajátérték, sajátvektor 6 5. Lineáris és nemlineáris
RészletesebbenVektorterek. =a gyakorlatokon megoldásra ajánlott
Vektorterek =a gyakorlatokon megoldásra ajánlott 40. Alteret alkotnak-e a valós R 5 vektortérben a megadott részhalmazok? Ha igen, akkor hány dimenziósak? (a) L = { (x 1, x 2, x 3, x 4, x 5 ) x 1 = x 5,
RészletesebbenSzámítógépes geometria
2011 sz A grakus szállítószalag terv a geometriai (matematikai) modell megalkotása modelltranszformáció (3D 3D) vetítés (3D 2D) képtranszformáció (2D 2D)... raszterizáció A grakus szállítószalag: koncepció
Részletesebbenx = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs mátrixa 3D-ben?
. Mi az (x, y) koordinátákkal megadott pont elforgatás uténi két koordinátája, ha α szöggel forgatunk az origó körül? x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs
RészletesebbenACM Snake. Orvosi képdiagnosztika 11. előadás első fele
ACM Snake Orvosi képdiagnosztika 11. előadás első fele ACM Snake (ismétlés) A szegmentáló kontúr egy paraméteres görbe: x Zs s X s, Y s,, s A szegmentáció energia funkcionál minimalizálása: E x Eint x
RészletesebbenSzámítógépes geometria (mester kurzus) III
2010 sz, Debreceni Egyetem Felületek A felület megadása implicit: F : R 3 R, F (x, y, z) = 0 Euler-Monge: f : [a, b] [c, d] R, z = f (x, y) paraméteres: r : [a, b] [c, d] R 3 trianguláris háló direkt megadása
RészletesebbenVektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27
Vektorterek Wettl Ferenc 2015. február 17. Wettl Ferenc Vektorterek 2015. február 17. 1 / 27 Tartalom 1 Egyenletrendszerek 2 Algebrai struktúrák 3 Vektortér 4 Bázis, dimenzió 5 Valós mátrixok és egyenletrendszerek
RészletesebbenFeladatok a Gazdasági matematika II. tárgy gyakorlataihoz
Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb
RészletesebbenVektorok. Wettl Ferenc október 20. Wettl Ferenc Vektorok október / 36
Vektorok Wettl Ferenc 2014. október 20. Wettl Ferenc Vektorok 2014. október 20. 1 / 36 Tartalom 1 Vektorok a 2- és 3-dimenziós térben 2 Távolság, szög, orientáció 3 Vektorok koordinátás alakban 4 Összefoglalás
RészletesebbenFelügyelt önálló tanulás - Analízis III.
Felügyelt önálló tanulás - Analízis III Kormos Máté Differenciálható sokaságok Sokaságok Röviden, sokaságoknak nevezzük azokat az objektumokat, amelyek egy n dimenziós térben lokálisan k dimenziósak Definíció:
RészletesebbenBASH script programozás II. Vezérlési szerkezetek
06 BASH script programozás II. Vezérlési szerkezetek Emlékeztető Jelölésbeli különbség van parancs végrehajtása és a parancs kimenetére való hivatkozás között PARANCS $(PARANCS) Jelölésbeli különbség van
RészletesebbenHamilton rendszerek, Lyapunov függvények és Stabilitás. Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek
Hamilton rendszerek, Lyapunov függvények és Stabilitás Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek Sokszor nem lehetséges, hogy a tanult linearizációs módszerrel meghatározzuk
RészletesebbenAlkalmazott algebra. Lineáris leképezések EIC. Wettl Ferenc ALGEBRA TANSZÉK BMETE90MX57 (FELSŐBB MATEMATIKA INFORMATIKUSOKNAK )
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Alkalmazott algebra BMETE90MX57 (FELSŐBB MATEMATIKA INFORMATIKUSOKNAK ) Lineáris leképezések
RészletesebbenMatematika A1a Analízis
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 A derivált alkalmazásai H607, EIC 2019-04-03 Wettl
RészletesebbenMatematika A2 vizsga mgeoldása június 4.
Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont
RészletesebbenKlár Gergely tremere@elte.hu
Számítógépes Grafika Klár Gergely tremere@elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2010/2011. őszi félév Tartalom Animáció 1 Animáció 2 3 4 Animáció Állókép helyett képsorozat Objektumok/kamera/világ
RészletesebbenLagrange és Hamilton mechanika
Lagrange és 2010. október 17. Lagrange és Tartalom 1 Variáció Lagrange egyenlet Legendre transzformáció Hamilton egyenletek 2 3 Szimplektikus sokaság Hamilton mez Hamilton és Lagrange egyenletek ekvivalenciája
RészletesebbenTárgy. Forgóasztal. Lézer. Kamera 3D REKONSTRUKCIÓ LÉZERES LETAPOGATÁSSAL
3D REKONSTRUKCIÓ LÉZERES LETAPOGATÁSSAL. Bevezetés A lézeres letapogatás a ma elérhet legpontosabb 3D-s rekonstrukciót teszi lehet vé. Alapelve roppant egyszer : egy lézeres csíkkal megvilágítjuk a tárgyat.
RészletesebbenGeometria II gyakorlatok
Geometria II gyakorlatok Kovács Zoltán Copyright c 2011 Last Revision Date: 2012. május 8. kovacsz@nyf.hu Technikai útmutató a jegyzet használatához A jegyzet képernyőbarát technikával készült, a megjelenés
RészletesebbenA Descartes derékszög½u koordinátarendszert az i; j; k ortonormált bázis feszíti ki. Egy
8 Görbevonalú koordináták A Descartes derékszög½u koordinátarendszert az i; j; k ortonormált bázis feszíti ki. Egy tetsz½oleges pont helyvektora ebben a bázisban r =xi+yj+zk ahol x; y; z a pont ún. Descartes-féle
RészletesebbenMegoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1
Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =
RészletesebbenMatematika (mesterképzés)
Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,
RészletesebbenTranszformációk síkon, térben
Transzformációk síkon, térben Leképezés, transzformáció Leképezés: Ha egy A ponttér pontjaihoz egy másik B ponttér pontjait kölcsönösen egyértelműen rendeljük hozzá, akkor ezt a hozzárendelést leképezésnek
RészletesebbenEgyváltozós függvények 1.
Egyváltozós függvények 1. Filip Ferdinánd filip.ferdinand@bgk.uni-obuda.hu siva.banki.hu/jegyzetek 015 szeptember 1. Filip Ferdinánd 015 szeptember 1. Egyváltozós függvények 1. 1 / 5 Az el adás vázlata
RészletesebbenDigitális képek feldolgozása Előfeldolgozás Radiometriai korrekció Geometriai korrekció Képjavítás Szűrők Sávok közötti műveletek Képosztályozás Utófe
Távérzékelés Digitális felvételek előfeldolgozása (EENAFOTOTV, ETNATAVERV) Erdőmérnöki szak, Környezettudós szak Király Géza NyME, Erdőmérnöki Kar Geomatikai, Erdőfeltárási és Vízgazdálkodási Intézet Földmérési
RészletesebbenMatematika I. Vektorok, egyenesek, síkok
Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika I Vektorok, egyenesek, síkok a) Hogyan számítjuk ki az a = (a 1, a 2, a 3 ) és b = (b 1, b 2, b 3 ) vektorok szögét? a) Hogyan számítjuk
RészletesebbenLINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40
LINEÁRIS ALGEBRA matematika alapszak SZTE Bolyai Intézet, 2016-17. őszi félév Euklideszi terek Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 Euklideszi tér Emlékeztető: A standard belső szorzás és standard
RészletesebbenI. feladatsor. 9x x x 2 6x x 9x. 12x 9x2 3. 9x 2 + x. x(x + 3) 50 (d) f(x) = 8x + 4 x(x 2 25)
I. feladatsor () Határozza meg az alábbi függvények határozatlan integrálját: (a) f(x) = (b) f(x) = x + 4 9x + (c) f(x) = (d) f(x) = 6x + 5 5x + f(x) = (f) f(x) = x + x + 5 x 6x + (g) f(x) = (h) f(x) =
RészletesebbenEseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem.
Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Elemi esemény: a kísérlet egyes lehetséges egyes lehetséges kimenetelei.
RészletesebbenNem-lineáris programozási feladatok
Nem-lineáris programozási feladatok S - lehetséges halmaz 2008.02.04 Dr.Bajalinov Erik, NyF MII 1 Elég egyszerű példa: nemlineáris célfüggvény + lineáris feltételek Lehetséges halmaz x 1 *x 2 =6.75 Gradiens
Részletesebben12. előadás. Egyenletrendszerek, mátrixok. Dr. Szörényi Miklós, Dr. Kallós Gábor
12. előadás Egyenletrendszerek, mátrixok Dr. Szörényi Miklós, Dr. Kallós Gábor 2015 2016 1 Tartalom Matematikai alapok Vektorok és mátrixok megadása Tömbkonstansok Lineáris műveletek Mátrixok szorzása
RészletesebbenMester Gyula 2003 Intelligens robotok és rendszerek
Mester Gyula 003 Intelligens robotok és rendszerek Robotmanipulátorok kinematikája Robotmanipulátorok dinamikája Robotmanipulátorok szabad mozgásának hagyományos irányítása Robotmanipulátorok adaptív irányítása
RészletesebbenAz egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:
Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x
RészletesebbenFeladatsor A differenciálgeometria alapja c. kurzus gyakorlatához
Feladatsor A differenciálgeometria alapja c. kurzus gyakorlatához Dr. Nagy Gábor, Geometria Tanszék 2010. szeptember 16. Görbék paraméterezése 1. feladat. (A) Bizonyítsuk be a vektoriális szorzatra vonatkozó
RészletesebbenDifferenciálszámítás. 8. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Differenciálszámítás p. 1/1
Differenciálszámítás 8. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Differenciálszámítás p. 1/1 Egyenes meredeksége Egyenes meredekségén az egyenes és az X-tengely pozitív iránya
RészletesebbenSzinguláris értékek. Wettl Ferenc április 3. Wettl Ferenc Szinguláris értékek április 3. 1 / 28
Szinguláris értékek Wettl Ferenc 2015. április 3. Wettl Ferenc Szinguláris értékek 2015. április 3. 1 / 28 Tartalom 1 Szinguláris érték 2 Alkalmazások 3 Norma 4 Mátrixnorma Wettl Ferenc Szinguláris értékek
Részletesebben5 1 6 (2x3 + 4) 7. 4 ( ctg(4x + 2)) + c = 3 4 ctg(4x + 2) + c ] 12 (2x6 + 9) 20 ln(5x4 + 17) + c ch(8x) 20 ln 5x c = 11
Bodó Beáta ISMÉTLÉS. ch(6 d.. 4.. 6. 7. 8. 9..... 4.. e (8 d ch (9 + 7 d ( + 4 6 d 7 8 + d sin (4 + d cos sin d 7 ( 6 + 9 4 d INTEGRÁLSZÁMÍTÁS 7 6 sh(6 + c 8 e(8 + c 9 th(9 + 7 + c 6 ( + 4 7 + c = 7 4
RészletesebbenNemlineáris egyenletrendszerek megoldása április 15.
Nemlineáris egyenletrendszerek megoldása 2014. április 15. Nemlineáris egyenletrendszerek Az egyenletrendszer a következő formában adott: f i (x 1, x 2,..., x M ) = 0 i = 1...N az f i függvények az x j
Részletesebbenx a x, ha a > 1 x a x, ha 0 < a < 1
EL 18 Valós exponenciális függvények Definíció: Ha a R, a>0, akkor legyen a x = e x lna, x R A valós változós exponenciális függvények grafikonja: x a x, ha a > 1 x a x, ha 0 < a < 1 A szinusz függvény
RészletesebbenTartalom. Mi az, amit változtatunk? Hajder Levente 2018/2019. I. félév
Tartalom Számítógépes Grafika 1 Hajder Levente hajder@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2 3 4 2018/2019. I. félév Mi az, amit változtatunk? Állókép helyett képsorozat Objektumok/kamera/világ
RészletesebbenOrtogonalizáció. Wettl Ferenc Wettl Ferenc Ortogonalizáció / 41
Ortogonalizáció Wettl Ferenc 2016-03-22 Wettl Ferenc Ortogonalizáció 2016-03-22 1 / 41 Tartalom 1 Ortonormált bázis 2 Ortogonális mátrix 3 Ortogonalizáció 4 QR-felbontás 5 Komplex skaláris szorzás 6 Diszkrét
Részletesebbenend function Az A vektorban elõforduló legnagyobb és legkisebb értékek indexeinek különbségét.. (1.5 pont) Ha üres a vektor, akkor 0-t..
A Név: l 2014.04.09 Neptun kód: Gyakorlat vezető: HG BP MN l 1. Adott egy (12 nem nulla értékû elemmel rendelkezõ) 6x7 méretû ritka mátrix hiányos 4+2 soros reprezentációja. SOR: 1 1 2 2 2 3 3 4 4 5 6
Részletesebben6. Folytonosság. pontbeli folytonosság, intervallumon való folytonosság, folytonos függvények
6. Folytonosság pontbeli folytonosság, intervallumon való folytonosság, folytonos függvények Egy függvény egy intervallumon folytonos, ha annak miden pontjában folytonos. folytonos függvények tulajdonságai
RészletesebbenMODELLEZÉS - SZIMULÁCIÓ
Mechatronika = Mechanikai elemek+ elektromechanikai átalakítók+ villamos rendszerek+ számítógép elemek integrációja Eszközök, rendszerek, gépek és szerkezetek felügyeletére, vezérlésére (manapság miniatürizált)
RészletesebbenTERMÉKSZIMULÁCIÓ I. 9. elıadás
TERMÉKSZIMULÁCIÓ I. 9. elıadás Dr. Kovács Zsolt egyetemi tanár Végeselem típusok Elemtípusok a COSMOSWorks Designer-ben: Lineáris térfogatelem (tetraéder) Kvadratikus térfogatelem (tetraéder) Lineáris
RészletesebbenKinematika szeptember Vonatkoztatási rendszerek, koordinátarendszerek
Kinematika 2014. szeptember 28. 1. Vonatkoztatási rendszerek, koordinátarendszerek 1.1. Vonatkoztatási rendszerek A test mozgásának leírása kezdetén ki kell választani azt a viszonyítási rendszert, amelyből
RészletesebbenLin.Alg.Zh.1 feladatok
Lin.Alg.Zh. feladatok 0.. d vektorok Adott három vektor ā (0 b ( c (0 az R Euklideszi vektortérben egy ortonormált bázisban.. Mennyi az ā b skalárszorzat? ā b 0 + + 8. Mennyi az n ā b vektoriális szorzat?
RészletesebbenINTELLIGENS ROBOTOK ÉS RENDSZEREK
INTELLIGENS ROBOTOK ÉS RENDSZEREK Mester Gyula Dr. Mester Gyula Robotkinematika 1 ROBOTMANIPULÁTOROK KINEMATIKÁJA Mester Gyula Dr. Mester Gyula Robotkinematika 2 1.1 ROBOTMANIPULÁTOROK GEOMETRIAI MODELLJE
RészletesebbenSajátértékek és sajátvektorok. mf1n1a06- mf1n2a06 Csabai István
Sajátértékek és sajátvektorok A fizika numerikus módszerei I. mf1n1a06- mf1n2a06 Csabai István Lineáris transzformáció Vektorok lineáris transzformációja: általános esetben az x vektor iránya és nagysága
RészletesebbenKépfeldolgozás. 1. el adás. A képfeldolgozás m veletei. Mechatronikai mérnök szak BME, 2008
Képfeldolgozás 1. el adás. A képfeldolgozás m veletei Mechatronikai mérnök szak BME, 2008 1 / 61 Alapfogalmak transzformációk Deníció Deníció Geometriai korrekciókra akkor van szükség, ha a képr l valódi
RészletesebbenGeometria II gyakorlatok
Geometria II gyakorlatok Kovács Zoltán Copyright c 2011 Last Revision Date: 2011. november 29. kovacsz@nyf.hu Technikai útmutató a jegyzet használatához A jegyzet képernyőbarát technikával készült, a megjelenés
RészletesebbenLineáris Algebra. Tartalomjegyzék. Pejó Balázs. 1. Peano-axiomák
Lineáris Algebra Pejó Balázs Tartalomjegyzék 1. Peano-axiomák 2 1.1. 1.................................................... 2 1.2. 2.................................................... 2 1.3. 3....................................................
RészletesebbenSaj at ert ek-probl em ak febru ar 26.
Sajátérték-problémák 2018. február 26. Az alapfeladat Adott a következő egyenlet: Av = λv, (1) ahol A egy ismert mátrix v ismeretlen, nem zérus vektor λ ismeretlen szám Azok a v, λ kombinációk, amikre
RészletesebbenHajlított tartó: feladat Beam 1D végeselemmel
Hajlított tartó: feladat Beam 1D végeselemmel A feladatlapon szereplő példa megoldása. A megoldáshoz 1 dimenziós hajlított gerendaelemeket ("beam") használunk. Verzió: 2018.10.15. (%i1) kill(all)$ Az adatok
RészletesebbenSzinguláris értékek. Wettl Ferenc április 12. Wettl Ferenc Szinguláris értékek április / 35
Szinguláris értékek Wettl Ferenc 2016. április 12. Wettl Ferenc Szinguláris értékek 2016. április 12. 1 / 35 Tartalom 1 Szinguláris érték 2 Norma 3 Mátrixnorma 4 Alkalmazások Wettl Ferenc Szinguláris értékek
RészletesebbenLin.Alg.Zh.1 feladatok
LinAlgZh1 feladatok 01 3d vektorok Adott három vektor ā = (0 2 4) b = (1 1 4) c = (0 2 4) az R 3 Euklideszi vektortérben egy ortonormált bázisban 1 Mennyi az ā b skalárszorzat? 2 Mennyi az n = ā b vektoriális
RészletesebbenNorma Determináns, inverz Kondíciószám Direkt és inverz hibák Lin. egyenletrendszerek A Gauss-módszer. Lineáris algebra numerikus módszerei
Indukált mátrixnorma Definíció A. M : R n n R mátrixnormát a. V : R n R vektornorma által indukált mátrixnormának nevezzük, ha A M = max { Ax V : x V = 1}. Az indukált mátrixnorma geometriai jelentése:
Részletesebben3. előadás Stabilitás
Stabilitás 3. előadás 2011. 09. 19. Alapfogalmak Tekintsük dx dt = f (t, x), x(t 0) = x 0 t (, ), (1) Jelölje t x(t; t 0, x 0 ) vagy x(.; t 0, x 0 ) a KÉF megoldását. Kívánalom: kezdeti állapot kis megváltozása
RészletesebbenKalkulus S af ar Orsolya F uggv enyek S af ar Orsolya Kalkulus
Függvények Mi a függvény? A függvény egy hozzárendelési szabály. Egy valós függvény a valós számokhoz, esetleg egy részükhöz rendel hozzá pontosan egy valós számot valamilyen szabály (nem feltétlen képlet)
RészletesebbenTartalomjegyzék. Tartalomjegyzék Valós változós valós értékű függvények... 2
Tartalomjegyzék Tartalomjegyzék... Valós változós valós értékű függvények... Hatványfüggvények:... Páratlan gyökfüggvények:... Páros gyökfüggvények... Törtkitevős függvények (gyökfüggvények hatványai)...
RészletesebbenHajder Levente 2017/2018. II. félév
Számítógépes Grafika Hajder Levente hajder@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2017/2018. II. félév Tartalom 1 2 3 4 Állókép helyett képsorozat Objektumok/kamera/világ tulajdonságait
RészletesebbenCsoportosítás. Térinformatikai műveletek, elemzések. Csoportosítás. Csoportosítás
Csoportosítás Térinformatikai műveletek, elemzések Leíró (attribútum) adatokra vonatkozó kérdések, műveletek, elemzések, csoportosítások,... Térbeli (geometriai) adatokra vonatkozó kérdések, műveletek
RészletesebbenAnalitikus térgeometria
5. fejezet Analitikus térgeometria Kezd és végpontjuk koordinátáival adott vektorok D 5.1 A koordináta-rendszer O kezd pontjából a P pontba mutató OP kötött vektort a P pont helyvektorának nevezzük. T
RészletesebbenLineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport
Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport 1. Egy egyenesre esnek-e az A (2, 5, 1), B (5, 17, 7) és C (3, 9, 3) pontok? 5 pont Megoldás: Nem, mert AB (3, 12,
RészletesebbenTestek. 16. Legyen z = 3 + 4i, w = 3 + i. Végezzük el az alábbi. a) (2 4), Z 5, b) (1, 0, 0, 1, 1) (1, 1, 1, 1, 0), Z 5 2.
Vektorok. Melyek egyenlőek az alábbi vektorok közül? (a) (, 2, 0), (b) az (, 0, ) pontból a (2, 2, ) pontba mutató vektor, (c) ( 2,, ) ( 2,, 2), (d) [ 2 0 ], (e) 2. 0 2. Írjuk fel az x + y + 2z = 0 és
RészletesebbenAnalízis III. gyakorlat október
Vektoranalízis Analízis III. gyakorlat 216. október Gyakorló feladatok és korábbi zh feladatok V1. Igazolja az alábbi "szorzat deriválási" szabályt: div(ff) = F, f + f div(f). V2. Legyen f : IR 3 IR kétszer
RészletesebbenAnalitikus térgeometria
Analitikus térgeometria Wettl Ferenc el adása alapján 2015.09.21. Wettl Ferenc el adása alapján Analitikus térgeometria 2015.09.21. 1 / 23 Tartalom 1 Egyenes és sík egyenlete Egyenes Sík 2 Alakzatok közös
RészletesebbenNumerikus matematika. Irodalom: Stoyan Gisbert, Numerikus matematika mérnököknek és programozóknak, Typotex, Lebegőpontos számok
Numerikus matematika Irodalom: Stoyan Gisbert, Numerikus matematika mérnököknek és programozóknak, Typotex, 2007 Lebegőpontos számok Normák, kondíciószámok Lineáris egyenletrendszerek Legkisebb négyzetes
RészletesebbenDinamikus programozás vagy Oszd meg, és uralkodj!
Dinamikus programozás Oszd meg, és uralkodj! Mohó stratégia Melyiket válasszuk? Dinamikus programozás vagy Oszd meg, és uralkodj! Háromszögfeladat rekurzívan: c nj := a nj ha 1 j n c ij := a ij + max{c
RészletesebbenDierenciálhányados, derivált
9. fejezet Dierenciálhányados, derivált A dierenciálhányados deníciója D 9.1 Az egyváltozós valós f függvény x0 pontbeli dierenciálhányadosának nevezzük a lim f(x0 + h) f(x0) h 0 h határértéket, ha ez
RészletesebbenA dinamikus geometriai rendszerek használatának egy lehetséges területe
Fejezetek a matematika tanításából A dinamikus geometriai rendszerek használatának egy lehetséges területe Készítette: Harsányi Sándor V. matematika-informatika szakos hallgató Porcsalma, 2004. december
RészletesebbenTÖBBKOMPONENS RENDSZEREK FÁZISEGYENSÚLYAI IV.
TÖBBKOMPONENS RENDSZEREK FÁZISEGYENSÚLYAI IV. TÖBBFÁZISÚ, TÖBBKOMPONENS RENDSZEREK Kétkomponens szilárd-folyadék egyensúlyok Néhány fogalom: - olvadék - ötvözetek - amorf anyagok Állapotok feltüntetése:
RészletesebbenANALÍZIS II. Példatár
ANALÍZIS II. Példatár Többszörös integrálok 3. április 8. . fejezet Feladatok 3 4.. Kett s integrálok Számítsa ki az alábbi integrálokat:...3. π 4 sinx.. (x + y) dx dy (x + y) dy dx.4. 5 3 y (5x y y 3
RészletesebbenFüggvények július 13. f(x) = 1 x+x 2 f() = 1 ()+() 2 f(f(x)) = 1 (1 x+x 2 )+(1 x+x 2 ) 2 Rendezés után kapjuk, hogy:
Függvények 015. július 1. 1. Feladat: Határozza meg a következ összetett függvényeket! f(x) = cos x + x g(x) = x f(g(x)) =? g(f(x)) =? Megoldás: Összetett függvény el állításához a küls függvényben a független
RészletesebbenNumerikus integrálás április 20.
Numerikus integrálás 2017. április 20. Integrálás A deriválás papíron is automatikusan elvégezhető feladat. Az analitikus integrálás ezzel szemben problémás vannak szabályok, de nem minden integrálható
RészletesebbenMátrixfüggvények. Wettl Ferenc április 28. Wettl Ferenc Mátrixfüggvények április / 22
Mátrixfüggvények Wettl Ferenc 2016. április 28. Wettl Ferenc Mátrixfüggvények 2016. április 28. 1 / 22 Tartalom 1 Diagonalizálható mátrixok függvényei 2 Mátrixfüggvény a Jordan-alakból 3 Mátrixfüggvény
RészletesebbenGauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei
A Gauss-Jordan elimináció, mátrixinvertálás Gauss-Jordan módszer Ugyanazzal a technikával, mint ahogy a k-adik oszlopban az a kk alatti elemeket kinulláztuk, a fölötte lévő elemeket is zérussá lehet tenni.
Részletesebben