Lagrange és Hamilton mechanika
|
|
- Csaba Bence Balog
- 6 évvel ezelőtt
- Látták:
Átírás
1 Lagrange és október 17. Lagrange és
2 Tartalom 1 Variáció Lagrange egyenlet Legendre transzformáció Hamilton egyenletek 2 3 Szimplektikus sokaság Hamilton mez Hamilton és Lagrange egyenletek ekvivalenciája Lagrange és
3 Variációszámítás Variáció Lagrange egyenlet Legendre transzformáció Hamilton egyenletek Görbék terén értelmezett funkcionál széls értékének keresésére. Görbe: γ = {(t, x) : x = x(t), t 0 t t 1 }. Görbe variációja: γ = {(t, x) : x = x(t) + h(t), t 0 t t 1 }. Például: Egy görbe hossza Φ(γ) = t 1 t ẋ 2 dt. Figure: görbe variálása Lagrange és
4 Dierenciálhatóság Variáció Lagrange egyenlet Legendre transzformáció Hamilton egyenletek Def Φ dierenciálható, ha Φ(γ + h) Φ(γ) = F + R alakban írható, ahol F lineárisan függ h-tól, R(h, γ) = O(h 2 ). Például: γ = {(t, x) : x = x(t), t 0 t t 1 } és Φ(γ) = t 1 t 0 L(x, ẋ, t)dt Ekkor Φ(γ) dierenciálható és F (h) = t1 t 0 [ ] x d dt ẋ [ ] t1 hdt + ẋ h t 0 Lagrange és
5 Széls érték Variáció Lagrange egyenlet Legendre transzformáció Hamilton egyenletek Def Φ(γ) dierenciálható funkcionál széls értéke: olyan γ-nál, amire F (h) = 0 h. Tétel x(t 0 ) = x 0 és x(t 1 ) = x 1. γ : x = x(t) görbére a Φ(γ) = t 1 t 0 L(x, ẋ, t)dt funkcionálnak széls értéke van ha x d dt ẋ = 0. Például: görbehossz széls értéke, ha γ egy egyenes. L = 1 + ẋ 2, x = 0, ẋ = ẋ d 1 + ẋ 2 dt ẋ = 0. Lagrange és
6 Euler-Lagrange egyenlet Variáció Lagrange egyenlet Legendre transzformáció Hamilton egyenletek Def Φ(γ) = t 1 t 0 L(x, ẋ, t)dt funkcionálhoz tartozó Euler-Lagrange egyenlet: x d dt ẋ = 0. Tétel Azon görbék közül, melyek átmennek a (t 0, x 0 ) és (t 1, x 1 ) pontokon a Φ(γ) = t 1 t 0 L(x, ẋ, t)dt funkcionál az esetén veszi fel a széls értékét, mely kielégíti az Euler-Lagrange egyenletet. Lagrange és
7 Legkisebb hatás elve Variáció Lagrange egyenlet Legendre transzformáció Hamilton egyenletek Tétel Newtoni rendszer mozgásegyenlete: A hozzá tartozó funkcionál: d dt (m i ṙ i ) + U = 0 i = 1... n r i Φ(γ) = t1 t 0 Ldt, ahol L=T-U, T a rendszer kinetikus és U a potenciális energiája. Bizonyítás U = U(r), T = m i ṙ 2 i ṙ i = T ṙ i = m i ṙ i r i = U r i Lagrange és
8 Legkisebb hatás elve Variáció Lagrange egyenlet Legendre transzformáció Hamilton egyenletek Következmény (q 1,..., q 3n ) az n tömegpontot tartalmazó rendszer kongurációs térbeli koordinátái. q fejl dése az Euler-Lagrange egyenlet alapján történik, ahol L=T-U. Deníciók t Hatás: 1 t 0 L(q, q, t)dt Lagrange függvény: L(q, q, t) = T U Általánosított koordináták: q i Általánosított impulzusok: Általánosított er k: Lagrange egyenlet: q i q i = K i = p i x d dt ẋ = 0 Lagrange és
9 Deníció Variáció Lagrange egyenlet Legendre transzformáció Hamilton egyenletek Legyen y = f (x) konvex függvény (f"(x)>0). x = x(p) pontban van a függvény a legtávolabb az y = px egyenest l. Vagyis F (p, x) = px f (x) függvény maximumhelye x = x(p). Deníció f(x) Legendre transzformáltja: g(p) = F (p, x(p)) Következmény x=x(p) = 0 f (x) x(p) = p. F x Lagrange és
10 Variáció Lagrange egyenlet Legendre transzformáció Hamilton egyenletek Hamilton és Lagrange egyenletek ekvivalenciája Tétel A Lagrange egyenletrendszer ekvivalens egy 2n egyenletb l álló els fokú egyenletrendszerrel. ṗ = H q, H q =, ahol H(p, q, t) = p q L(q, q, t). p Bizonyítás dh = H p dp + H q dq + H t dt = qdp dq q t dt Tétel Legyen L = T U, T = 1 2 i,j a ij q i q j, ahol a ij = a ij (q, t) és U = U(q). Ekkor H = T + U a teljes energia. Lagrange és
11 Jelölés. M sima sokaság. folytonos funkcionál, folytonos, h : TM TM indukált leképezés. Deníció. Egy Lagrange rendszer (M,L) invariáns a h-ra, ha bármely Példa vektorra: ez nem igaz és, ekkor a rendszer invariáns a eltolással szemben, azonban x 2 és x 3 irányra Lagrange és
12 Tétel. : ha (M,L) invariáns a h s : M M (s R) egyparaméteres dieomorzmus csoportra, akkor létezik els integrálja:. Lokális koordinátákkal: Megjegyzés: koordinátarendszer-független Lagrange és
13 q(t) megoldás Φ(s, t) = h s q(t) megoldás: ( d 0 = dt 0 = d dt ( q 0 = (Φ, Φ) s ) q q + q ) (Φ, Φ) ( d (Φ, Φ) q = q Φ + Φ q dt q ) = d dt ( q q ) = d dt I Lagrange és
14 Példa: nem kölcsönható tömegpontok Lagrange-fv: i. tkp. koordintája. Kényszer: f j (x) = 0 Tfh. eltolás minden i-re lehetséges, tehát a kényszerek megengedik a rendszer e 1 mentén történ mozgását, a potenciális energia megváltozása nélkül. Noether: a rendszerünk tkp mozgásának vetülete e 1 -re egyenletes. Lagrange és
15 Szimplektikus sokaság Hamilton mez Hamilton és Lagrange egyenletek ekvivalenciája Szimplektikus sokaság Szimplektikus sokaság (M, Ω) pár, M: dierenciálható sokaság, Ω: nem elfajuló zárt 2-forma. Állítás. dimm = 2n Ha Ω = A ij dx i dx j, akkor det(a) = det(a T ) = det( A) = ( 1) dimm det(a) Állítás. Ω segítségével TM p TM p Injekció: X TM p esetén X (Y ) := Ω(X, Y ), Ω nem elfajuló Véges dimenzió: dimtm p = dimtm p, izomorzmus. Jelölés. Ha X = ω akkor ω := X. Azaz ω(y ) = X (Y ) = Ω(X, Y ) = Ω( ω, Y ). Lagrange és
16 Szimplektikus sokaság Hamilton mez Hamilton és Lagrange egyenletek ekvivalenciája Hamilton mez Hamilton mez X, ha H: X = dh. H: Hamilton-függvény. Deníció. f els integrál, ha Xf = 0. Állítás. H els integrál. X (f ) = df (X ) = Ω(df, dh) = 0, ha f = H. Legyen σ t (p) a dh által indukált fázisfolyam: σ t (p) = dh. Ekkor ḟ df (σ t(p 0 )) dt = df ( σ t ) = df (dh) = Ω(df, dh) Lagrange és
17 Szimplektikus sokaság Hamilton mez Hamilton és Lagrange egyenletek ekvivalenciája Példa Legyenek (q i, p i ) koordinátázás M páros dimenziós sokaságon, Ω = 2dq i dp i = dq i dp i dp i dq i. Állítás. Ω zárt. dω = 2d 2 q i dp i 2dq i d 2 p i = 0 Legyen X = ξ i + ξ q i j, Y p j = η i + η q i j, ekkor p j Ω(X, Y ) = (dq i dp i dp i dq i )(X, Y ) = ξ i η i ξ i η i Azaz X = ξ j dq j + ξ i dp i. Ha X hamiltoni, akkor X = dh = H p i Ha γ integrál görbe, akkor q i H q j p j dq i (γ(t)) dt = H p i dp j (γ(t)) dt = H q j Lagrange és
18 Szimplektikus sokaság Hamilton mez Hamilton és Lagrange egyenletek ekvivalenciája Hamilton és Lagrange M sokaság, TM = p TMp koordinátázható: ko-érint nyaláb (sokaság!) ω = p i d(q i ) q (q 1,..., q n, p 1,..., p n ) Természetes projekció: π : T M M : ω q, indukált leképzés: π : T ω (T M) T q M Kanonikus 1-forma: θ ω (X ω ) = ω(π X ω ) θ = p i dq i Ekkor Ω = 2dθ = 2dq i dp i szimplektikus struktúra. Lagrange és
19 Szimplektikus sokaság Hamilton mez Hamilton és Lagrange egyenletek ekvivalenciája Hamilton és Lagrange M Riemann sokaság, L lagrange függvény, g ij metrikus tenzor. ṗ i = g ij q j = q j Ekkor dh számolható természetes szimplektika mellett: dh = H p i dq i + H q i dp i = ṗ i dq i + q i dp i = q i dqi + d( q i p i ) p i dq i = d( q ( i p i ) q i dqi + ) ) q i d qi = d( q i p i L Lagrange és
Lagrange egyenletek. Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását
Lagrange egyenletek Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását megnehezíti a δr i virtuális elmozdulások egymástól való függősége. (F i ṗ i )δx i = 0, i = 1, 3N. (1) i 3N infinitezimális
Lineáris leképezések. Wettl Ferenc március 9. Wettl Ferenc Lineáris leképezések március 9. 1 / 31
Lineáris leképezések Wettl Ferenc 2015. március 9. Wettl Ferenc Lineáris leképezések 2015. március 9. 1 / 31 Tartalom 1 Mátrixleképezés, lineáris leképezés 2 Alkalmazás: dierenciálhatóság 3 2- és 3-dimenziós
A klasszikus mechanika matematikai módszerei
A klasszikus mechanika matematikai módszerei Házi feladatok 2015/16 tavasz A feladatok közül szabadon lehet választani. Az összpontszám alapján alakul ki az érdemjegy a szokásos ponthatárokkal: 40-55-70-85.
Az elméleti mechanika alapjai
Az elméleti mechanika alapjai Tömegpont, a továbbiakban részecske. A jelenségeket a háromdimenziós térben és időben játszódnak le: r helyzetvektor v dr dt ṙ, a dr dt r a részecske sebessége illetve gyorsulása.
Analízis III. gyakorlat október
Vektoranalízis Analízis III. gyakorlat 216. október Gyakorló feladatok és korábbi zh feladatok V1. Igazolja az alábbi "szorzat deriválási" szabályt: div(ff) = F, f + f div(f). V2. Legyen f : IR 3 IR kétszer
= e i1 e ik e j 1. tenzorok. A k = l = 0 speciális esetben e az R egységeleme. A. e q 1...q s. = e j 1...j l q 1...q s
3. TENZORANALÍZIS Legyen V egy n-dimenziós vektortér, V a duális tere, T (k,l) V = V V V V a (k, l)-típusú tenzorok tere. Megállapodás szerint T (0,0) V = R (általában az alaptest). Ha e 1,..., e n V egy
Az alábbi fogalmak és törvények jelentését/értelmezését/matematikai alakját (megfelelő mélységben) ismerni kell: Newtoni mechanika
Az alábbi fogalmak és törvények jelentését/értelmezését/matematikai alakját (megfelelő mélységben) ismerni kell: Newtoni mechanika 1. előadás Vonatkoztatási rendszer Hely-idő-tömeg standardok 3-dimenziós
Bevezetés a görbe vonalú geometriába
Bevezetés a görbe vonalú geometriába Metrikus tenzor, Christoffel-szimbólum, kovariáns derivált, párhuzamos eltolás, geodetikus Pr hle Zsóa A klasszikus térelmélet elemei (szeminárium) 2012. október 1.
Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1
Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =
Riemanngeometria 1 c. gyakorlat A Riemann-terekkel kapcsolatos fogalmak, jelölések
A Riemann-terekkel kapcsolatos fogalmak, jelölések Az R m euklideszi tér természetes bázisának az e 1 = (1, 0,..., 0),..., e m = (0,..., 0, 1) vektorokból álló bázist mondjuk. Legyen M egy összefügg nyílt
Tárgymutató. dinamika, 5 dinamikai rendszer, 4 végtelen sok állapotú, dinamikai törvény, 5 dinamikai törvények, 12 divergencia,
Tárgymutató állapottér, 3 10, 107 általánosított impulzusok, 143 147 általánosított koordináták, 143 147 áramlás, 194 197 Arisztotelész mozgástörvényei, 71 77 bázisvektorok, 30 centrifugális erő, 142 ciklikus
1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények
1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények 1.1. Dierenciálhatóság 1.1. deníció. Legyen a z 0 pont az f(z) függvény értelmezési tartományának torlódási
Relativisztikus pont-mechanika
Relativisztikus pont-mechanika Balog János MTA Wigner FK RMI, Budapest Pont-mechanika és kauzalitás, no-interaction tétel Relativisztikus és prediktív mechanika Kanonikus relativisztikus mechanika Ruijsenaars-Schneider
A klasszikus mechanika matematikai módszerei április 1.
A klasszikus mechanika matematikai módszerei 2016. április 1. Tartalomjegyzék 1. Newtoni mechanika 3 1.1. Téridő, Galilei-transzformációk................... 3 1.2. Pontrendszerre vonatkozó Newton-egyenlet............
Modellek és Algoritmusok - 2.ZH Elmélet
Modellek és Algoritmusok - 2.ZH Elmélet Ha hibát elírást találsz kérlek jelezd: sellei_m@hotmail.com A fríss/javított változat elérhet : people.inf.elte.hu/semsaai/modalg/ 2.ZH Számonkérés: 3.EA-tól(DE-ek)
3. előadás Stabilitás
Stabilitás 3. előadás 2011. 09. 19. Alapfogalmak Tekintsük dx dt = f (t, x), x(t 0) = x 0 t (, ), (1) Jelölje t x(t; t 0, x 0 ) vagy x(.; t 0, x 0 ) a KÉF megoldását. Kívánalom: kezdeti állapot kis megváltozása
Lássuk be, hogy nem lehet a három pontot úgy elhelyezni, hogy egy inerciarendszerben
Feladat: A háromtest probléma speciális megoldásai Arra vagyunk kiváncsiak, hogy a bolygó mozgásnak milyen egyszerű egyensúlyi megoldásai vannak három bolygó esetén. Az így felmerülő három-test probléma
MODELLEZÉS - SZIMULÁCIÓ
Mechatronika = Mechanikai elemek+ elektromechanikai átalakítók+ villamos rendszerek+ számítógép elemek integrációja Eszközök, rendszerek, gépek és szerkezetek felügyeletére, vezérlésére (manapság miniatürizált)
A Hamilton-Jacobi-egyenlet
A Hamilton-Jacobi-egyenlet Ha sikerül olyan kanonikus transzformációt találnunk, amely a Hamilton-függvényt zérusra transzformálja akkor valamennyi új koordináta és impulzus állandó lesz: H 0 Q k = H P
Kvantum marginális probléma és összefonódási politópok
Kvantum marginális probléma és összefonódási politópok Vrana Péter Budapesti műszaki és Gazdaságtudományi Egyetem Geometria Tanszék 04. október. / Összetett rendszerek Jelölések k darab részrendszer H,
r a sugara, h a magassága a hengernek a maximalizálandó függvényünk a V (r, h) = πr 2 h. Az érintkezési pontokban x 2 + y 2 = r 2 és z = h/2.
Feltételes szélsőérték Keressük úgy egy kétváltozós f (x, y) függvény szélsőértékét, hogy közben eleget tegyünk egy másik, g(x, y) = 0 típusú megszorításnak. Példa Határozzuk meg egy forgásellipszoidba
"Flat" rendszerek. definíciók, példák, alkalmazások
"Flat" rendszerek definíciók, példák, alkalmazások Hangos Katalin, Szederkényi Gábor szeder@scl.sztaki.hu, hangos@scl.sztaki.hu 2006. október 18. flatness - p. 1/26 FLAT RENDSZEREK: Elméleti alapok 2006.
Wigner tétele kvantummechanikai szimmetriákról
Szegedi Tudományegyetem, Bolyai Intézet és MTA-DE "Lendület" Funkcionálanalízis Kutatócsoport, Debreceni Egyetem 2014. Október 30. Elméleti Fizika Szeminárium A tétel története Wigner tétele Tétel Legyen
Boros Zoltán február
Többváltozós függvények differenciál- és integrálszámítása (2 3. előadás) Boros Zoltán 209. február 9 26.. Vektorváltozós függvények differenciálhatósága és iránymenti deriváltjai A továbbiakban D R n
T obbv altoz os f uggv enyek integr alja. 3. r esz aprilis 19.
Többváltozós függvények integrálja. 3. rész. 2018. április 19. Kettős integrál Kettős integrál téglalap alakú tartományon. Ismétlés Ha = [a, b] [c, d] téglalap-tartomány, f : I integrálható függvény, akkor
atommag körül relatív nagy távolságra keringő elektron klasszikus modellje (Rydberg atomoknál)
Centrális erőtérben való mozgás egymás gravitációs terében mozgó égitestek atommag körül relatív nagy távolságra keringő elektron klasszikus modellje (Rydberg atomoknál) Végtelen tömegű + véges tömegű
2. SZÉLSŽÉRTÉKSZÁMÍTÁS. 2.1 A széls érték fogalma, létezése
2 SZÉLSŽÉRTÉKSZÁMÍTÁS DEFINÍCIÓ 21 A széls érték fogalma, létezése Azt mondjuk, hogy az f : D R k R függvénynek lokális (helyi) maximuma (minimuma) van az x 0 D pontban, ha van olyan ε > 0 hogy f(x 0 )
1.9. B - SPLINEOK B - SPLINEOK EGZISZTENCIÁJA. numerikus analízis ii. 34. [ a, b] - n legfeljebb n darab gyöke lehet. = r (m 1) n = r m + n 1
numerikus analízis ii 34 Ezért [ a, b] - n legfeljebb n darab gyöke lehet = r (m 1) n = r m + n 1 19 B - SPLINEOK VOLT: Ω n véges felosztás S n (Ω n ) véges dimenziós altér A bázis az úgynevezett egyoldalú
Fraktálok. Kontrakciók Affin leképezések. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék. TARTALOMJEGYZÉK Kontrakciók Affin transzformációk
Fraktálok Kontrakciók Affin leképezések Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék TARTALOMJEGYZÉK 1 of 71 A Lipschitz tulajdonság ÁTMÉRŐ, PONT ÉS HALMAZ TÁVOLSÁGA Definíció Az (S, ρ) metrikus tér
Bevezetés az elméleti zikába
Bevezetés az elméleti zikába egyetemi jegyzet Merev test mozgása Lázár Zsolt, Lázár József Babe³Bolyai Tudományegyetem Fizika Kar 011 TARTALOMJEGYZÉK 0.1. Alapfogalmak,jelölések............................
Haladó lineáris algebra
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Haladó lineáris algebra BMETE90MX54 Lineáris leképezések 2017-02-21 IB026 Wettl Ferenc
Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya.
Lendület Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendülettétel: Az lendület erő hatására változik meg. Az eredő erő határozza meg
A térképen ábrázolt vonal: - sík felület egyenese? - sík felület görbéje? - görbült felület egyenese ( geodetikus )? - görbült felület görbéje?
Előzetes megjegyzés: 1. Az időt nyugodtan mérhetjük méterben. ct [s ] = t [m ] A film kétórás volt. = A film 2.16 milliárd kilométernyi ideig tartott. 2. A tömeget is nyugodtan mérhetjük méterben! GM [kg]
A térképen ábrázolt vonal: - sík felület egyenese? - sík felület görbéje? - görbült felület egyenese ( geodetikus )? - görbült felület görbéje?
Előzetes megjegyzés: 1. Az időt nyugodtan mérhetjük méterben. ct [s ] = t [m ] A film kétórás volt. = A film 2.16 milliárd kilométernyi ideig tartott. 2. A tömeget is nyugodtan mérhetjük méterben! GM [kg]
1. FELADATSOR. x = u + v 2, y = v + z 2, z = z. u y + z. u x + y. v x + y. v y + z. w x + y. w y + z
1. FELADATSOR 1-0: Írjuk le az R3 euklideszi tér Riemann-metrikáját az u, v, z koordináták használatával, ahol x = u + v, y = v + z, z = z. Megoldás. (L. Gy.) 1. változat: Az eredeti metrika a x, x x,
Abszolút folytonos valószín ségi változó (4. el adás)
Abszolút folytonos valószín ségi változó (4. el adás) Deníció (Abszolút folytonosság és s r ségfüggvény) Az X valószín ségi változó abszolút folytonos, ha van olyan f : R R függvény, melyre P(X t) = t
Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz
Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb
1. Folytonosság. 1. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maximuma és minimuma?
. Folytonosság. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maimuma és minimuma?. (A) Tudunk példát adni olyan függvényekre, melyek megegyeznek inverzükkel? Ha igen,
Vektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27
Vektorterek Wettl Ferenc 2015. február 17. Wettl Ferenc Vektorterek 2015. február 17. 1 / 27 Tartalom 1 Egyenletrendszerek 2 Algebrai struktúrák 3 Vektortér 4 Bázis, dimenzió 5 Valós mátrixok és egyenletrendszerek
17. előadás: Vektorok a térben
17. előadás: Vektorok a térben Szabó Szilárd A vektor fogalma A mai előadásban n 1 tetszőleges egész szám lehet, de az egyszerűség kedvéért a képletek az n = 2 esetben szerepelnek. Vektorok: rendezett
Tartalomjegyzék. A mechanika elvei. A virtuális munka elve. A TételWiki wikiből 1 / 6
1 / 6 A TételWiki wikiből Tartalomjegyzék 1 A mechanika elvei 2 A virtuális munka elve 3 d'alembert elv és a Lagrange-féle elsőfajú egyenletek 4 A Gauss-féle legkisebb kényszer 5 Általános koordináták
LNM folytonos Az interpoláció Lagrange interpoláció. Lineáris algebra numerikus módszerei
Legkisebb négyzetek módszere, folytonos eset Folytonos eset Legyen f C[a, b]és h(x) = a 1 φ 1 (x) + a 2 φ 2 (x) +... + a n φ n (x). Ekkor tehát az n 2 F (a 1,..., a n ) = f a i φ i = = b a i=1 f (x) 2
ANALÍZIS II. Példatár
ANALÍZIS II. Példatár Többszörös integrálok 3. április 8. . fejezet Feladatok 3 4.. Kett s integrálok Számítsa ki az alábbi integrálokat:...3. π 4 sinx.. (x + y) dx dy (x + y) dy dx.4. 5 3 y (5x y y 3
Fourier transzformáció
a Matematika mérnököknek II. című tárgyhoz Fourier transzformáció Fourier transzformáció, heurisztika Tekintsük egy 2L szerint periodikus függvény Fourier sorát: f (x) = a 0 2 + ( ( nπ ) ( nπ )) a n cos
Differenciálegyenletek numerikus integrálása április 9.
Differenciálegyenletek numerikus integrálása 2018. április 9. Differenciálegyenletek Olyan egyenletek, ahol a megoldást függvény alakjában keressük az egyenletben a függvény és deriváltjai szerepelnek
1. Az előző előadás anyaga
. Az előző előadás anyaga Egy fiú áll az A pontban és azt látja, hogy a barátnője fuldoklik a B pontban egy tóban. Milyen plyán kell a fiúnak mozognia, hogy a leggyorsabban a barátnőjéhez érjen, ha a parton
Geometriai vagy kinematikai természetű feltételek: kötések vagy. kényszerek. 1. Egy apró korong egy mozdulatlan lejtőn vagy egy gömb belső
Kényszerek Geometriai vagy kinematikai természetű feltételek: kötések vagy kényszerek. Példák: 1. Egy apró korong egy mozdulatlan lejtőn vagy egy gömb belső felületén mozog. Kényszerek Geometriai vagy
Verhóczki László. Riemann-geometria. el adásjegyzet. ELTE TTK Matematikai Intézet Geometriai Tanszék
Verhóczki László Riemann-geometria el adásjegyzet ELTE TTK Matematikai Intézet Geometriai Tanszék A jegyzetben használt jelölések a sokaságokkal kapcsolatosan u i : R m R a természetes i-edik koordináta-függvény
A bolygók mozgására vonatkozó Kepler-törvények igazolása
A bolygók mozgására vonatkozó Kepler-törvények igazolása Geometriai alapok. A kúpszeletek polárkoordinátás egyenlete A síkbeli másodrend görbék közül az ellipszist, a hiperbolát és a parabolát mondjuk
3. FELADATSOR. n(n 1) Meggondolható, hogy B képtere az összes alternáló 4-lineáris függvény tere, magja pedig R. Hesse(f)(X, Y ) = X(Y (f)) X Y (f).
011/1 I. félév 3. FELADATSOR 3-1: Legyen R T 0,4 V az algebrai görbületi tenzorok tere az n-dimenziós V vektortér felett. Mennyi R dimenziója? Mennyi a 0 Ricci-tenzorú görbületi tenzorok terének dimenziója?
Felügyelt önálló tanulás - Analízis III.
Felügyelt önálló tanulás - Analízis III Kormos Máté Differenciálható sokaságok Sokaságok Röviden, sokaságoknak nevezzük azokat az objektumokat, amelyek egy n dimenziós térben lokálisan k dimenziósak Definíció:
1. Házi feladat. Határidő: I. Legyen f : R R, f(x) = x 2, valamint. d : R + 0 R+ 0
I. Legyen f : R R, f(x) = 1 1 + x 2, valamint 1. Házi feladat d : R + 0 R+ 0 R (x, y) f(x) f(y). 1. Igazoljuk, hogy (R + 0, d) metrikus tér. 2. Adjuk meg az x {0, 3} pontok és r {1, 2} esetén a B r (x)
Dierenciálhatóság. Wettl Ferenc el adása alapján és
205.0.9. és 205.0.26. 205.0.9. és 205.0.26. / Tartalom A dierenciálhatóság fogalma Pontbeli dierenciálhatóság Jobb és bal oldali dierenciálhatóság Folytonosság és dierenciálhatóság Deriváltfüggvény 2 Dierenciálási
Szeminárium. Kaposvári István október 01. Klasszikus Térelmélet Szeminárium
Klasszikus Térelmélet 2012. október 01. Tartalom: Jelölések bevezetése Kovariáns deriváltak kommutátora és a Riemann-tenzor Vektor megváltozása zárt görbe mentén Riemann-tenzor és a Stokes-tétel Geodetikus
Matematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx =
Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika II Határozatlan Integrálszámítás d) Adja meg az alábbi alapintegrálokat! x n 1 dx =, sin 2 x dx = d) Adja meg az alábbi alapintegrálokat!
FELVÉTELI VIZSGA, július 21. Írásbeli próba MATEMATIKÁBÓL A. RÉSZ
BABE -BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR FELVÉTELI VIZSGA, 9. július. Írásbeli próba MATEMATIKÁBÓL FONTOS MEGJEGYZÉS: ) Az A. részben megjelen feleletválasztós feladatok esetén
Matematika B/1. Tartalomjegyzék. 1. Célkit zések. 2. Általános követelmények. Biró Zsolt. 1. Célkit zések Általános követelmények 1
Matematika B/1 Biró Zsolt Tartalomjegyzék 1. Célkit zések 1 2. Általános követelmények 1 3. Rövid leírás 2 4. Oktatási módszer 2 5. Követelmények, pótlások 2 6. Tematika 2 6.1. Alapfogalmak, matematikai
Vektorok. Wettl Ferenc október 20. Wettl Ferenc Vektorok október / 36
Vektorok Wettl Ferenc 2014. október 20. Wettl Ferenc Vektorok 2014. október 20. 1 / 36 Tartalom 1 Vektorok a 2- és 3-dimenziós térben 2 Távolság, szög, orientáció 3 Vektorok koordinátás alakban 4 Összefoglalás
VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag. Mátrix rangja
VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag 2019. március 21. Mátrix rangja 1. Számítsuk ki az alábbi mátrixok rangját! (d) 1 1 2 2 4 5 1 1 1 1 1 1 1 1 2 1 2 1 1 0 1 1 2 1 0 1 1 1 1 2 3 1 3
Gazdasági matematika II. vizsgadolgozat megoldása, június 10
Gazdasági matematika II. vizsgadolgozat megoldása, 204. június 0 A dolgozatírásnál íróeszközön kívül más segédeszköz nem használható. A dolgozat időtartama: 90 perc. Ha a dolgozat első részéből szerzett
Hamilton rendszerek, Lyapunov függvények és Stabilitás. Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek
Hamilton rendszerek, Lyapunov függvények és Stabilitás Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek Sokszor nem lehetséges, hogy a tanult linearizációs módszerrel meghatározzuk
1 A kvantummechanika posztulátumai
A kvantummechanika posztulátumai October 29, 2006 A kvantummechanika posztulátumai Célunk felépíteni a kvantummechanikát posztulátumok segítségével úgy ahogy az elemi hullámmechanika során eljártunk. Arra
Explicit hibabecslés Maxwell-egyenletek numerikus megoldásához
Explicit hibabecslés Maxwell-egyenletek numerikus megoldásához Izsák Ferenc 2007. szeptember 17. Explicit hibabecslés Maxwell-egyenletek numerikus megoldásához 1 Vázlat Bevezetés: a vizsgált egyenlet,
Feladatok az 5. hétre. Eredményekkel és teljesen kidolgozott megoldásokkal az 1,2,3.(a),(b),(c), 6.(a) feladatokra
Feladatok az 5. hétre. Eredményekkel és teljesen kidolgozott megoldásokkal az 1,,3.(a),(b),(), 6.(a) feladatokra 1. Oldjuk meg a következő kezdeti érték feladatot: y 1 =, y(0) = 3, 1 x y (0) = 1. Ha egy
4. Laplace transzformáció és alkalmazása
4. Laplace transzformáció és alkalmazása 4.1. Laplace transzformált és tulajdonságai Differenciálegyenletek egy csoportja algebrai egyenletté alakítható. Ennek egyik eszköze a Laplace transzformáció. Definíció:
Bevezetés az elméleti zikába
Bevezetés az elméleti zikába egyetemi jegyzet Az elméleti mechanika alapjai Lázár Zsolt, Lázár József Babe³Bolyai Tudományegyetem Fizika Kar 011 TARTALOMJEGYZÉK 1. Elméleti mechanika 7 1.1. Az elméleti
Valószínűségi változók. Várható érték és szórás
Matematikai statisztika gyakorlat Valószínűségi változók. Várható érték és szórás Valószínűségi változók 2016. március 7-11. 1 / 13 Valószínűségi változók Legyen a (Ω, A, P) valószínűségi mező. Egy X :
MODELLEZÉS - SZIMULÁCIÓ
Mechatronika = Mechanikai elemek+ elektromechanikai átalakítók+ villamos rendszerek+ számítógép elemek integrációja Eszközök, rendszerek, gépek és szerkezetek felügyeletére, vezérlésére (manapság miniatürizált)
Matematika A2 vizsga mgeoldása június 4.
Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont
Gyakorló feladatok I.
Gyakorló feladatok I. a Matematika Aa Vektorüggvények tárgyhoz (D D5 kurzusok) Összeállította: Szili László Ajánlott irodalmak:. G.B. Thomas, M.D. Weir, J. Hass, F.R. Giordano: Thomas-féle KALKULUS I.,
Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:
Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x
A Maxwellegyenletek. Elektromágneses térjellemz k: E( r, t) és H( r, t) térer sségek, D( r, t) elektromos eltolás és B( r, t) mágneses indukció.
A Maxwellegyenletek Elektromágneses térjellemz k: E( r, t) és H( r, t) térer sségek, D( r, t) elektromos eltolás és B( r, t) mágneses indukció. Milyen általános, a konkrét szituációtól (pl. közeg anyagi
Dierenciálhányados, derivált
9. fejezet Dierenciálhányados, derivált A dierenciálhányados deníciója D 9.1 Az egyváltozós valós f függvény x0 pontbeli dierenciálhányadosának nevezzük a lim f(x0 + h) f(x0) h 0 h határértéket, ha ez
1. Parciális függvény, parciális derivált (ismétlés)
Operációkutatás NYME Gazdaságinformatikus mesterképzés El adó: Kalmár János (kalmar[kukac]inf.nyme.hu) Többváltozós széls érték számítás Parciális függvény, parciális derivált Széls érték korlátos zárt
2015/16/1 Kvantummechanika B 2.ZH
2015/16/1 Kvantummechanika B 2.ZH 2015. december 10. Információk 0. A ZH ideje minimum 90 perc, maximum 180 perc. 1. Az összesen elérhet pontszám 270 pont. 2. A jeles érdemjegy eléréséhez nem szükséges
Denavit-Hartenberg konvenció alkalmazása térbeli 3DoF nyílt kinematikai láncú hengerkoordinátás és gömbi koordinátás robotra
Budapesti M szaki És Gazdaságtudományi Egyetem Gépészmérnöki Kar M szaki Mechanikai Tanszék Denavit-Hartenberg konvenció alkalmazása térbeli 3DoF nyílt kinematikai láncú hengerkoordinátás és gömbi koordinátás
Matematika szigorlat június 17. Neptun kód:
Név Matematika szigorlat 014. június 17. Neptun kód: 1.. 3. 4. 5. Elm. Fel. Össz. Oszt. Az eredményes szigorlat feltétele elméletből legalább 0 pont, feladatokból pedig legalább 30 pont elérése. A szigorlat
LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40
LINEÁRIS ALGEBRA matematika alapszak SZTE Bolyai Intézet, 2016-17. őszi félév Euklideszi terek Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 Euklideszi tér Emlékeztető: A standard belső szorzás és standard
Serret-Frenet képletek
Serret-Frenet képletek Vizsgáljuk meg az e n normális- és e b binormális egységvektorok változását. e n = αe t + βe n + γe b, e t e n e n = 1 e n e n = 0 β = 0 e n e t = e n e t illetve a α = 1/R. Ugyanakkor
Meghatározás: Olyan egyenlet, amely a független változók mellett tartalmaz egy vagy több függvényt és azok deriváltjait.
Közönséges differenciálegyenletek Meghatározás: Olyan egyenlet, amely a független változók mellett tartalmaz egy vagy több függvényt és azok deriváltjait. Célunk a függvény meghatározása Egyetlen független
Matematikai Analízis III.
Matematikai Analízis III. Vágó Zsuzsanna el adásait legépelte Marczell Márton 2012. december 27. 2 Tartalomjegyzék Tartalomjegyzék 3 1. Vektoranalízis 5 1.1. Vektormez k.............................................
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Miért fontos számunkra az előző gyakorlaton tárgyalt lineáris algebrai ismeretek
Az november 23-i szeminárium témája Rövid összefoglaló Miért fontos számunkra az előző gyakorlaton tárgyalt lineáris algebrai ismeretek felfrissítése? Tekintsünk ξ 1,..., ξ k valószínűségi változókat,
1. Példa. A gamma függvény és a Fubini-tétel.
. Példa. A gamma függvény és a Fubini-tétel.. Az x exp x + t )) függvény az x, t tartományon folytonos, és nem negatív, ezért alkalmazható rá a Fubini-tétel. I x exp x + t )) dxdt + t dt π 4. [ exp x +
Sztochasztikus folyamatok alapfogalmak
Matematikai Modellalkotás Szeminárium 2012. szeptember 4. 1 Folytonos idejű Markov láncok 2 3 4 1 Folytonos idejű Markov láncok 2 3 4 Folytonos idejű Markov láncok I Adott egy G = (V, E) gráf Folytonos
Opkut deníciók és tételek
Opkut deníciók és tételek Készítette: Bán József Deníciók 1. Deníció (Lineáris programozási feladat). Keressük meg adott lineáris, R n értelmezési tartományú függvény, az ún. célfüggvény széls értékét
Funkcionálanalízis. n=1. n=1. x n y n. n=1
Funkcionálanalízis 2011/12 tavaszi félév - 2. előadás 1.4. Lényeges alap-terek, példák Sorozat terek (Folytatás.) C: konvergens sorozatok tere. A tér pontjai sorozatok: x = (x n ). Ezen belül C 0 a nullsorozatok
Égi mechanika tesztkérdések. A hallgatók javaslatai 2008
Égi mechanika tesztkérdések A hallgatók javaslatai 2008 1 1 Albert hajnalka 1. A tömegközéppont körüli mozgást leíró m 1 s1 = k 2 m 1m 2 r,m s r 2 r 2 2 = k 2 m 1m 2 r r 2 r mozgásegyenletek ekvivalensek
Matematika II képletek. 1 sin xdx =, cos 2 x dx = sh 2 x dx = 1 + x 2 dx = 1 x. cos xdx =,
Matematika II előadás elméleti kérdéseinél kérdezhető képletek Matematika II képletek Határozatlan Integrálszámítás x n dx =, sin 2 x dx = sin xdx =, ch 2 x dx = sin xdx =, sh 2 x dx = cos xdx =, + x 2
Egyenes és sík. Wettl Ferenc Wettl Ferenc () Egyenes és sík / 16
Egyenes és sík Wettl Ferenc 2012-09-20 Wettl Ferenc () Egyenes és sík 2012-09-20 1 / 16 Tartalom 1 Egyenes és szakasz Egyenes Szakasz Egyenesvonalú egyenletes mozgás Egyenes és pont távolsága 2 Sík Sík
January 16, ψ( r, t) ψ( r, t) = 1 (1) ( ψ ( r,
Közelítő módszerek January 16, 27 1 A variációs módszer A variációs módszer szintén egy analitikus közelítő módszer. Olyan esetekben alkalmazzuk mikor ismert az analitikus alak amelyben keressük a sajátfüggvényt,
Megoldások. ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4; 2, 3) normális eloszlású P (ξ
Megoldások Harmadik fejezet gyakorlatai 3.. gyakorlat megoldása ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4;, 3 normális eloszlású P (ξ 8 ξ 5 feltételes valószínűségét (.3. alapján számoljuk.
Differenciálegyenletek numerikus megoldása
a Matematika mérnököknek II. című tárgyhoz Differenciálegyenletek numerikus megoldása Fokozatos közeĺıtés módszere (1) (2) x (t) = f (t, x(t)), x I, x(ξ) = η. Az (1)-(2) kezdeti érték probléma ekvivalens
Kevert állapoti anholonómiák vizsgálata
Kevert állapoti anholonómiák vizsgálata Bucz Gábor Témavezet : Dr. Fehér László Dr. Lévay Péter Szeged, 2015.04.23. Bucz Gábor Kevert állapoti anholonómiák vizsgálata Szeged, 2015.04.23. 1 / 27 Tartalom
Térbeli transzformációk, a tér leképezése síkra
Térbeli transzformációk, a tér leképezése síkra Homogén koordináták bevezetése térben A tér minden P pontjához kölcsönösen egyértelműen egy valós (x, y, z) számhármast rendeltünk hozzá. (Descartes-féle
valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.
2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve
Alkalmazott spektroszkópia
Alkalmazott spektroszkópia 009 Bányai István MR és a fémionok: koordinációs kémiai alkalmazások Bányai István Debreceni Egyetem TEK Kolloid- és Környezetkémiai Tanszék A mágnesség A mágneses erő: F pp
(!), {z C z z 0 < R} K (K: konv. tart.) lim cn+1
Komlex analízis Komlex hatványsorok c n (z z 0 ) n ; R = lim n c n, R = (!), {z C z z 0 < R} K (K: konv. tart.) lim cn+ c n n=0. Van-e olyan komlex hatványsor, melynek a) üres a konvergenciatartománya,
9. HAMILTON-FÉLE MECHANIKA
9. HAMILTON-FÉLE MECHANIKA 9.. Legedre-éle traszormáció x x h x, p= p x x Milye x-él maximális? pl.= x alulról kovex h x =0: d p= dx x=x p a példába: p=x ; h= p x x Mekkora a maximuma? g p= p x p x p g=