A Maxwellegyenletek. Elektromágneses térjellemz k: E( r, t) és H( r, t) térer sségek, D( r, t) elektromos eltolás és B( r, t) mágneses indukció.

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A Maxwellegyenletek. Elektromágneses térjellemz k: E( r, t) és H( r, t) térer sségek, D( r, t) elektromos eltolás és B( r, t) mágneses indukció."

Átírás

1 A Maxwellegyenletek Elektromágneses térjellemz k: E( r, t) és H( r, t) térer sségek, D( r, t) elektromos eltolás és B( r, t) mágneses indukció. Milyen általános, a konkrét szituációtól (pl. közeg anyagi összetétele) független összefüggések, 'téregyenletek' állnak fenn a térjellemz k között? Elektromágneses mez forrásai az elektromos töltések és áramok, melyek eloszlását a ρ( r, t) töltés- és J( r, t) árams r ségek jellemzik (nem függetlenek, összekapcsolja ket a lokális töltésmegmaradást kifejez kontinuitási egyenlet).

2 1 A KONTINUITÁSI EGYENLET 1 A kontinuitási egyenlet Tekintsünk egy ρ( r, t) s r ség folytonos töltéseloszlást, és jelölje J( r, t) az árams r ség vektorát. A lokális töltésmegmaradás következtében egy, az id során nem változó térbeli tartomány belsejében található Q(t) = ρ( r, t) d 3 r töltés id egység alatti megváltozása egyenl a határán id egység alatt áthaladó J( r, t) d s töltéssel (a negatív el jel J deníciójának következménye), azaz dq dt = ˆ ρ r d3 = J( r, t) d s

3 1 A KONTINUITÁSI EGYENLET Innen, a Gausstétel felhasználásával ˆ ˆ ρ r d3 = div J d 3 r tartomány tetsz leges integrandusok egyenl ek ρ + div J = 0 kontinuitási egyenlet Észrevétel. Kontinuitási egyenlet általános alakja ϱ A + div j A = σ A ahol ϱ A a térfogati és j A az árams r sége az A mennyiségnek, míg σ A jelöli annak forráss r ségét, azaz az egységnyi térfogatban egységnyi id alatt termel d mennyiségét (megmaradó mennyiségekre σ A zérus).

4 2 A MAXWELLEGYENLETEK 2 A Maxwellegyenletek Kvázi-stacionárius jelenségek alaptörvényei div D = 4πρ rot H = 4π c J Gausstörvény Ampèretörvény div B = 0 rot E = 1 c B mágneses Gausstörvény Faradaytörvény Ampèretörvény és kontinuitási egyenlet ρ = div J = c 4π div rot H = 0 miatt csak id ben állandó töltéss r ség esetén kompatibilis egymással.

5 2 A MAXWELLEGYENLETEK Maxwell felismerése: Ampèretörvény kiegészítése! Kontinuitási egyenlet következtében div ( rot H 4π c J ) = 4π c div J= 4π c ρ = 1 c (div D) =div ( 1 c D ) ezért rot H = 4π c J + 1 c D Korrekciós tag: eltolási áram (kvázi-stacionárius esetben elhanyagolható). Nem csak a mozgó töltések, de az id ben változó elektromos mez is lehet a mágneses mez forrása forrásoktól távol is létezhet elektromágneses mez (elektromágneses hullámok).

6 2 A MAXWELLEGYENLETEK ektoriális Maxwellegyenletek: rot H = 4π c J + 1 c rot E = 1 c Skaláris Maxwellegyenletek: B D Ampèretörvény Faradaytörvény div D = 4πρ div B = 0 elektromos Gausstörvény mágneses Gausstörvény Kompatibilitási feltétel ρ + div J = 0 kontinuitási egyenlet

7 2 A MAXWELLEGYENLETEK Források: ρ( r, t) skalár- és J( r, t) vektormez (nem függetlenek, összeköti ket a kontinuitási egyenlet). Ismeretlenek: H( r, t), E( r, t), B( r, t) és D( r, t) vektormez k, összesen 12 független vektorkomponenssel. Két vektoriális + két skaláris Maxwellegyenlet összesen = 8 egyenlet 12 ismeretlen függvény között (alulhatározott egyenletrendszer) egyértelm megoldáshoz szükség van a közeg tulajdonságait leíró D = D( E, H) B = B( E, H) anyagi összefüggések gyelembevételére.

8 2 A MAXWELLEGYENLETEK Marad 8 összefüggés 6 független vektorkomponens között (túlhatározott egyenletrendszer), de és ( ) div B ( B ) = div = c div rot E = 0 ( ) div D 4πρ ( D ) ρ = div 4π = div ( c rot H 4π J ) + 4πdiv J = 0 a kontinuitási egyenlet következtében skaláris Maxwell-egyenletek kezdeti feltételek szerepét játsszák (elég egyetlen pillanatban teljesülniük, hogy mindig teljesüljenek).

9 2 A MAXWELLEGYENLETEK A Maxwellegyenletek egy els rend lineáris parciális dierenciálegyenletrendszert alkotnak, ez az elektromágneses mez alaptörvényeinek lokális (pontról pontra teljesül ) alakja. Érvényességi feltétel: térjellemz k hely- és id függése sima (folytonosan dierenciálható), és az elektromágneses kölcsönhatás lokális, azaz a környezet hatása csak a vizsgált térrész határán jelentkezik ('közelhatás', ellentétben pl. a gravitációs er vel). Mér berendezések véges kiterjedés ek kísérletileg csak integrális összefüggések vizsgálhatók. Kapcsolat lokális és integrális megfogalmazás között: integráltételek.

10 2 A MAXWELLEGYENLETEK Alaptörvények integrális alakja S S H( r, t) d r = 4π c I + 1 ˆ d D( r, t) d s c dt S E( r, t) d r = 1 ˆ d B( r, t) d s c dt S D( r, t) d s = 4πQ B( r, t) d s = 0 ahol I a S felületen id egység alatt keresztülfolyó töltés mennyisége, míg Q a tartományban található teljes elektromos töltés.

11 2 A MAXWELLEGYENLETEK Különböz közegek határán térjellemz k nem folytonosak. Térjellemz k ugrását leíró illesztési feltételek az alaptörvények integrális alakjából (speciálisan választott S és révén). n ( H + H ) = 4π J c f n ( E + E ) = 0 n ( D + D ) = 4πη n ( B + B ) = 0

12 3 ELEKTROMÁGNESES POTENCIÁLOK 3 Elektromágneses potenciálok és mértékinvariancia Maxwell-egyenletek rot H = 4π c J + 1 c div D = 4πρ D Ampèretörvény Gausstörvény rot E = 1 c div B = 0 B Faradaytörvény mágneses Gausstörvény

13 3 ELEKTROMÁGNESES POTENCIÁLOK div B=0 mágneses Gauss-törvény következtében létezik olyan A( r, t) vektormez (vektorpotenciál), amelyre B( r, t) = rot A Innen, a Faradaytörvény alapján rot E = 1 c B = 1 c ( ) ( rot A = rot 1 c A ) vagyis ( rot E 1 + c A ) = 0 létezik olyan Φ( r, t) skalármez (skalárpotenciál), amellyel E( r, t) = grad Φ 1 c A

14 3 ELEKTROMÁGNESES POTENCIÁLOK Elektromágneses mez jellemzése Φ és A elektromágneses potenciálokkal. Mértékinvariancia: tetsz leges ψ( r, t) skalármez re Φ = Φ 1 ψ c A = A + grad ψ ugyanazt az elektromágneses mez t írják le, mint Φ és A! és E = grad Φ 1 ( A c = grad Φ 1 ) ψ c 1 c = grad Φ 1 c A = E ( A+ grad ψ ) B = rot A =rot ( A + grad ψ ) =rot A+rot grad ψ = B Elektromágneses potenciálok nem egyértelm ek!

15 3 ELEKTROMÁGNESES POTENCIÁLOK Észrevétel. Ha ψ( r, t) kielégíti a ψ α c 2 ψ 2 = div A α Φ parciális dierenciálegyenlet, ahol α tetsz leges konstans paraméter (ilyen ψ mindig létezik), akkor div A ( ) + α Φ =div A+grad ψ +α ( Φ 1 c mindig el írható a ψ ) =0 div A + α Φ = 0 Lorentzmértékl

16 4 ELEKTROMÁGNESES DUALITÁS 4 Elektromágneses dualitás Forrásmentes rot H = 1 D c rot E = 1 B c div D = 0 div B = 0 Maxwellegyenletek szimmetrikusak a térjellemz k E H D B cseréjére. Források asszimmetriája mágneses monopólusok hiánya miatt!

17 4 ELEKTROMÁGNESES DUALITÁS Szimmetria visszaállítható ktív mágneses töltések bevezetésével: rot H = 4π c J e + 1 c rot E = 4π c J m 1 c D B div D = 4πρ e div B = 4πρ m szimmetrizált egyenletek alakja nem változik E H Je J m D B ρ e ρ m csere során, ahol ρ m ( r, t) a mágneses töltéss r ség és J m ( r, t) a mágneses árams r ség.

18 4 ELEKTROMÁGNESES DUALITÁS Szimmetrizált egyenletek invariánsak a sokkal általánosabb E cos(ξ) E sin(ξ) H H sin(ξ) E + cos(ξ) H Je cos(ξ) J e sin(ξ) J m Jm sin(ξ) J e + cos(ξ) J m D cos(ξ) D sin(ξ) B B sin(ξ) D + cos(ξ) B ρ e cos(ξ) ρ e sin(ξ) ρ m ρ m sin(ξ) ρ e + cos(ξ) ρ m dualitási transzformációkra (ξ valós paraméter)! Ha minden elemi részecske (elektron, proton, stb.) mágneses és elektromos töltésének κ hányadosa ugyanakkora, akkor ρ m ( r, t) = κρ e ( r, t), és ξ = arctan(κ) paraméter dualitási transzformáció eltünteti ρ m -et és Jm -et Maxwell-egyenletek szokásos alakja. Kísérleti korlát: κ proton <

19 5 AZ ELEKTROMÁGNESES MEZŽ ENERGIAS R SÉGE 5 Az elektromágneses mez energias r sége Energiamegmaradás: különböz energiafajták (mechanikai, kémiai, termikus, elektromágneses, stb.) összege egy adott térbeli tartomány belsejében csak a határon keresztülfolyó energiamennyiséggel változhat meg. izsgáljunk egy ρ( r, t) s r ség folytonos töltéseloszlást vákuumban, amely egy küls elektromágneses mez ben v( r, t) sebességgel mozog. Nincs jelen anyagi közeg csak két energiafajta jöhet számításba: mechanikai (töltéshordozók kinetikus energiája) és elektromágneses. E = E kin + E em

20 5 AZ ELEKTROMÁGNESES MEZŽ ENERGIAS R SÉGE Egységnyi térfogatban található töltéshordozókra kifejtett er f = ρ E + ρ c v B Egységnyi térfogatban található töltéshordozókon t id alatt végzett munka W = f r = ρ { E + 1 c v B } v t = (ρ v) E t Töltésáramlás vákuumban tisztán konvektív, így ρ v = J konv = J, és ezért W = J E t Energiamegmaradás: töltéshordozók kinetikus energiájának megváltozása = elektromágneses mez által rajtuk végzett munka. E kin = ˆ ˆ W d 3 r = t J E d3 r

21 5 AZ ELEKTROMÁGNESES MEZŽ ENERGIAS R SÉGE kinetikus energia változási sebessége de kin dt = ˆ J( r, t) E( r, t) d3 r Az Ampèretörvény alapján J E = { c 4π rot H 1 4π felhasználva a D } E = c E rot 4π H 1 E 4π D = c H rot 4π E c 4π div ( E H) 1 E 4π E E rot H = H rot E div ( E H) vektoranalitikai összefüggést.

22 5 AZ ELEKTROMÁGNESES MEZŽ ENERGIAS R SÉGE A Faradaytörvényb l így c H rot 4π E = 1 H 4π B c J E = 4π div ( E H) 1 E 4π D 1 H 4π B Mivel vákuumban (vagy bármely más izotrop közegben) D és E, valamint B és H párhuzamos egymással, végül ahol és J E = u div S u = 1 8π ( E D + H B) S = c 4π E H energiamérleg

23 5 AZ ELEKTROMÁGNESES MEZŽ ENERGIAS R SÉGE Észrevétel. vákuumban u = E 2 + H 2 8π 0 és általában is belátható, hogy u nemnegatív. Tekintsünk egy olyan, az összes töltést tartalmazó tartományt melynek határán az elektromágneses mez elt nik. Mivel a belsejében található töltések nem hatnak kölcsön se mechanikailag, se elektromágnesesen a külvilággal (zárt rendszert alkotnak), ezért a -ben tárolt teljes E = E kin + E em energia megmarad: de em dt = de kin dt ˆ = ˆ J E d3 r = ( ) u + div S d 3 r

24 5 AZ ELEKTROMÁGNESES MEZŽ ENERGIAS R SÉGE A Gausstétel alapján ˆ div S d 3 r = S d s és a felületi integrál zérus, mivel a térer sségek elt nnek a határon de em = d ˆ u( r, t) d 3 r dt dt Egy id t l független tag erejéig u( r, t) d 3 r adja a -ben tárolt elektromágneses energiát u( r, t) az elektromágneses mez energias r sége! Tekintsünk most egy olyan tartományt, amely egyetlen töltést sem tartalmaz, és ezért a belsejében J = 0. Mivel, a fentiek alapján, u az elektromágneses energias r ség, ezért a -ben tárolt elektromágneses

25 5 AZ ELEKTROMÁGNESES MEZŽ ENERGIAS R SÉGE energia változási sebessége de em = d {ˆ } ˆ u( r, t) d 3 r = dt dt ˆ u r d3 = div S d 3 r = S d s De mivel belsejében nincsenek töltések, ezért az elektromágneses energia csak úgy változhat, ha energia áramlik át a határon S d s az id egység alatt -n átfolyó elektromágneses energia S = c 4π E H Poyntingvektor az elektromágneses mez energiaáram-s r sége.

26 5 AZ ELEKTROMÁGNESES MEZŽ ENERGIAS R SÉGE Teljes általánosságban, amikor mind konvektív, mind konduktív áramokat megengedünk, az energiamérleget integrálva -re de kin + de em + dt dt Jkonv E + u + div S = J kond E S d s = ˆ ( J kond E) d 3 r Baloldalon a mechanikai és elektromágneses energia változási sebességének, valamint a határon id egység alatt átáramló energiának az összege áll jobb oldali tag a fenti energiafajták képz dését vagy elt nését, más szóval azok disszipációját, a véletlen h mozgás kinetikus energiájává való átalakulását írja le (Joule-h ).

27 6 A FESZÜLTSÉGTENZOR 6 A Maxwell-féle feszültségtenzor és az impulzusmérleg Tekintsük a T = 1 { } E D + H B 1 { } E D + H B 1 4π 8π Maxwell-féle feszültségtenzort. A diadikus szorzatok divergenciájára vonatkozó általános összefüggések révén belátható, hogy vákuumban div T = 1 { (div E) 4π E E rot E + (div H) H H rot H }

28 6 A FESZÜLTSÉGTENZOR Figyelembe véve a rot H = 4π c J + 1 c rot E = 1 c H E div H = 0 div E = 4πρ vákuumbeli Maxwellegyenleteket, adódik a div T=ρ E + 1 E 4πc H 1 H c J 1 H 4πc E = f + g impulzusmérleg: itt f = ρ E + 1 c J H az egységnyi térfogatra ható Lorentzer, és g = 1 4πc E H

29 6 A FESZÜLTSÉGTENZOR izsgáljunk egy tartományt, amely az összes forrást töltéseket és áramokat tartalmazza, és amely el van szigetelve a környezett l (az elektromágneses mez elt nik a határán). A divergencia-tétel alapján ˆ f d3 r + d dt (ˆ ) g d 3 r = ˆ (div T) d 3 r = T d s = 0 mivel T zérus a határán. De F= f d3 r az elektromágneses mez által a -re kifejtett teljes er, vagyis az egységnyi id alatt az elektromágneses mez által a -beli forrásoknak átadott impulzus impulzusmegmaradás miatt g( r, t) d 3 r az elektromágneses mez impulzusa, így g az elektromágneses mez impulzuss r sége!

30 6 A FESZÜLTSÉGTENZOR Ha a mez nem t nik el határán, akkor a fentiek alapján T d s a -beli teljes (mechanikai + elektromágneses) impulzus a T tenzor az elektromágneses mez impulzusáram-s r sége. Elektromágneses impulzus kísérleti kimutatása: fénynyomás (pl. üstökösök csóvája). Észrevétel. A g impulzuss r ség és az S energiaáram-s r ség (Poynting vektor) közti g = 1 c 2 S összefüggés az elektromágneses kölcsönhatás végtelen hatótávolságával kapcsolatos.

31 7 TOÁBBI MEGMARADÁSI TÉTELEK 7 További megmaradási tételek Noethertétel: zikai rendszer szimmetriái megmaradó mennyiségek. id homogenitása tér homogenitása tér izotropiája mértékinvariancia energia impulzus impulzusmomentum töltés Elektromágneses mez impulzusmomentum-s r sége l = r g míg a forgatónyomaték-s r ség r f.

32 7 TOÁBBI MEGMARADÁSI TÉTELEK Izotrop közegben, az impulzusra vonatkozó mérlegegyenletb l l = div( r T) r f Az impulzusmomentum megmarad, és árams r sége r T. Sok más további megmaradó mennyiség, pl. az elektromágneses kiralitás, melynek s r sége χ = E rot E + H rot H és árams r sége X = E E + H H

Elektromágneses alapjelenségek

Elektromágneses alapjelenségek 0-0 I. rész Elektromágneses alapjelenségek Thalész (i.e. 600 körül): gyapjúval dörzsölt borostyánk ('élektron') az apróbb tárgyakat magához vonzza, majd eltaszítja. Dörzsölés hatására a testek elektromos

Részletesebben

Mágnesség. 1. Stacionárius áramok mágneses mezeje. Oersted (1820): áramvezet drót közelében a mágnest az áram irányára

Mágnesség. 1. Stacionárius áramok mágneses mezeje. Oersted (1820): áramvezet drót közelében a mágnest az áram irányára 1 STACIONÁRIUS ÁRAMOK MÁGNESES MEZEJE Mágnesség 1. Stacionárius áramok mágneses mezeje Oersted (1820): áramvezet drót közelében a mágnest az áram irányára mer legesen áll be elektromos töltések áramlása

Részletesebben

Alapjelenségek. 1. Elektromos töltések és kölcsönhatásaik. Thalész meggyelése: gyapjúval dörzsölt borostyánk magához vonz, illetve

Alapjelenségek. 1. Elektromos töltések és kölcsönhatásaik. Thalész meggyelése: gyapjúval dörzsölt borostyánk magához vonz, illetve 1 ELEKTROMOS TÖLTÉSEK Alapjelenségek 1. Elektromos töltések és kölcsönhatásaik Thalész meggyelése: gyapjúval dörzsölt borostyánk magához vonz, illetve eltaszít apró, könny tárgyakat. Elektromos töltés:

Részletesebben

Elektromágneses hullámok

Elektromágneses hullámok Bevezetés a modern fizika fejezeteibe 2. (a) Elektromágneses hullámok Utolsó módosítás: 2015. október 3. 1 A Maxwell-egyenletek (1) (2) (3) (4) E: elektromos térerősség D: elektromos eltolás H: mágneses

Részletesebben

Elektroszatika 0-0. Nyugvó töltések elektromos mezejének vizsgálata. nincs töltésáramlás, se konvektív, se konduktív ( j = 0)

Elektroszatika 0-0. Nyugvó töltések elektromos mezejének vizsgálata. nincs töltésáramlás, se konvektív, se konduktív ( j = 0) 0-0 Elektroszatika Nyugvó töltések elektromos mezejének vizsgálata. nincs töltésáramlás, se konvektív, se konduktív ( j = 0) térjellemz k nem változnak az id során (id deriváltak elt nnek) mágneses mez

Részletesebben

Az Ampère-Maxwell-féle gerjesztési törvény

Az Ampère-Maxwell-féle gerjesztési törvény Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér

Részletesebben

Elektro- és magnetosztatika, áramkörök

Elektro- és magnetosztatika, áramkörök 1. fejezet Elektro- és magnetosztatika, áramkörök Coulomb- és Gauss-törvény, szuperpozíció elve, stacionárius áram. Vezet k, szigetel k, dielektrikumok, kondenzátor, magnetosztatika. Stacionárius áram,

Részletesebben

Fizika 1 Elektrodinamika beugró/kis kérdések

Fizika 1 Elektrodinamika beugró/kis kérdések Fizika 1 Elektrodinamika beugró/kis kérdések 1.) Írja fel a 4 Maxwell-egyenletet lokális (differenciális) alakban! rot = j+ D rot = B div B=0 div D=ρ : elektromos térerősség : mágneses térerősség D : elektromos

Részletesebben

Fizika A2 Alapkérdések

Fizika A2 Alapkérdések Fizika A2 Alapkérdések Az elektromágnesség elméletében a vektorok és skalárok (számok) megkülönböztetése nagyon fontos. A következ szövegben a vektorokat a kézírásban is jól használható nyíllal jelöljük

Részletesebben

Lagrange és Hamilton mechanika

Lagrange és Hamilton mechanika Lagrange és 2010. október 17. Lagrange és Tartalom 1 Variáció Lagrange egyenlet Legendre transzformáció Hamilton egyenletek 2 3 Szimplektikus sokaság Hamilton mez Hamilton és Lagrange egyenletek ekvivalenciája

Részletesebben

-2σ. 1. A végtelen kiterjedésű +σ és 2σ felületi töltéssűrűségű síklapok terében az ábrának megfelelően egy dipól helyezkedik el.

-2σ. 1. A végtelen kiterjedésű +σ és 2σ felületi töltéssűrűségű síklapok terében az ábrának megfelelően egy dipól helyezkedik el. 1. 2. 3. Mondat E1 E2 Össz Energetikai mérnöki alapszak Mérnöki fizika 2. ZH NÉV:.. 2018. május 15. Neptun kód:... g=10 m/s 2 ; ε 0 = 8.85 10 12 F/m; μ 0 = 4π 10 7 Vs/Am; c = 3 10 8 m/s Előadó: Márkus

Részletesebben

Mágneses monopólusok?

Mágneses monopólusok? 1 Mágneses monopólusok? (Atomcsill 2015 február) Palla László ELTE Elméleti Fizikai Tanszék 2 Maxwell egyenletek potenciálok, mértéktranszformáció legegyszerűbb e.m. mezők A klasszikus e g rendszer A monopólus

Részletesebben

TARTALOMJEGYZÉK EL SZÓ... 13

TARTALOMJEGYZÉK EL SZÓ... 13 TARTALOMJEGYZÉK EL SZÓ... 13 1. A TÖLTÉS ÉS ELEKTROMOS TERE... 15 1.1. Az elektromos töltés... 15 1.2. Az elektromos térer sség... 16 1.3. A feszültség... 18 1.4. A potenciál és a potenciálfüggvény...

Részletesebben

Tárgymutató. dinamika, 5 dinamikai rendszer, 4 végtelen sok állapotú, dinamikai törvény, 5 dinamikai törvények, 12 divergencia,

Tárgymutató. dinamika, 5 dinamikai rendszer, 4 végtelen sok állapotú, dinamikai törvény, 5 dinamikai törvények, 12 divergencia, Tárgymutató állapottér, 3 10, 107 általánosított impulzusok, 143 147 általánosított koordináták, 143 147 áramlás, 194 197 Arisztotelész mozgástörvényei, 71 77 bázisvektorok, 30 centrifugális erő, 142 ciklikus

Részletesebben

Fizika A2 Alapkérdések

Fizika A2 Alapkérdések Fizika A2 Alapkérdések Összeállította: Dr. Pipek János, Dr. zunyogh László 20. február 5. Elektrosztatika Írja fel a légüres térben egymástól r távolságban elhelyezett Q és Q 2 pontszer pozitív töltések

Részletesebben

Alapjelenségek. 1. Elektromos töltések és kölcsönhatásaik. Thalész meggyelése: gyapjúval dörzsölt borostyánk magához vonz, illetve

Alapjelenségek. 1. Elektromos töltések és kölcsönhatásaik. Thalész meggyelése: gyapjúval dörzsölt borostyánk magához vonz, illetve 1 ELEKTROMOS TÖLTÉSEK Alapjelenségek 1. Elektromos töltések és kölcsönhatásaik Thalész meggyelése: gyapjúval dörzsölt borostyánk magához vonz, illetve eltaszít apró, könny tárgyakat. Elektromos töltés:

Részletesebben

Elektromágneses sugárzás

Elektromágneses sugárzás 0-0 Elektromágneses sugárzás Maxwell-egyenletek források (töltések és áramok) hiányában rot H = 1 D c t rot E = 1 B c t div D = 0 div B = 0 valamint D=D( E) és B=B( H) anyagi összefüggések. Létezik nem-triviális

Részletesebben

Fizika II minimumkérdések. A zárójelben lévő értékeket nem kötelező memorizálni, azok csak tájékoztató jellegűek.

Fizika II minimumkérdések. A zárójelben lévő értékeket nem kötelező memorizálni, azok csak tájékoztató jellegűek. izika II minimumkérdések zárójelben lévő értékeket nem kötelező memorizálni, azok csak tájékoztató jellegűek. 1. Coulomb erőtörvény: = kq r 2 e r (k = 9 10 9 m2 C 2 ) 2. Coulomb állandó és vákuum permittivitás

Részletesebben

Elektromos áramerősség

Elektromos áramerősség Elektromos áramerősség Két különböző potenciálon lévő fémet vezetővel összekötve töltések áramlanak amíg a potenciál ki nem egyenlítődik. Az elektromos áram iránya a pozitív töltéshordozók áramlási iránya.

Részletesebben

Atomok és molekulák elektronszerkezete

Atomok és molekulák elektronszerkezete Atomok és molekulák elektronszerkezete Szabad atomok és molekulák Schrödinger egyenlete Tekintsünk egy kvantummechanikai rendszert amely N n magból és N e elektronból áll. Koordinátáikat jelölje rendre

Részletesebben

Vezetők elektrosztatikus térben

Vezetők elektrosztatikus térben Vezetők elektrosztatikus térben Vezető: a töltések szabadon elmozdulhatnak Ha a vezető belsejében a térerősség nem lenne nulla akkor áram folyna. Ha a felületen a térerősségnek lenne tangenciális (párhuzamos)

Részletesebben

1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények

1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények 1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények 1.1. Dierenciálhatóság 1.1. deníció. Legyen a z 0 pont az f(z) függvény értelmezési tartományának torlódási

Részletesebben

Elektrodinamika. Maxwell egyenletek: Kontinuitási egyenlet: div n v =0. div E =4 div B =0. rot E = rot B=

Elektrodinamika. Maxwell egyenletek: Kontinuitási egyenlet: div n v =0. div E =4 div B =0. rot E = rot B= Elektrodinamika Maxwell egyenletek: div E =4 div B =0 rot E = rot B= 1 B c t 1 E c t 4 c j Kontinuitási egyenlet: n t div n v =0 Vektoranalízis rot rot u=grad divu u rot grad =0 div rotu=0 udv= ud F V

Részletesebben

Fizika 1 Elektrodinamika belépő kérdések

Fizika 1 Elektrodinamika belépő kérdések Fizika 1 Elektrodinamika belépő kérdések 1) Maxwell-egyenletek lokális (differenciális) alakja rot H = j+ D rot = B div B=0 div D=ρ H D : mágneses térerősség : elektromos megosztás B : mágneses indukció

Részletesebben

Bevezetés a modern fizika fejezeteibe. 4. (e) Kvantummechanika. Utolsó módosítás: december 3. Dr. Márkus Ferenc BME Fizika Tanszék

Bevezetés a modern fizika fejezeteibe. 4. (e) Kvantummechanika. Utolsó módosítás: december 3. Dr. Márkus Ferenc BME Fizika Tanszék Bevezetés a modern fizika fejezeteibe 4. (e) Kvantummechanika Utolsó módosítás: 2014. december 3. 1 A Klein-Gordon-egyenlet (1) A relativisztikus dinamikából a tömegnövekedésre és impulzusra vonatkozó

Részletesebben

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya.

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendület Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendülettétel: Az lendület erő hatására változik meg. Az eredő erő határozza meg

Részletesebben

Idegen atomok hatása a grafén vezet képességére

Idegen atomok hatása a grafén vezet képességére hatása a grafén vezet képességére Eötvös Loránd Tudományegyetem, Komplex Rendszerek Fizikája Tanszék Mahe Tisk'11 Vázlat 1 Kisérleti eredmények Kémiai szennyez k hatása a Fermi-energiára A vezet képesség

Részletesebben

Stacionárius töltésáramlás

Stacionárius töltésáramlás 1 BEVEZETÉS Stacionárius töltésáramlás 1 Bevezetés Stacionárius (id független) konduktív töltésáramlást ('egyenáram') megengedve, de minden más id beli változást kizárva id független térjellemz k és J

Részletesebben

Stacionárius töltésáramlás (egyenáramok)

Stacionárius töltésáramlás (egyenáramok) 0-0 Stacionárius töltésáramlás (egyenáramok) Id ben állandó konduktív áramok és elektromágneses térjellemz k. Mozgó töltések mágneses mez hatására eltérülnek mozgó töltések mágneses mez t keltenek. div

Részletesebben

Végeselem modellezés alapjai 1. óra

Végeselem modellezés alapjai 1. óra Végeselem modellezés alapjai. óra Gyenge alak, Tesztfüggvény, Lagrange-féle alakfüggvény, Stiness mátrix Kivonat Az óra célja, hogy megismertesse a végeselem módszer (FEM) alkalmazását egy egyszer probléma,

Részletesebben

Kvantummechanika gyakorlat Beadandó feladatsor Határid : 4. heti gyakorlatok eleje

Kvantummechanika gyakorlat Beadandó feladatsor Határid : 4. heti gyakorlatok eleje Kvantummechanika gyakorlat 015 1. Beadandó feladatsor Határid : 4. heti gyakorlatok eleje 1. Mutassuk meg, hogy A és B tetsz leges operátorokra igaz, hogy e B A e B = A + [B, A] + 1![ B, [B, A] ] +....

Részletesebben

A spin. November 28, 2006

A spin. November 28, 2006 A spin November 28, 2006 1 A spin a kvantummechanikában Az elektronnak és sok más kvantummechanikai részecskének is van egy saját impulzusnyomatéka amely független a mozgásállapottól. (Úgy is mondhatjuk,

Részletesebben

Abszolút folytonos valószín ségi változó (4. el adás)

Abszolút folytonos valószín ségi változó (4. el adás) Abszolút folytonos valószín ségi változó (4. el adás) Deníció (Abszolút folytonosság és s r ségfüggvény) Az X valószín ségi változó abszolút folytonos, ha van olyan f : R R függvény, melyre P(X t) = t

Részletesebben

Az elektromágneses tér energiája

Az elektromágneses tér energiája Az elektromágneses tér energiája Az elektromos tér energiasűrűsége korábbról: Hasonlóképpen, a mágneses tér energiája: A tér egy adott pontjában az elektromos és mágneses terek együttes energiasűrűsége

Részletesebben

Parciális dierenciálegyenletek

Parciális dierenciálegyenletek Parciális dierenciálegyenletek 2009. május 25. A félév lezárásaként néhány alap-deníciót és alap-példát szeretnék adni a Parciális Dierenciálegynletek (PDE) témaköréb l. Épp csak egy kis izelít t. Az alapfeladatok

Részletesebben

Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK február 13.

Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK február 13. Fizika Nyitray Gergely (PhD) PTE PMMIK 017. február 13. A lejtő mint kényszer A lejtő egy ún. egyszerű gép. A következő problémában először a lejtőt rögzítjük, és egy m tömegű test súrlódás nélkül lecsúszik

Részletesebben

Elektromágneses hullámok

Elektromágneses hullámok Elektromágneses hullámok Maxwell-egyenletek töltések és áramok hiányában rot H = 1 D c t rot E = 1 B c t div E = 0 div H = 0 Energiát és impulzust (impulzusmomentumot, stb.) szállító nem-triviális megoldások

Részletesebben

Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont)

Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont) Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont) 1. "Az olyan rendszereket, amelyek határfelülete a tömegáramokat megakadályozza,... rendszernek nevezzük" (1) 2. "Az olyan rendszereket,

Részletesebben

AZ ELEKTRON MÁGNESES MOMENTUMA. H mágneses erœtérben az m mágneses dipólmomentummal jellemzett testre M = m H forgatónyomaték hat.

AZ ELEKTRON MÁGNESES MOMENTUMA. H mágneses erœtérben az m mágneses dipólmomentummal jellemzett testre M = m H forgatónyomaték hat. AZ ELEKTRON MÁGNESES MOMENTUMA Mágneses dipólmomentum: m H mágneses erœtérben az m mágneses dipólmomentummal jellemzett testre M = m H forgatónyomaték hat. M = m H sinϕ (Elektromos töltés, q: monopólus

Részletesebben

2. (d) Hővezetési problémák II. főtétel - termoelektromosság

2. (d) Hővezetési problémák II. főtétel - termoelektromosság 2. (d) Hővezetési problémák II. főtétel - termoelektromosság Utolsó módosítás: 2015. március 10. Kezdeti érték nélküli problémák (1) 1 A fél-végtelen közeg a Az x=0 pontban a tartományban helyezkedik el.

Részletesebben

Pótlap nem használható!

Pótlap nem használható! 1. 2. 3. Mondat E1 E2 Össz Gépészmérnöki alapszak Mérnöki fizika 2. ZH NÉV:.. 2018. november 29. Neptun kód:... Pótlap nem használható! g=10 m/s 2 ; εε 0 = 8.85 10 12 F/m; μμ 0 = 4ππ 10 7 Vs/Am; cc = 3

Részletesebben

A TételWiki wikiből. A Maxwell-egyenletek

A TételWiki wikiből. A Maxwell-egyenletek 1 / 6 A TételWiki wikiből 1 A Maxwell-egyenletek 2 Indukció 2.1 Nyugalmiindukció 2.2 Mozgásiindukció 2.3 Kölcsönös- és önindukció 3 Az elektromágneses tér makroszkópikus mennyiségei 3.1 Energia 3.2 Impulzus

Részletesebben

http://www.nature.com 1) Magerő-sugár: a magközéppontból mért távolság, ameddig a magerők hatótávolsága terjed. Rutherford-szórásból határozható meg. R=1,4 x 10-13 A 1/3 cm Az atommag terének potenciálja

Részletesebben

Skalár: egyetlen számadattal (+ mértékegység) jellemezhető mennyiség. Azonos dimenziójú skalár mennyiségek - mértékegység-konverzió után -

Skalár: egyetlen számadattal (+ mértékegység) jellemezhető mennyiség. Azonos dimenziójú skalár mennyiségek - mértékegység-konverzió után - 1 ALAPFOGALMAK Vektoranalízis 1. Alapfogalmak Skalár: egyetlen számadattal (+ mértékegység) jellemezhető mennyiség. Azonos dimenziójú skalár mennyiségek - mértékegység-konverzió után - összehasonlíthatóak

Részletesebben

Lássuk be, hogy nem lehet a három pontot úgy elhelyezni, hogy egy inerciarendszerben

Lássuk be, hogy nem lehet a három pontot úgy elhelyezni, hogy egy inerciarendszerben Feladat: A háromtest probléma speciális megoldásai Arra vagyunk kiváncsiak, hogy a bolygó mozgásnak milyen egyszerű egyensúlyi megoldásai vannak három bolygó esetén. Az így felmerülő három-test probléma

Részletesebben

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1 Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =

Részletesebben

A mechanikai alaptörvények ismerete

A mechanikai alaptörvények ismerete A mechanikai alaptörvények ismerete Az oldalszám hivatkozások a Hudson-Nelson Útban a modern fizikához c. könyv megfelelő szakaszaira vonatkoznak. A Feladatgyűjtemény a Mérnöki fizika tárgy honlapjára

Részletesebben

A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra

A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra . Gyakorlat 4B-9 A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld. 4-6 ábra.). Számítsuk ki az E elektromos térerősséget a vonal irányában lévő, annak.. ábra. 4-6 ábra végpontjától

Részletesebben

Fogalmi alapok Mérlegegyenletek

Fogalmi alapok Mérlegegyenletek 1. Fogalmi alapok Mérlegegyenletek Utolsó módosítás: 2013. február 11. A transzportfolyamatokról általában 1 A természetben lezajló folyamatok leírására szolgáló összefoglaló elmélet, amely attól függetlenül

Részletesebben

Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2)

Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2) 2. Gyakorlat 30B-14 Az Egyenlítőnél, a földfelszín közelében a mágneses fluxussűrűség iránya északi, nagysága kb. 50µ T,az elektromos térerősség iránya lefelé mutat, nagysága; kb. 100 N/C. Számítsuk ki,

Részletesebben

Végeselem analízis. 1. el adás

Végeselem analízis. 1. el adás Végeselem analízis 1. el adás Pere Balázs Széchenyi István Egyetem, Alkalmazott Mechanika Tanszék 2016. szeptember 7. Mi az a VégesElem Analízis (VEA)? Parciális dierenciálegyenletek (egyenletrendszerek)

Részletesebben

{ } x x x y 1. MATEMATIKAI ÖSSZEFOGLALÓ. ( ) ( ) ( ) (a szorzás eredménye:vektor) 1.1. Vektorok közötti műveletek

{ } x x x y 1. MATEMATIKAI ÖSSZEFOGLALÓ. ( ) ( ) ( ) (a szorzás eredménye:vektor) 1.1. Vektorok közötti műveletek 1. MAEMAIKAI ÖSSZEFOGLALÓ 1.1. Vektorok közötti műveletek Azok a fizikai mennyiségek, melyeknek nagyságukon kívül irányuk is van, vektoroknak nevezzük. A vektort egyértelműen megadhatjuk a hosszával és

Részletesebben

Véletlen bolyongás. Márkus László március 17. Márkus László Véletlen bolyongás március / 31

Véletlen bolyongás. Márkus László március 17. Márkus László Véletlen bolyongás március / 31 Márkus László Véletlen bolyongás 2015. március 17. 1 / 31 Véletlen bolyongás Márkus László 2015. március 17. Modell Deníció Márkus László Véletlen bolyongás 2015. március 17. 2 / 31 Modell: Egy egyenesen

Részletesebben

Optika és Relativitáselmélet II. BsC fizikus hallgatóknak

Optika és Relativitáselmélet II. BsC fizikus hallgatóknak Optika és Relativitáselmélet II. BsC fizikus hallgatóknak 2. Fényhullámok tulajdonságai Cserti József, jegyzet, ELTE, 2007. Az elektromágneses spektrum Látható spektrum (erre állt be a szemünk) UV: ultraibolya

Részletesebben

1. ábra. 24B-19 feladat

1. ábra. 24B-19 feladat . gyakorlat.. Feladat: (HN 4B-9) A +Q töltés egy hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld.. ábra.). Számítsuk ki az E elektromos térerősséget a vonal. ábra. 4B-9 feladat irányában lévő,

Részletesebben

ELEKTROMOSAN TÖLTÖTT RÉSZECSKÉKET TARTALMAZÓ HOMOGÉN ÉS HETEROGÉN RENDSZEREK A TERMODINAMIKÁBAN

ELEKTROMOSAN TÖLTÖTT RÉSZECSKÉKET TARTALMAZÓ HOMOGÉN ÉS HETEROGÉN RENDSZEREK A TERMODINAMIKÁBAN ELEKTOKÉMI ELEKTOMOSN TÖLTÖTT ÉSZECSKÉKET TTLMZÓ HOMOGÉN ÉS HETEOGÉN ENDSZEEK TEMODINMIKÁN Homogén vs. inhomogén rendszer: ha a rendszert jellemz fizikai mennyiségek értéke független vagy függ a helytl.

Részletesebben

mérlegegyenlet. ϕ - valamely SKALÁR additív (extenzív) mennyiség térfogati

mérlegegyenlet. ϕ - valamely SKALÁR additív (extenzív) mennyiség térfogati ϕ t + j ϕ = 0 mérlegegyenlet. ϕ - valamely SKALÁR additív (extenzív) mennyiség térfogati sűrűsége j ϕ - a ϕ-hez tartozó áramsűrűség j ϕ = vϕ + j rev + j irr vϕ - advekció j rev - egyéb reverzibilis áram

Részletesebben

László István, Fizika A2 (Budapest, 2013) Előadás

László István, Fizika A2 (Budapest, 2013) Előadás László István, Fizika A (Budapest, 13) 1 14.A Maxwell-egenletek. Az elektromágneses hullámok Tartalmi kiemelés 1.Maxwell általánosította Ampère törvénét bevezetve az eltolási áramot. szerint ha a térben

Részletesebben

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus. Valószín ségelméleti és matematikai statisztikai alapfogalmak összefoglalása (Kemény Sándor - Deák András: Mérések tervezése és eredményeik értékelése, kivonat) Véletlen jelenség: okok rendszere hozza

Részletesebben

Beugró kérdések. Elektrodinamika 2. vizsgához. Számítsa ki a gradienst, divergenciát és a skalár Laplace operátort henger koordinátákban!

Beugró kérdések. Elektrodinamika 2. vizsgához. Számítsa ki a gradienst, divergenciát és a skalár Laplace operátort henger koordinátákban! Beugró kérdések Elektrodinamika 2. vizsgához. Görbült koordináták Henger koordináták: r=(ρ cos φ, ρ sin φ, z) Számítsa ki a gradienst, divergenciát és a skalár Laplace operátort henger koordinátákban!

Részletesebben

SEMMELWEIS EGYETEM. Biofizikai és Sugárbiológiai Intézet, Nanokémiai Kutatócsoport. Zrínyi Miklós

SEMMELWEIS EGYETEM. Biofizikai és Sugárbiológiai Intézet, Nanokémiai Kutatócsoport. Zrínyi Miklós SEMMELWEIS EGYETEM Biofizikai és Sugárbiológiai Intézet, Nanokémiai Kutatósoport Transzportjelenségek az élő szervezetben I. Zrínyi Miklós egyetemi tanár, az MTA levelező tagja mikloszrinyi@gmail.om RENDSZER

Részletesebben

9. évfolyam. Osztályozóvizsga tananyaga FIZIKA

9. évfolyam. Osztályozóvizsga tananyaga FIZIKA 9. évfolyam Osztályozóvizsga tananyaga A testek mozgása 1. Egyenes vonalú egyenletes mozgás 2. Változó mozgás: gyorsulás fogalma, szabadon eső test mozgása 3. Bolygók mozgása: Kepler törvények A Newtoni

Részletesebben

Az elméleti mechanika alapjai

Az elméleti mechanika alapjai Az elméleti mechanika alapjai Tömegpont, a továbbiakban részecske. A jelenségeket a háromdimenziós térben és időben játszódnak le: r helyzetvektor v dr dt ṙ, a dr dt r a részecske sebessége illetve gyorsulása.

Részletesebben

a térerősség mindig az üreg falára merőleges, ezért a tér ott nem gömbszimmetrikus.

a térerősség mindig az üreg falára merőleges, ezért a tér ott nem gömbszimmetrikus. 2. Gyakorlat 25A-0 Tekintsünk egy l0 cm sugarú üreges fémgömböt, amelyen +0 µc töltés van. Legyen a gömb középpontja a koordinátarendszer origójában. A gömb belsejében az x = 5 cm pontban legyen egy 3

Részletesebben

FIZIKA II. Dr. Rácz Ervin. egyetemi docens

FIZIKA II. Dr. Rácz Ervin. egyetemi docens FIZIKA II. Dr. Rácz Ervin egyetemi docens Fontos tudnivalók e-mail: racz.ervin@kvk.uni-obuda.hu web: http://uni-obuda.hu/users/racz.ervin/index.htm Iroda: Bécsi út, C. épület, 124. szoba Fizika II. - ismertetés

Részletesebben

0,424 0,576. f) P (X 2 = 3) g) P (X 3 = 1) h) P (X 4 = 1 vagy 2 X 2 = 2) i) P (X 7 = 3, X 4 = 1, X 2 = 2 X 0 = 2) j) P (X 7 = 3, X 4 = 1, X 2 = 2)

0,424 0,576. f) P (X 2 = 3) g) P (X 3 = 1) h) P (X 4 = 1 vagy 2 X 2 = 2) i) P (X 7 = 3, X 4 = 1, X 2 = 2 X 0 = 2) j) P (X 7 = 3, X 4 = 1, X 2 = 2) Legyen adott a P átmenetvalószín ség mátrix és a ϕ 0 kezdeti eloszlás Kérdés, hogy miként lehetne meghatározni az egyes állapotokban való tartózkodás valószín ségét az n-edik lépés múlva Deniáljuk az n-lépéses

Részletesebben

MateFIZIKA: Pörgés, forgás, csavarodás (Vektorok és axiálvektorok a fizikában)

MateFIZIKA: Pörgés, forgás, csavarodás (Vektorok és axiálvektorok a fizikában) MateFIZIKA: Pörgés, forgás, csavarodás (Vektorok és axiálvektorok a fizikában) Tasnádi Tamás 1 2015. április 17. 1 BME, Mat. Int., Analízis Tsz. Tartalom Vektorok és axiálvektorok Forgómozgás, pörgettyűk

Részletesebben

Matematika (mesterképzés)

Matematika (mesterképzés) Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,

Részletesebben

azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra ábra

azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra ábra 4. Gyakorlat 31B-9 A 31-15 ábrán látható, téglalap alakú vezetőhurok és a hosszúságú, egyenes vezető azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra. 31-15 ábra

Részletesebben

2015/16/1 Kvantummechanika B 2.ZH

2015/16/1 Kvantummechanika B 2.ZH 2015/16/1 Kvantummechanika B 2.ZH 2015. december 10. Információk 0. A ZH ideje minimum 90 perc, maximum 180 perc. 1. Az összesen elérhet pontszám 270 pont. 2. A jeles érdemjegy eléréséhez nem szükséges

Részletesebben

1. Példa. A gamma függvény és a Fubini-tétel.

1. Példa. A gamma függvény és a Fubini-tétel. . Példa. A gamma függvény és a Fubini-tétel.. Az x exp x + t )) függvény az x, t tartományon folytonos, és nem negatív, ezért alkalmazható rá a Fubini-tétel. I x exp x + t )) dxdt + t dt π 4. [ exp x +

Részletesebben

Explicit hibabecslés Maxwell-egyenletek numerikus megoldásához

Explicit hibabecslés Maxwell-egyenletek numerikus megoldásához Explicit hibabecslés Maxwell-egyenletek numerikus megoldásához Izsák Ferenc 2007. szeptember 17. Explicit hibabecslés Maxwell-egyenletek numerikus megoldásához 1 Vázlat Bevezetés: a vizsgált egyenlet,

Részletesebben

Termodinamika (Hőtan)

Termodinamika (Hőtan) Termodinamika (Hőtan) Termodinamika A hőtan nagyszámú részecskéből (pl. gázmolekulából) álló makroszkópikus rendszerekkel foglalkozik. A nagy számok miatt érdemes a mólt bevezetni, ami egy Avogadro-számnyi

Részletesebben

Modellek és Algoritmusok - 2.ZH Elmélet

Modellek és Algoritmusok - 2.ZH Elmélet Modellek és Algoritmusok - 2.ZH Elmélet Ha hibát elírást találsz kérlek jelezd: sellei_m@hotmail.com A fríss/javított változat elérhet : people.inf.elte.hu/semsaai/modalg/ 2.ZH Számonkérés: 3.EA-tól(DE-ek)

Részletesebben

Matematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx =

Matematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx = Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika II Határozatlan Integrálszámítás d) Adja meg az alábbi alapintegrálokat! x n 1 dx =, sin 2 x dx = d) Adja meg az alábbi alapintegrálokat!

Részletesebben

Kirchhoff 2. törvénye (huroktörvény) szerint az áramkörben levő elektromotoros erők. E i = U j (3.1)

Kirchhoff 2. törvénye (huroktörvény) szerint az áramkörben levő elektromotoros erők. E i = U j (3.1) 3. Gyakorlat 29A-34 Egy C kapacitású kondenzátort R ellenálláson keresztül sütünk ki. Mennyi idő alatt csökken a kondenzátor töltése a kezdeti érték 1/e 2 ed részére? Kirchhoff 2. törvénye (huroktörvény)

Részletesebben

A teljes elektromágneses spektrum

A teljes elektromágneses spektrum A teljes elektromágneses spektrum Fizika 11. Rezgések és hullámok 2019. március 9. Fizika 11. (Rezgések és hullámok) A teljes elektromágneses spektrum 2019. március 9. 1 / 18 Tartalomjegyzék 1 A Maxwell-egyenletek

Részletesebben

5. házi feladat. AB, CD kitér élpárra történ tükrözések: Az ered transzformáció: mivel az origó xpont, így nincs szükség homogénkoordinátás

5. házi feladat. AB, CD kitér élpárra történ tükrözések: Az ered transzformáció: mivel az origó xpont, így nincs szükség homogénkoordinátás 5. házi feladat 1.feladat A csúcsok: A = (0, 1, 1) T, B = (0, 1, 1) T, C = (1, 0, 0) T, D = ( 1, 0, 0) T AB, CD kitér élpárra történ tükrözések: 1 0 0 T AB = 0 1 0, elotlási rész:(i T AB )A = (0, 0, )

Részletesebben

sin x = cos x =? sin x = dx =? dx = cos x =? g) Adja meg a helyettesítéses integrálás szabályát határozott integrálokra vonatkozóan!

sin x = cos x =? sin x = dx =? dx = cos x =? g) Adja meg a helyettesítéses integrálás szabályát határozott integrálokra vonatkozóan! Matematika előadás elméleti kérdéseinél kérdezhető képletek Analízis II Határozatlan integrálszámítás g) t = tg x 2 helyettesítés esetén mivel egyenlő sin x = cos x =? g) t = tg x 2 helyettesítés esetén

Részletesebben

Elektromos alapjelenségek

Elektromos alapjelenségek Elektrosztatika Elektromos alapjelenségek Dörzselektromos jelenség: egymással szorosan érintkező, vagy egymáshoz dörzsölt testek a szétválasztásuk után vonzó, vagy taszító kölcsönhatást mutatnak. Ilyenkor

Részletesebben

Geometriai és hullámoptika. Utolsó módosítás: május 10..

Geometriai és hullámoptika. Utolsó módosítás: május 10.. Geometriai és hullámoptika Utolsó módosítás: 2016. május 10.. 1 Mi a fény? Részecske vagy hullám? Isaac Newton (1642-1727) Pierre de Fermat (1601-1665) Christiaan Huygens (1629-1695) Thomas Young (1773-1829)

Részletesebben

A kvantummechanika kísérleti előzményei A részecske hullám kettősségről

A kvantummechanika kísérleti előzményei A részecske hullám kettősségről A kvantummechanika kísérleti előzményei A részecske hullám kettősségről Utolsó módosítás: 2016. május 4. 1 Előzmények Franck-Hertz-kísérlet (1) A Franck-Hertz-kísérlet vázlatos elrendezése: http://hyperphysics.phy-astr.gsu.edu/hbase/frhz.html

Részletesebben

Alkalmazás a makrókanónikus sokaságra: A fotongáz

Alkalmazás a makrókanónikus sokaságra: A fotongáz Alkalmazás a makrókanónikus sokaságra: A fotongáz A fotonok az elektromágneses sugárzás hordozó részecskéi. Spinkvantumszámuk S=, tehát kvantumstatisztikai szempontból bozonok. Fotonoknak habár a spinkvantumszámuk,

Részletesebben

Határozott integrál és alkalmazásai

Határozott integrál és alkalmazásai Határozott integrál és alkalmazásai 5. május 5.. Alapfeladatok. Feladat: + d = Megoldás: Egy határozott integrál kiszámolása a feladat. Ilyenkor a Newton-Leibniz-tételt használhatjuk, mely azt mondja ki,

Részletesebben

A Hamilton-Jacobi-egyenlet

A Hamilton-Jacobi-egyenlet A Hamilton-Jacobi-egyenlet Ha sikerül olyan kanonikus transzformációt találnunk, amely a Hamilton-függvényt zérusra transzformálja akkor valamennyi új koordináta és impulzus állandó lesz: H 0 Q k = H P

Részletesebben

A munkavégzés a rendszer és a környezete közötti energiacserének a D hőátadástól eltérő valamennyi más formája.

A munkavégzés a rendszer és a környezete közötti energiacserének a D hőátadástól eltérő valamennyi más formája. 11. Transzportfolyamatok termodinamikai vonatkozásai 1 Melyik állítás HMIS a felsoroltak közül? mechanikában minden súrlódásmentes folyamat irreverzibilis. disszipatív folyamatok irreverzibilisek. hőmennyiség

Részletesebben

3. (b) Kereszthatások. Utolsó módosítás: április 1. Dr. Márkus Ferenc BME Fizika Tanszék

3. (b) Kereszthatások. Utolsó módosítás: április 1. Dr. Márkus Ferenc BME Fizika Tanszék 3. (b) Kereszthatások Utolsó módosítás: 2013. április 1. Vezetési együtthatók fémekben (1) 1 Az elektrongáz hővezetési együtthatója A levezetésben alkalmazott feltételek: 1. Minden elektron ugyanazzal

Részletesebben

Az optika tudományterületei

Az optika tudományterületei Az optika tudományterületei Optika FIZIKA BSc, III/1. 1. / 17 Erdei Gábor Elektromágneses spektrum http://infothread.org/science/physics/electromagnetic%20spectrum.jpg Optika FIZIKA BSc, III/1. 2. / 17

Részletesebben

Analitikus térgeometria

Analitikus térgeometria Analitikus térgeometria Wettl Ferenc el adása alapján 2015.09.21. Wettl Ferenc el adása alapján Analitikus térgeometria 2015.09.21. 1 / 23 Tartalom 1 Egyenes és sík egyenlete Egyenes Sík 2 Alakzatok közös

Részletesebben

Vektorok. Wettl Ferenc október 20. Wettl Ferenc Vektorok október / 36

Vektorok. Wettl Ferenc október 20. Wettl Ferenc Vektorok október / 36 Vektorok Wettl Ferenc 2014. október 20. Wettl Ferenc Vektorok 2014. október 20. 1 / 36 Tartalom 1 Vektorok a 2- és 3-dimenziós térben 2 Távolság, szög, orientáció 3 Vektorok koordinátás alakban 4 Összefoglalás

Részletesebben

Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja

Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja Mágneses erőtér Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat A villamos forgógépek mutatós műszerek működésének alapja Magnetosztatikai mező: nyugvó állandó mágnesek és egyenáramok időben

Részletesebben

Differenciálegyenletek numerikus integrálása április 9.

Differenciálegyenletek numerikus integrálása április 9. Differenciálegyenletek numerikus integrálása 2018. április 9. Differenciálegyenletek Olyan egyenletek, ahol a megoldást függvény alakjában keressük az egyenletben a függvény és deriváltjai szerepelnek

Részletesebben

Az alábbi fogalmak és törvények jelentését/értelmezését/matematikai alakját (megfelelő mélységben) ismerni kell: Newtoni mechanika

Az alábbi fogalmak és törvények jelentését/értelmezését/matematikai alakját (megfelelő mélységben) ismerni kell: Newtoni mechanika Az alábbi fogalmak és törvények jelentését/értelmezését/matematikai alakját (megfelelő mélységben) ismerni kell: Newtoni mechanika 1. előadás Vonatkoztatási rendszer Hely-idő-tömeg standardok 3-dimenziós

Részletesebben

Axion sötét anyag. Katz Sándor. ELTE Elméleti Fizikai Tanszék

Axion sötét anyag. Katz Sándor. ELTE Elméleti Fizikai Tanszék Az axion mint sötét anyag ELTE Elméleti Fizikai Tanszék Borsányi Sz., Fodor Z., J. Günther, K-H. Kampert, T. Kawanai, Kovács T., S.W. Mages, Pásztor A., Pittler F., J. Redondo, A. Ringwald, Szabó K. Nature

Részletesebben

Lineáris leképezések. Wettl Ferenc március 9. Wettl Ferenc Lineáris leképezések március 9. 1 / 31

Lineáris leképezések. Wettl Ferenc március 9. Wettl Ferenc Lineáris leképezések március 9. 1 / 31 Lineáris leképezések Wettl Ferenc 2015. március 9. Wettl Ferenc Lineáris leképezések 2015. március 9. 1 / 31 Tartalom 1 Mátrixleképezés, lineáris leképezés 2 Alkalmazás: dierenciálhatóság 3 2- és 3-dimenziós

Részletesebben

Időben állandó mágneses mező jellemzése

Időben állandó mágneses mező jellemzése Időben állandó mágneses mező jellemzése Mágneses erőhatás Mágneses alapjelenségek A mágnesek egymásra és a vastárgyakra erőhatást fejtenek ki. vonzó és taszító erő Mágneses pólusok északi pólus: a mágnestű

Részletesebben

Az elektromágneses indukció jelensége

Az elektromágneses indukció jelensége Az elektromágneses indukció jelensége Korábban láttuk, hogy az elektromos áram hatására mágneses tér keletkezik (Ampère-féle gerjesztési törvény) Kérdés, hogy vajon ez megfordítható-e, és a mágneses tér

Részletesebben

1. Folytonosság. 1. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maximuma és minimuma?

1. Folytonosság. 1. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maximuma és minimuma? . Folytonosság. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maimuma és minimuma?. (A) Tudunk példát adni olyan függvényekre, melyek megegyeznek inverzükkel? Ha igen,

Részletesebben

Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, december 05. Feladatok (maximum 3x6 pont=18 pont)

Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, december 05. Feladatok (maximum 3x6 pont=18 pont) 1. 2. 3. Mondat E1 E2 NÉV: Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, 2017. december 05. Neptun kód: Aláírás: g=10 m/s 2 ; ε 0 = 8.85 10 12 F/m; μ 0 = 4π 10 7 Vs/Am; c = 3 10 8 m/s Előadó: Márkus /

Részletesebben

Utolsó el adás. Wettl Ferenc BME Algebra Tanszék, Wettl Ferenc (BME) Utolsó el adás / 20

Utolsó el adás. Wettl Ferenc BME Algebra Tanszék,   Wettl Ferenc (BME) Utolsó el adás / 20 Utolsó el adás Wettl Ferenc BME Algebra Tanszék, http://www.math.bme.hu/~wettl 2013-12-09 Wettl Ferenc (BME) Utolsó el adás 2013-12-09 1 / 20 1 Dierenciálegyenletek megoldhatóságának elmélete 2 Parciális

Részletesebben