Elektrodinamika. Maxwell egyenletek: Kontinuitási egyenlet: div n v =0. div E =4 div B =0. rot E = rot B=

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Elektrodinamika. Maxwell egyenletek: Kontinuitási egyenlet: div n v =0. div E =4 div B =0. rot E = rot B="

Átírás

1 Elektrodinamika Maxwell egyenletek: div E =4 div B =0 rot E = rot B= 1 B c t 1 E c t 4 c j Kontinuitási egyenlet: n t div n v =0

2 Vektoranalízis rot rot u=grad divu u rot grad =0 div rotu=0 udv= ud F V Gauss tétel F rot u d F= u d x Stokes tétel F G

3 Plazma alapjellemzői Elektronok, ionok és semleges molekulák/atomok keveréke Kvázineutralítás: Q=0

4 Plazmafrekvencia Közelítés: áramok elhanyagolása, x kicsi n x,t =n0 n' x,t kvázineutralítás nm v = ne E csak az elektronok mozognak t div E= 4 en' x,t Poisson egyenlet n' t n 0 div v=0 kontinuítási egyenlet idő szerint diff. n' 4 n0 e n'=0 rezgőmozgás t m n ' x,t = A x e ±i t p= alakú megoldás 4 n 0 e m elektron plazmafrekvencia

5

6 Debye hossz Határfeltételek: 1. közeltér: Coulomb tér. Végtelenben tartson a próbatest potenciálja zérushoz

7 Debye hossz div grad = 4 q r Poisson egyenlet n =ni exp e n =ne exp elektronok Boltzmann eloszlása kt Ze kt ionok Boltzmann eloszlása { div grad = 4 q r ene exp e kt ezn i exp sorfejtés : csak elsőrendű tagok és : ene Zeni =0 : { [ div grad = 4 q r e ne kt e Z ni kt gömbszimmetrikus megoldást keresünk ]} Ze } kt

8 Debye hossz = q r Z = Z exp n i ne r D 1 Z és D = ha r D, Coulumb ha r D, 0,ahol kt 4 e n e a Debye hossz

9 Plazmaparaméter Az a távolság, ahol e töltésű részecske erőterében egy másik e töltés potenciális energiája megegyezik a termikus energiájával rc = = e kt D rc ; plazmaparaméter

10 Plazmák osztályozása 1, klasszikus kinetikus plazmák 1, klasszikus kollektív plazmák kt e me c, relativisztikus plazmák k T e W Fermi, degenerált vagy kvantumplazmák

11 Klasszikus kinetikus plazmák Elektromosan töltött részecskék mozgástörvénye: m d dv e =e E v B m g v dt és d r=v dt dt c m e v =e E d r m g d r v v B c a töltés által d r távolság befutása során végzett munka e c v v B 0!

12 Homogén E és B E: B: B v m m dv dt dv =e E mint a szabadesés e = v B dt c semmi sem történik!

13 Homogén E és B B v : m v e = v B r c c= eb mc ; r c= v c a ciklotron Larmor vagy girofrekvencia /sugár

14 Párhuzamos E és B Egyenletesen növekvő menetemelkedésű spirál

15 Merőleges E és B Az elektromos drift m dv dt =e E v D =c E B B V =v v D dv e e c v B sebességgel mozgó rendszerben : esetén = V B dt c vd a driftsebesség töltésfüggetlen m

16 Merőleges g és B A mechanikai drift m dv e =m g v B dt c m g B v D =c sebességgel mozgó rendszerben : e B V =v v D esetén dv e = V B dt c vd a driftsebesség töltésfüggő! m

17 Inhomogén B Az inhomogenitási drift Perturbációszámítás: lassú és kis változások: B alig változik a ciklotronsugáron belül B alig változik Tc alatt

18 Inhomogén B Az inhomogenitási drift r c= mcv eb ha a pozitív részecske felfelé halad, B nő, r c csökken ha a pozitív részceske lefelé halad, B csökken, r c nő v D=v grad B rc B driftsebesség töltésfüggő!

19 Inhomogén B A centrifugális drift a részecske v sebeséggel mozog a görbült erővonal mellett itt m g helyett m v R erő lép fel mechanikai drift! v D= v R c driftsebesség töltésfüggő!

20 Driftek összefoglalása

21 Adiabatikus invariánsok I. A mágneses nyomaték megmaradása q töltésű részecske impulzusnyomatéka homogén mágneses térben : N =r c mv ' =c m v =k W =konstans qb B mozgásállandó! köráram mágneses momentuma csak homogén B esetén igaz egzaktul adiabatikus invariáns

22 Mágneses tükör 1 m v1 v 1 = 1 m v v ha a. pontban B0 =R Bo v1 B0 = v RB0 v =v1 v 1 R 1 Ha R nagy, v1 =0 v1 R=1 tg = v1 v 1 v 1 a veszteségi szög

23 Sugárzási övek, auróra

24 Longitudinális és drift (II. és III.) invariáns II. longitudinális adiabatikus invariáns giromozgásra átlagolva l m m v dl= konstans ; tükörpontok közötti pályák periodicitása l m III. drif adiabatikus invariásn giro és tükörmozgásra átlagolva q = konstans ; a driftmozgás által körülfogott fluxus c

25 Driftmozgások a magnetoszférában

26

2. Plazmafizikai alapfogalmak

2. Plazmafizikai alapfogalmak 2. Plazmafizikai alapfogalmak Dósa Melinda A Naprendszer fizikája 2016 1 Mi a plazma? Ionizált gáz, melyre igaz: kívűlről semleges (=kvázineutrális) kollektív tulajdonsággal rendelkezik (árnyékolás működik)

Részletesebben

2. Plazmafizikai alapfogalmak. Dósa Melinda

2. Plazmafizikai alapfogalmak. Dósa Melinda 2. Plazmafizikai alapfogalmak Dósa Melinda Mi a plazma? PLAZMA: Ionizált gáz, melyre igaz: kívűlről semleges (=kvázineutrális) kollektív tulajdonsággal rendelkezik (egy részecske egyszerre több részecskével

Részletesebben

FIZIKA II. Dr. Rácz Ervin. egyetemi docens

FIZIKA II. Dr. Rácz Ervin. egyetemi docens FIZIKA II. Dr. Rácz Ervin egyetemi docens Fontos tudnivalók e-mail: racz.ervin@kvk.uni-obuda.hu web: http://uni-obuda.hu/users/racz.ervin/index.htm Iroda: Bécsi út, C. épület, 124. szoba Fizika II. - ismertetés

Részletesebben

Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2)

Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2) 2. Gyakorlat 30B-14 Az Egyenlítőnél, a földfelszín közelében a mágneses fluxussűrűség iránya északi, nagysága kb. 50µ T,az elektromos térerősség iránya lefelé mutat, nagysága; kb. 100 N/C. Számítsuk ki,

Részletesebben

3. Plazma leírási módszerek, Hullámok

3. Plazma leírási módszerek, Hullámok 3. Plazma leírási módszerek, Hullámok Dósa Melinda A Naprendszer fizikája 2016 1 Tesztrészecske modell Kinetikus leírás Kétfolyadék modell Hibrid modellek Hidrodinamikai modellek A Naprendszer fizikája

Részletesebben

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya.

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendület Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendülettétel: Az lendület erő hatására változik meg. Az eredő erő határozza meg

Részletesebben

Kirchhoff 2. törvénye (huroktörvény) szerint az áramkörben levő elektromotoros erők. E i = U j (3.1)

Kirchhoff 2. törvénye (huroktörvény) szerint az áramkörben levő elektromotoros erők. E i = U j (3.1) 3. Gyakorlat 29A-34 Egy C kapacitású kondenzátort R ellenálláson keresztül sütünk ki. Mennyi idő alatt csökken a kondenzátor töltése a kezdeti érték 1/e 2 ed részére? Kirchhoff 2. törvénye (huroktörvény)

Részletesebben

Korszerű nukleáris energiatermelés Fúzió 2.

Korszerű nukleáris energiatermelés Fúzió 2. Korszerű nukleáris energiatermelés Fúzió 2. Fúziós berendezések típusai, részegységek, diagnosztika Pokol Gergő BME NTI Korszerű nukleáris energiatermelés 2016. szeptember 28. Mágneses összetartás Forró,

Részletesebben

3. Plazma leírási módszerek, Hullámok. Dósa Melinda

3. Plazma leírási módszerek, Hullámok. Dósa Melinda 3. Plazma leírási módszerek, Hullámok Dósa Melinda Tesztrészecske modell Kinetikus leírás Kétfolyadék modell Hibrid modellek Hidrodinamikai modellek Tesztrészecske modell (Független részecske modell, particle

Részletesebben

Előadás menete. Magfúzióból nyerhető energia és az energiatermelés feltétele. Fúziós kutatási ágazatok

Előadás menete. Magfúzióból nyerhető energia és az energiatermelés feltétele. Fúziós kutatási ágazatok Előadás menete Magfúzióból nyerhető energia és az energiatermelés feltétele Fúziós kutatási ágazatok Hőmérséklet és sűrűségmérés egyik módszere plazmafizikában a Thomson szórás Fúziós kutatás célja A nap

Részletesebben

Bevezetés a fúziós plazmafizikába 3.

Bevezetés a fúziós plazmafizikába 3. Bevezetés a fúziós plazmafizikába 3. Mágneses összetartás konfigurációk Dr. Pokol Gergő BME NTI Bevezetés a fúziós plazmafizikába 2018. szeptember 18. Tematika, időbeosztás Dátum Előadó Cím Szeptember

Részletesebben

AZ ELEKTRON MÁGNESES MOMENTUMA. H mágneses erœtérben az m mágneses dipólmomentummal jellemzett testre M = m H forgatónyomaték hat.

AZ ELEKTRON MÁGNESES MOMENTUMA. H mágneses erœtérben az m mágneses dipólmomentummal jellemzett testre M = m H forgatónyomaték hat. AZ ELEKTRON MÁGNESES MOMENTUMA Mágneses dipólmomentum: m H mágneses erœtérben az m mágneses dipólmomentummal jellemzett testre M = m H forgatónyomaték hat. M = m H sinϕ (Elektromos töltés, q: monopólus

Részletesebben

3. Plazma leírási módszerek, Hullámok

3. Plazma leírási módszerek, Hullámok 3. Plazma leírási módszerek, Hullámok Dósa Melinda A Naprendszer fizikája 2016 1 Tesztrészecske modell Kinetikus leírás Kétfolyadék modell Hibrid modellek Hidrodinamikai modellek A Naprendszer fizikája

Részletesebben

Mágneses monopólusok?

Mágneses monopólusok? 1 Mágneses monopólusok? (Atomcsill 2015 február) Palla László ELTE Elméleti Fizikai Tanszék 2 Maxwell egyenletek potenciálok, mértéktranszformáció legegyszerűbb e.m. mezők A klasszikus e g rendszer A monopólus

Részletesebben

Korszerű nukleáris energiatermelés Fúzió 1.

Korszerű nukleáris energiatermelés Fúzió 1. Korszerű nukleáris energiatermelés Fúzió 1. Magfizikai alapok, plazma alapok, MHD, energiamérleg, anyagmérleg Pokol Gergő BME NTI Korszerű nukleáris energiatermelés 201. november 6. Korszerű nukleáris

Részletesebben

A Tycho-szupernova. 1572ben Tycho Brahe megfigyelt egy felrobbanó csillagot. 400 évvel később egy többmillió fokos buborék látható (zöld és kék a

A Tycho-szupernova. 1572ben Tycho Brahe megfigyelt egy felrobbanó csillagot. 400 évvel később egy többmillió fokos buborék látható (zöld és kék a A plazmaállapot + és tötésekből álló semleges gáz A részecskék közötti kcshatás jelentős A Debye-sugáron belül sok részecske található A Debye-sugár kicsi a plazma méreteihez képest Az elektron-kcsh erősebb,

Részletesebben

Korszerű nukleáris energiatermelés Fúzió 2.

Korszerű nukleáris energiatermelés Fúzió 2. Korszerű nukleáris energiatermelés Fúzió 2. Fúziós berendezések típusai, részegységek Pokol Gergő BME NTI Korszerű nukleáris energiatermelés 2018. szeptember 12. Kahoot 1. Telefon 2. WiFi jelszó: wigner2008

Részletesebben

Gyorsítók. Veszprémi Viktor ATOMKI, Debrecen. Supported by NKTH and OTKA (H07-C 74281) 2009. augusztus 17 Hungarian Teacher Program, CERN 1

Gyorsítók. Veszprémi Viktor ATOMKI, Debrecen. Supported by NKTH and OTKA (H07-C 74281) 2009. augusztus 17 Hungarian Teacher Program, CERN 1 Gyorsítók Veszprémi Viktor ATOMKI, Debrecen Supported by NKTH and OTKA (H07-C 74281) 2009. augusztus 17 Hungarian Teacher Program, CERN 1 Az anyag felépítése Részecskefizika kvark, lepton Erős, gyenge,

Részletesebben

http://www.nature.com 1) Magerő-sugár: a magközéppontból mért távolság, ameddig a magerők hatótávolsága terjed. Rutherford-szórásból határozható meg. R=1,4 x 10-13 A 1/3 cm Az atommag terének potenciálja

Részletesebben

Elektromos alapjelenségek

Elektromos alapjelenségek Elektrosztatika Elektromos alapjelenségek Dörzselektromos jelenség: egymással szorosan érintkező, vagy egymáshoz dörzsölt testek a szétválasztásuk után vonzó, vagy taszító kölcsönhatást mutatnak. Ilyenkor

Részletesebben

azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra ábra

azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra ábra 4. Gyakorlat 31B-9 A 31-15 ábrán látható, téglalap alakú vezetőhurok és a hosszúságú, egyenes vezető azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra. 31-15 ábra

Részletesebben

A Hamilton-Jacobi-egyenlet

A Hamilton-Jacobi-egyenlet A Hamilton-Jacobi-egyenlet Ha sikerül olyan kanonikus transzformációt találnunk, amely a Hamilton-függvényt zérusra transzformálja akkor valamennyi új koordináta és impulzus állandó lesz: H 0 Q k = H P

Részletesebben

Atomfizika. A hidrogén lámpa színképei. Elektronok H atom. Fényképlemez. emisszió H 2. gáz

Atomfizika. A hidrogén lámpa színképei. Elektronok H atom. Fényképlemez. emisszió H 2. gáz Atomfizika A hidrogén lámpa színképei - Elektronok H atom emisszió Fényképlemez V + H 2 gáz Az atom és kvantumfizika fejlődésének fontos szakasza volt a hidrogén lámpa színképeinek leírása, és a vonalas

Részletesebben

Fizika II minimumkérdések. A zárójelben lévő értékeket nem kötelező memorizálni, azok csak tájékoztató jellegűek.

Fizika II minimumkérdések. A zárójelben lévő értékeket nem kötelező memorizálni, azok csak tájékoztató jellegűek. izika II minimumkérdések zárójelben lévő értékeket nem kötelező memorizálni, azok csak tájékoztató jellegűek. 1. Coulomb erőtörvény: = kq r 2 e r (k = 9 10 9 m2 C 2 ) 2. Coulomb állandó és vákuum permittivitás

Részletesebben

Szilárd testek sugárzása

Szilárd testek sugárzása A fény keletkezése Szilárd testek sugárzása A szilárd test melegítés hatására fényt bocsát ki A sugárzás forrása a közelítőleg termikus egyensúlyban lévő kibocsátó test atomi részecskéinek véletlenszerű

Részletesebben

A mechanikai alaptörvények ismerete

A mechanikai alaptörvények ismerete A mechanikai alaptörvények ismerete Az oldalszám hivatkozások a Hudson-Nelson Útban a modern fizikához c. könyv megfelelő szakaszaira vonatkoznak. A Feladatgyűjtemény a Mérnöki fizika tárgy honlapjára

Részletesebben

Szabályozott magfúzió

Szabályozott magfúzió Szabályozott magfúzió Pokol Gergő BME NTI Magfizika 2017. május 4. Szabályozott magfúzió A fúzió fizikájáról Tehetetlenségi összetartás Mágneses összetartás Hol tartunk ma? Fúziós útiterv 2 Magenergia

Részletesebben

Előszó.. Bevezetés. 1. A fizikai megismerés alapjai Tér is idő. Hosszúság- és időmérés.

Előszó.. Bevezetés. 1. A fizikai megismerés alapjai Tér is idő. Hosszúság- és időmérés. SZABÓ JÁNOS: Fizika (Mechanika, hőtan) I. TARTALOMJEGYZÉK Előszó.. Bevezetés. 1. A fizikai megismerés alapjai... 2. Tér is idő. Hosszúság- és időmérés. MECHANIKA I. Az anyagi pont mechanikája 1. Az anyagi

Részletesebben

Fizika 1 Elektrodinamika beugró/kis kérdések

Fizika 1 Elektrodinamika beugró/kis kérdések Fizika 1 Elektrodinamika beugró/kis kérdések 1.) Írja fel a 4 Maxwell-egyenletet lokális (differenciális) alakban! rot = j+ D rot = B div B=0 div D=ρ : elektromos térerősség : mágneses térerősség D : elektromos

Részletesebben

a térerősség mindig az üreg falára merőleges, ezért a tér ott nem gömbszimmetrikus.

a térerősség mindig az üreg falára merőleges, ezért a tér ott nem gömbszimmetrikus. 2. Gyakorlat 25A-0 Tekintsünk egy l0 cm sugarú üreges fémgömböt, amelyen +0 µc töltés van. Legyen a gömb középpontja a koordinátarendszer origójában. A gömb belsejében az x = 5 cm pontban legyen egy 3

Részletesebben

3.1. ábra ábra

3.1. ábra ábra 3. Gyakorlat 28C-41 A 28-15 ábrán két, azonos anyagból gyártott ellenállás látható. A véglapokat vezető 3.1. ábra. 28-15 ábra réteggel vonták be. Tételezzük fel, hogy az ellenállások belsejében az áramsűrűség

Részletesebben

1. fejezet. Gyakorlat C-41

1. fejezet. Gyakorlat C-41 1. fejezet Gyakorlat 3 1.1. 28C-41 A 1.1 ábrán két, azonos anyagból gyártott ellenállás látható. A véglapokat vezető réteggel vonták be. Tételezzük fel, hogy az ellenállások belsejében az áramsűrűség bármely,

Részletesebben

A kvantummechanika kísérleti előzményei A részecske hullám kettősségről

A kvantummechanika kísérleti előzményei A részecske hullám kettősségről A kvantummechanika kísérleti előzményei A részecske hullám kettősségről Utolsó módosítás: 2016. május 4. 1 Előzmények Franck-Hertz-kísérlet (1) A Franck-Hertz-kísérlet vázlatos elrendezése: http://hyperphysics.phy-astr.gsu.edu/hbase/frhz.html

Részletesebben

Szabályozott magfúzió

Szabályozott magfúzió Szabályozott magfúzió Pokol Gergő BME NTI Magfizika 2018. május 10. Magenergia felszabadítása maghasadás 2 A Nap energiatermelése Több fajta reakció: p-p láncok, CNO ciklus. Mindig van benne pn átalakulás,

Részletesebben

Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008.

Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008. Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008. Kiss István,Vértes Attila: Magkémia (Akadémiai Kiadó) Nagy Lajos György,

Részletesebben

Dinamika. A dinamika feladata a test(ek) gyorsulását okozó erők matematikai leírása.

Dinamika. A dinamika feladata a test(ek) gyorsulását okozó erők matematikai leírása. Dinamika A dinamika feladata a test(ek) gyorsulását okozó erők matematikai leírása. Newton törvényei: I. Newton I. axiómája: Minden nyugalomban lévő test megtartja nyugalmi állapotát, minden mozgó test

Részletesebben

Erős terek leírása a Wigner-formalizmussal

Erős terek leírása a Wigner-formalizmussal Erős terek leírása a Wigner-formalizmussal Berényi Dániel 1, Varró Sándor 1, Vladimir Skokov 2, Lévai Péter 1 1, MTA Wigner FK, Budapest 2, RIKEN/BNL, Upton, USA Wigner 115 2017. November 15. Budapest

Részletesebben

Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja

Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja Mágneses erőtér Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat A villamos forgógépek mutatós műszerek működésének alapja Magnetosztatikai mező: nyugvó állandó mágnesek és egyenáramok időben

Részletesebben

1. Ha két közeg határfelületén nem folyik vezetési áram, a mágneses térerősség vektorának a(z). komponense folytonos.

1. Ha két közeg határfelületén nem folyik vezetési áram, a mágneses térerősség vektorának a(z). komponense folytonos. Az alábbi kiskérdéseket a korábbi Pacher-féle vizsgasorokból és zh-kból gyűjtöttük ki. A többségnek a lefényképezett hivatalos megoldás volt a forrása (néha még ezt is óvatosan kellett kezelni, mert egy

Részletesebben

Tárgymutató. dinamika, 5 dinamikai rendszer, 4 végtelen sok állapotú, dinamikai törvény, 5 dinamikai törvények, 12 divergencia,

Tárgymutató. dinamika, 5 dinamikai rendszer, 4 végtelen sok állapotú, dinamikai törvény, 5 dinamikai törvények, 12 divergencia, Tárgymutató állapottér, 3 10, 107 általánosított impulzusok, 143 147 általánosított koordináták, 143 147 áramlás, 194 197 Arisztotelész mozgástörvényei, 71 77 bázisvektorok, 30 centrifugális erő, 142 ciklikus

Részletesebben

MSC ELMÉLETI FIZIKA SZIGORLAT TÉTELEK. A-01. Tétel A KLASSZIKUS FIZIKA ÉS A NEMRELATIVISZTIKUS KVANTUMMECHANIKA ALAPEGYENLETEI.

MSC ELMÉLETI FIZIKA SZIGORLAT TÉTELEK. A-01. Tétel A KLASSZIKUS FIZIKA ÉS A NEMRELATIVISZTIKUS KVANTUMMECHANIKA ALAPEGYENLETEI. MSC ELMÉLETI FIZIKA SZIGORLAT TÉTELEK A-01. Tétel A KLASSZIKUS FIZIKA ÉS A NEMRELATIVISZTIKUS KVANTUMMECHANIKA ALAPEGYENLETEI. A klasszikus mechanika elvei. A Newton axiómák. A Lagrange és a Hamilton formalizmus

Részletesebben

Kérdések Fizika112. Mozgás leírása gyorsuló koordinátarendszerben, folyadékok mechanikája, hullámok, termodinamika, elektrosztatika

Kérdések Fizika112. Mozgás leírása gyorsuló koordinátarendszerben, folyadékok mechanikája, hullámok, termodinamika, elektrosztatika Kérdések Fizika112 Mozgás leírása gyorsuló koordinátarendszerben, folyadékok mechanikája, hullámok, termodinamika, elektrosztatika 1. Adjuk meg egy tömegpontra ható centrifugális erő nagyságát és irányát!

Részletesebben

Speciális relativitás

Speciális relativitás Bevezetés a modern fizika fejezeteibe 3. (b) Speciális relativitás Relativisztikus dinamika Utolsó módosítás: 2013 október 15. 1 A relativisztikus tömeg (1) A bevezetett Lorentz-transzformáció biztosítja

Részletesebben

19. Az elektron fajlagos töltése

19. Az elektron fajlagos töltése 19. Az elektron fajlagos töltése Hegyi Ádám 2015. február Tartalomjegyzék 1. Bevezetés 2 2. Mérési összeállítás 4 2.1. Helmholtz-tekercsek.............................. 5 2.2. Hall-szonda..................................

Részletesebben

Elektromágneses hullámok

Elektromágneses hullámok Bevezetés a modern fizika fejezeteibe 2. (a) Elektromágneses hullámok Utolsó módosítás: 2015. október 3. 1 A Maxwell-egyenletek (1) (2) (3) (4) E: elektromos térerősség D: elektromos eltolás H: mágneses

Részletesebben

9. évfolyam. Osztályozóvizsga tananyaga FIZIKA

9. évfolyam. Osztályozóvizsga tananyaga FIZIKA 9. évfolyam Osztályozóvizsga tananyaga A testek mozgása 1. Egyenes vonalú egyenletes mozgás 2. Változó mozgás: gyorsulás fogalma, szabadon eső test mozgása 3. Bolygók mozgása: Kepler törvények A Newtoni

Részletesebben

A Maxwellegyenletek. Elektromágneses térjellemz k: E( r, t) és H( r, t) térer sségek, D( r, t) elektromos eltolás és B( r, t) mágneses indukció.

A Maxwellegyenletek. Elektromágneses térjellemz k: E( r, t) és H( r, t) térer sségek, D( r, t) elektromos eltolás és B( r, t) mágneses indukció. A Maxwellegyenletek Elektromágneses térjellemz k: E( r, t) és H( r, t) térer sségek, D( r, t) elektromos eltolás és B( r, t) mágneses indukció. Milyen általános, a konkrét szituációtól (pl. közeg anyagi

Részletesebben

Kvantummechanika gyakorlat Beadandó feladatsor Határid : 4. heti gyakorlatok eleje

Kvantummechanika gyakorlat Beadandó feladatsor Határid : 4. heti gyakorlatok eleje Kvantummechanika gyakorlat 015 1. Beadandó feladatsor Határid : 4. heti gyakorlatok eleje 1. Mutassuk meg, hogy A és B tetsz leges operátorokra igaz, hogy e B A e B = A + [B, A] + 1![ B, [B, A] ] +....

Részletesebben

ALACSONY HŐMÉRSÉKLETŰ PLAZMAFIZIKA

ALACSONY HŐMÉRSÉKLETŰ PLAZMAFIZIKA ALACSONY HŐMÉRSÉKLETŰ PLAZMAFIZIKA Dr. Donkó Zoltán MTA Wigner Fizikai Kutatóközpont Szilárdtestfizikai és Optikai Intézet Komplex Folyadékok Osztály MTA Csillebérc / KFKI donko.zoltan@wigner.mta.hu zoltan.donko@gmail.com

Részletesebben

Szabályozott magfúzió

Szabályozott magfúzió Szabályozott magfúzió Pokol Gergő BME NTI Magfizika 2013. május 7. Fajlagos kötési energia (MeV/amu) Pokol Gergő: Szabályozott magfúzió Magenergia felszabadítása Nehéz atommagok hasítása, könnyű atommagok

Részletesebben

Fizika-Biofizika I. DIFFÚZIÓ OZMÓZIS Október 22. Vig Andrea PTE ÁOK Biofizikai Intézet

Fizika-Biofizika I. DIFFÚZIÓ OZMÓZIS Október 22. Vig Andrea PTE ÁOK Biofizikai Intézet Fizika-Biofizika I. DIFFÚZIÓ OZMÓZIS 2013. Október 22. Vig Andrea PTE ÁOK Biofizikai Intézet DIFFÚZIÓ 1. KÍSÉRLET Fizika-Biofizika I. - DIFFÚZIÓ 1. kísérlet: cseppentsünk tintát egy üveg vízbe 1. megfigyelés:

Részletesebben

FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István

FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István Ez egy gázos előadás lesz! ( hőtana) Dr. Seres István Kinetikus gázelmélet gáztörvények Termodinamikai főtételek fft.szie.hu 2 Seres.Istvan@gek.szie.hu Kinetikus gázelmélet Az ideális gáz állapotjelzői:

Részletesebben

Elektrosztatikai alapismeretek

Elektrosztatikai alapismeretek Elektrosztatikai alapismeretek THALÉSZ: a borostyánt (élektron) megdörzsölve az a könnyebb testeket magához vonzza. Az egymással szorosan érintkező anyagok elektromosan feltöltődnek, elektromos állapotba

Részletesebben

MATEMATIKAI ÉS FIZIKAI ALAPOK

MATEMATIKAI ÉS FIZIKAI ALAPOK MATEMATIKAI ÉS FIZIKAI ALAPOK F:\EGYJEGYZ\20\alapok.doc 4 Feb 20 www.rmki.kfki.hu/~szego/egyjegyz. A Dirac-delta 2. Elektrodinamika mozgó közegekben 3. Függvénytranszformációk (Fourier transzformáció)

Részletesebben

FIZIKA II. Az áram és a mágneses tér kapcsolata

FIZIKA II. Az áram és a mágneses tér kapcsolata Az áram és a mágneses tér kapcsolata Mágneses tér jellemzése: Mágneses térerősség: H (A/m) Mágneses indukció: B (T = Vs/m 2 ) B = μ 0 μ r H 2Seres.Istvan@gek.szie.hu Sztatikus terek Elektrosztatikus tér:

Részletesebben

A mágneses tulajdonságú magnetit ásvány, a görög Magnészia városról kapta nevét.

A mágneses tulajdonságú magnetit ásvány, a görög Magnészia városról kapta nevét. MÁGNESES MEZŐ A mágneses tulajdonságú magnetit ásvány, a görög Magnészia városról kapta nevét. Megfigyelések (1, 2) Minden mágnesnek két pólusa van, északi és déli. A felfüggesztett mágnes - iránytű -

Részletesebben

Szabályozott magfúzió

Szabályozott magfúzió Szabályozott magfúzió Pokol Gergő BME NTI Magfizika 2014. május 8. Szabályozott magfúzió A fúzió fizikájáról Tehetetlenségi összetartás Mágneses összetartás Hol tartunk ma? Fúziós útiterv 2 Magenergia

Részletesebben

1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel

1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel 1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel Munkavégzés, teljesítmény 1.1. Feladat: (HN 6B-8) Egy rúgót nyugalmi állapotból 4 J munka árán 10 cm-rel nyújthatunk meg. Mekkora

Részletesebben

Elektrosztatika. 1.2. Mekkora két egyenlő nagyságú töltés taszítja egymást 10 m távolságból 100 N nagyságú erővel? megoldás

Elektrosztatika. 1.2. Mekkora két egyenlő nagyságú töltés taszítja egymást 10 m távolságból 100 N nagyságú erővel? megoldás Elektrosztatika 1.1. Mekkora távolságra van egymástól az a két pontszerű test, amelynek töltése 2. 10-6 C és 3. 10-8 C, és 60 N nagyságú erővel taszítják egymást? 1.2. Mekkora két egyenlő nagyságú töltés

Részletesebben

Gyorsítók. Veszprémi Viktor ATOMKI, Debrecen. Supported by OTKA MB augusztus 16. Hungarian Teacher Program, CERN 1

Gyorsítók. Veszprémi Viktor ATOMKI, Debrecen. Supported by OTKA MB augusztus 16. Hungarian Teacher Program, CERN 1 Gyorsítók Veszprémi Viktor ATOMKI, Debrecen Supported by OTKA MB08-80137 2010. augusztus 16. Hungarian Teacher Program, CERN 1 Hogyan látunk különböző méreteket? A világban megtalálható tárgyak mérete

Részletesebben

Az időtől független Schrödinger-egyenlet (energia sajátértékegyenlet), A Laplace operátor derékszögű koordinátarendszerben

Az időtől független Schrödinger-egyenlet (energia sajátértékegyenlet), A Laplace operátor derékszögű koordinátarendszerben Atomfizika ψ ψ ψ ψ ψ E z y x U z y x m = + + + ),, ( h ) ( ) ( ) ( ) ( r r r r ψ ψ ψ E U m = + Δ h z y x + + = Δ ),, ( ) ( z y x ψ =ψ r Az időtől független Schrödinger-egyenlet (energia sajátértékegyenlet),

Részletesebben

Atomfizika. Fizika kurzus Dr. Seres István

Atomfizika. Fizika kurzus Dr. Seres István Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés 440 BC Democritus, Leucippus, Epicurus 1660 Pierre Gassendi 1803 1897 1904 1911 19 193 John Dalton Joseph John (J.J.) Thomson J.J. Thomson

Részletesebben

3. (b) Kereszthatások. Utolsó módosítás: április 1. Dr. Márkus Ferenc BME Fizika Tanszék

3. (b) Kereszthatások. Utolsó módosítás: április 1. Dr. Márkus Ferenc BME Fizika Tanszék 3. (b) Kereszthatások Utolsó módosítás: 2013. április 1. Vezetési együtthatók fémekben (1) 1 Az elektrongáz hővezetési együtthatója A levezetésben alkalmazott feltételek: 1. Minden elektron ugyanazzal

Részletesebben

Elektromosságtan. Farzan Ruszlán SZE, Fizika és Kémia Tsz szeptember 29.

Elektromosságtan. Farzan Ruszlán SZE, Fizika és Kémia Tsz szeptember 29. Elektromosságtan Farzan Ruszlán SZE, Fizika és Kémia Tsz. 2006. szeptember 29. Coulomb-törvény Gauss-tétel Elektromos dipólus Az elektromos dipólus erővonalai Elektromos tér feszültsége Kondenzátor Elektrosztatikai

Részletesebben

Speciális relativitás

Speciális relativitás Bevezetés a modern fizika fejezeteibe 3. (a) Speciális relativitás Relativisztikus kinematika Utolsó módosítás: 2015. január 11.. 1 Egy egyszerű probléma (1) A K nyugvó vonatkoztatási rendszerben tekintsünk

Részletesebben

FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István

FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István Ez egy gázos előadás lesz! ( hőtana) Dr. Seres István Kinetikus gázelmélet gáztörvények Termodinamikai főtételek fft.szie.hu 2 Seres.Istvan@gek.szie.hu Kinetikus gázelmélet Az ideális gáz állapotjelzői:

Részletesebben

Atomfizika. Fizika kurzus Dr. Seres István

Atomfizika. Fizika kurzus Dr. Seres István Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés J.J. Thomson (1897) Katódsugárcsővel végzett kísérleteket az elektron fajlagos töltésének (e/m) meghatározására. A katódsugarat alkotó részecskét

Részletesebben

1. ábra. 24B-19 feladat

1. ábra. 24B-19 feladat . gyakorlat.. Feladat: (HN 4B-9) A +Q töltés egy hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld.. ábra.). Számítsuk ki az E elektromos térerősséget a vonal. ábra. 4B-9 feladat irányában lévő,

Részletesebben

Nemlineáris szállítószalag fúziós plazmákban

Nemlineáris szállítószalag fúziós plazmákban Nemlineáris szállítószalag fúziós plazmákban Pokol Gergő BME NTI BME TTK Kari Nyílt Nap 2018. november 16. Hogyan termeljünk villamos energiát? Bőséges üzemanyag: Amennyit csak akarunk, egyenletesen elosztva!

Részletesebben

Theory hungarian (Hungary)

Theory hungarian (Hungary) Q3-1 A Nagy Hadronütköztető (10 pont) Mielőtt elkezded a feladat megoldását, olvasd el a külön borítékban lévő általános utasításokat! Ez a feladat a CERN-ben működő részecskegyorsító, a Nagy Hadronütköztető

Részletesebben

FIZIKA II. Az áram és a mágneses tér kapcsolata

FIZIKA II. Az áram és a mágneses tér kapcsolata Az áram és a mágneses tér kapcsolata Mágneses tér jellemzése: Mágneses térerősség: H (A/m) Mágneses indukció: B (T) B = μ 0 μ r H 2Seres.Istvan@gek.szie.hu Sztatikus terek Elektrosztatikus tér: forrásos

Részletesebben

Vizsgatémakörök fizikából A vizsga minden esetben két részből áll: Írásbeli feladatsor (70%) Szóbeli felelet (30%)

Vizsgatémakörök fizikából A vizsga minden esetben két részből áll: Írásbeli feladatsor (70%) Szóbeli felelet (30%) Vizsgatémakörök fizikából A vizsga minden esetben két részből áll: Írásbeli feladatsor (70%) Szóbeli felelet (30%) A vizsga értékelése: Elégtelen: ha az írásbeli és a szóbeli rész összesen nem éri el a

Részletesebben

A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra

A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra . Gyakorlat 4B-9 A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld. 4-6 ábra.). Számítsuk ki az E elektromos térerősséget a vonal irányában lévő, annak.. ábra. 4-6 ábra végpontjától

Részletesebben

Fermi Dirac statisztika elemei

Fermi Dirac statisztika elemei Fermi Dirac statisztika elemei A Fermi Dirac statisztika alapjai Nagy részecskeszámú rendszerek fizikai jellemzéséhez statisztikai leírást kell alkalmazni. (Pl. gázokra érvényes klasszikus statisztika

Részletesebben

Fizika belépő kérdések /Földtudományi alapszak I. Évfolyam II. félév/

Fizika belépő kérdések /Földtudományi alapszak I. Évfolyam II. félév/ Fizika belépő kérdések /Földtudományi alapszak I. Évfolyam II. félév/. Coulomb törvény: a pontszerű töltések között ható erő (F) egyenesen arányos a töltések (Q,Q ) szorzatával és fordítottan arányos a

Részletesebben

Molekuláris dinamika I. 10. előadás

Molekuláris dinamika I. 10. előadás Molekuláris dinamika I. 10. előadás Miről is szól a MD? nagy részecskeszámú rendszerek ismerjük a törvényeket mikroszkópikus szinten minden részecske mozgását szimuláljuk? Hogyan tudjuk megérteni a folyadékok,

Részletesebben

Mindkét oldal divergenciáját véve, és kihasználva a másik E térre vonatkozó egyenletet, Laplace-egyenletet kapunk:

Mindkét oldal divergenciáját véve, és kihasználva a másik E térre vonatkozó egyenletet, Laplace-egyenletet kapunk: 1 / 6 A TételWiki wikiből 1 Coulomb- és Gauss-törvény, szuperpozíció elve, stacionárius áram. [1] 2 Vezetők, szigetelők, dielektrikumok, elektormos polarizáció, magnetosztatika. 2.1 Vezetők [3] 2.2 Dielektrikumok

Részletesebben

Reakciókinetika és katalízis

Reakciókinetika és katalízis Reakciókinetika és katalízis k 4. előadás: 1/14 Különbségek a gázfázisú és az oldatreakciók között: 1 Reaktáns molekulák által betöltött térfogat az oldatreakciónál jóval nagyobb. Nincs akadálytalan mozgás.

Részletesebben

ELEKTROSZTATIKA. Ma igazán feltöltődhettek!

ELEKTROSZTATIKA. Ma igazán feltöltődhettek! ELEKTROSZTATIKA Ma igazán feltöltődhettek! Elektrosztatikai alapismeretek THALÉSZ: a borostyánt (élektron) megdörzsölve az a könnyebb testeket magához vonzza. Elektrosztatikai alapjelenségek Az egymással

Részletesebben

1. Elektromos alapjelenségek

1. Elektromos alapjelenségek 1. Elektromos alapjelenségek 1. Bizonyos testek dörzsölés hatására különleges állapotba kerülhetnek: más testekre vonzerőt fejthetnek ki, apróbb tárgyakat magukhoz vonzhatnak. Ezt az állapotot elektromos

Részletesebben

A TÖMEGSPEKTROMETRIA ALAPJAI

A TÖMEGSPEKTROMETRIA ALAPJAI A TÖMEGSPEKTROMETRIA ALAPJAI web.inc.bme.hu/csonka/csg/oktat/tomegsp.doc alapján tömeg-töltés arány szerinti szétválasztás a legérzékenyebb módszerek közé tartozik (Nagyon kis anyagmennyiség kimutatására

Részletesebben

Elektromos ingerlés ELEKTROMOS INGERLÉS. A sejtmembrán szerkezete. Na + extra. Elektromos ingerlés:

Elektromos ingerlés ELEKTROMOS INGERLÉS. A sejtmembrán szerkezete. Na + extra. Elektromos ingerlés: Elektromos ingerlés: elektromos áram hatására az ideg-izomsejtben létrejövő funkcionális változás Mi kell hozzá: Elektromos ingerlés ingerelhető sejt elektromos áram ingerlő elektróda Ingerelhető sejt:

Részletesebben

Romantikus közjáték a mechanikai paradigmában

Romantikus közjáték a mechanikai paradigmában Romantikus közjáték a mechanikai paradigmában a romantikus természetfilozófia Friedrich Schelling (1775-1854) a természeti hatások egyetlen alapelv megnyilvánulásai (1799-ig) a fizikai erők/kölcsönhatások

Részletesebben

Az alábbi fogalmak és törvények jelentését/értelmezését/matematikai alakját (megfelelő mélységben) ismerni kell: Newtoni mechanika

Az alábbi fogalmak és törvények jelentését/értelmezését/matematikai alakját (megfelelő mélységben) ismerni kell: Newtoni mechanika Az alábbi fogalmak és törvények jelentését/értelmezését/matematikai alakját (megfelelő mélységben) ismerni kell: Newtoni mechanika 1. előadás Vonatkoztatási rendszer Hely-idő-tömeg standardok 3-dimenziós

Részletesebben

ALACSONY HŐMÉRSÉKLETŰ PLAZMAFIZIKA

ALACSONY HŐMÉRSÉKLETŰ PLAZMAFIZIKA ALACSONY HŐMÉRSÉKLETŰ PLAZMAFIZIKA Dr. Donkó Zoltán / Dr. Derzsi Aranka MTA Wigner Fizikai Kutatóközpont Szilártestfizikai és Optikai Intézet Komplex Folyaékok Osztály MTA Csillebérc / KFKI onko.zoltan@wigner.mta.hu

Részletesebben

8. AZ ATOMMAG FIZIKÁJA

8. AZ ATOMMAG FIZIKÁJA 8. AZ ATOMMAG FIZIKÁJA Az atommag szerkezete (40-44 oldal) A tömegspektrométer elve Az atommag komponensei Izotópok Tömeghiány, kötési energia, stabilitás Magerők Magmodellek Az atommag stabilitásának

Részletesebben

Milyen simaságú legyen a minta felülete jó minőségű EBSD mérésekhez

Milyen simaságú legyen a minta felülete jó minőségű EBSD mérésekhez 1 Milyen simaságú legyen a minta felülete jó minőségű EBSD mérésekhez Havancsák Károly Dankházi Zoltán Ratter Kitti Varga Gábor Visegrád 2012. január Elektron diffrakció 2 Diffrakció - kinematikus elmélet

Részletesebben

ALACSONY HŐMÉRSÉKLETŰ PLAZMAFIZIKA

ALACSONY HŐMÉRSÉKLETŰ PLAZMAFIZIKA ALACSONY HŐMÉRSÉKLETŰ PLAZMAFIZIKA Dr. Donkó Zoltán MTA Wigner Fizikai Kutatóközpont Szilártestfizikai és Optikai Intézet Komplex Folyaékok Osztály MTA Csillebérc / KFKI onko.zoltan@wigner.mta.hu zoltan.onko@gmail.com

Részletesebben

ALACSONY HŐMÉRSÉKLETŰ PLAZMAFIZIKA

ALACSONY HŐMÉRSÉKLETŰ PLAZMAFIZIKA ALACSONY HŐMÉRSÉKLETŰ PLAZMAFIZIKA Dr. Donkó Zoltán MTA Wigner Fizikai Kutatóközpont Szilártestfizikai és Optikai Intézet Komplex Folyaékok Osztály MTA Csillebérc / KFKI onko.zoltan@wigner.mta.hu zoltan.onko@gmail.com

Részletesebben

Geometriai és hullámoptika. Utolsó módosítás: május 10..

Geometriai és hullámoptika. Utolsó módosítás: május 10.. Geometriai és hullámoptika Utolsó módosítás: 2016. május 10.. 1 Mi a fény? Részecske vagy hullám? Isaac Newton (1642-1727) Pierre de Fermat (1601-1665) Christiaan Huygens (1629-1695) Thomas Young (1773-1829)

Részletesebben

Sugárzások és anyag kölcsönhatása

Sugárzások és anyag kölcsönhatása Sugárzások és anyag kölcsönhatása Az anyaggal kölcsönhatásba lépő részecskék Töltött részecskék Semleges részecskék Nehéz Könnyű Nehéz Könnyű T D p - + n Radioaktív sugárzás + anyag energia- szóródás abszorpció

Részletesebben

dinamikai tulajdonságai

dinamikai tulajdonságai Szilárdtest rácsok statikus és dinamikai tulajdonságai Szilárdtestek osztályozása kötéstípusok szerint Kötések eredete: elektronszerkezet k t ionok (atomtörzsek) tö Coulomb- elektronok kölcsönhatás lokalizáltak

Részletesebben

Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás

Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás Démon algoritmus az ideális gázra időátlag fizikai mennyiségek átlagértéke sokaságátlag E, V, N pl. molekuláris dinamika Monte

Részletesebben

A diffúzió leírása az anyagmennyiség időbeli változásával A diffúzió leírása a koncentráció térbeli változásával

A diffúzió leírása az anyagmennyiség időbeli változásával A diffúzió leírása a koncentráció térbeli változásával Kapcsolódó irodalom: Kapcsolódó multimédiás anyag: Az előadás témakörei: 1.A diffúzió fogalma 2. A diffúzió biológiai jelentősége 3. A részecskék mozgása 3.1. A Brown mozgás 4. Mitől függ a diffúzió erőssége?

Részletesebben

11. Egy Y alakú gumikötél egyik ága 20 cm, másik ága 50 cm. A két ág végeit azonos, f = 4 Hz

11. Egy Y alakú gumikötél egyik ága 20 cm, másik ága 50 cm. A két ág végeit azonos, f = 4 Hz Hullámok tesztek 1. Melyik állítás nem igaz a mechanikai hullámok körében? a) Transzverzális hullám esetén a részecskék rezgésének iránya merőleges a hullámterjedés irányára. b) Csak a transzverzális hullám

Részletesebben

Fogalmi alapok Mérlegegyenletek

Fogalmi alapok Mérlegegyenletek 1. Fogalmi alapok Mérlegegyenletek Utolsó módosítás: 2013. február 11. A transzportfolyamatokról általában 1 A természetben lezajló folyamatok leírására szolgáló összefoglaló elmélet, amely attól függetlenül

Részletesebben

AJÁNLOTT IRODALOM. A tárgy neve Meghirdető tanszék(csoport) Felelős oktató:

AJÁNLOTT IRODALOM. A tárgy neve Meghirdető tanszék(csoport) Felelős oktató: A tárgy neve Meghirdető tanszék(csoport) Felelős oktató: ELEKTROMÁGNESSÉG ÉS RELATIVITÁSELMÉLET SZTE TTK Elméleti Fizikai Tanszék Dr. Varga Zsuzsa Kredit 2 Heti óraszám 2 típus Számonkérés Teljesíthetőség

Részletesebben

Fizika minta feladatsor

Fizika minta feladatsor Fizika minta feladatsor 10. évf. vizsgára 1. A test egyenes vonalúan egyenletesen mozog, ha A) a testre ható összes erő eredője nullával egyenlő B) a testre állandó értékű erő hat C) a testre erő hat,

Részletesebben

Az Ampère-Maxwell-féle gerjesztési törvény

Az Ampère-Maxwell-féle gerjesztési törvény Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér

Részletesebben

Az elméleti mechanika alapjai

Az elméleti mechanika alapjai Az elméleti mechanika alapjai Tömegpont, a továbbiakban részecske. A jelenségeket a háromdimenziós térben és időben játszódnak le: r helyzetvektor v dr dt ṙ, a dr dt r a részecske sebessége illetve gyorsulása.

Részletesebben