ALACSONY HŐMÉRSÉKLETŰ PLAZMAFIZIKA

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "ALACSONY HŐMÉRSÉKLETŰ PLAZMAFIZIKA"

Átírás

1 ALACSONY HŐMÉRSÉKLETŰ PLAZMAFIZIKA Dr. Donkó Zoltán MTA Wigner Fizikai Kutatóközpont Szilártestfizikai és Optikai Intézet Komplex Folyaékok Osztály MTA Csillebérc / KFKI onko.zoltan@wigner.mta.hu zoltan.onko@gmail.com ()

2 Tartalom Töltött részecskék mozgása vákuumban / gázban, elektromos / mágneses tér jelenlétében Ütközési hatáskeresztmetszetek Ütközések kinematikája Szórási folyamat leírása aott kölcsönhatási potenciál mellett, laboratóriumi és tömegközépponti renszerek Szórás Coulomb- és polarizációs potenciál esetén, hatáskeresztmetszet kiszámítása Ütközési folyamatok gyengén ionizált gázokban Elektron-atom ütközések (az elektronok kulcsfontosságúak!) Ion-atom & atom-atom ütközések Rekombinációs folyamatok Néhány fontos elemi ütközési folyamat analízise Donkó Zoltán: Alacsony hőmérsékletű plazmafizika

3 Töltéshorozók mozgása vákuumban m v(t) t = q[e + v B] (gravitációt elhanyagolva) Mágneses tér nélkül: Velocity Verlet séma (... vs. Euler ) r(t) t m v(t) t = v(t) = qe(r,t) iszkretizálás r(t + t) = r(t)+v(t) t + a(t) t a(t)+a(t + t) v(t + t) = v(t)+ t a(t) = q m E r(t),t Egyszerű esetekben analitikus megolás, általános esetben numerikus megolás r(t) r(t + t) v(t) v(t + t) iő Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 3

4 Töltéshorozók mozgása vákuumban m v(t) t = q[e + v(t) B] Elektromos tér nélkül, állanó, homogén mágneses térben: m v(t) t = qv(t) B B = 0 0 B v = v x v y v z Lorentz erő és centripetális erő egyensúlya: Körpálya v B = v y B v x B 0 m v x(t) t m v y(t) t = qv y B = qv x B qbv = mv R L v = v x + v y v x t + qb m vx =0 Ciklotronfrekvencia Larmor sugár v x = v 0 sin( c t) v x t = c v x c = qb m R L = mv qb Elektromos tér ÉS mágneses tér jelenlétében: általában bonyolult viselkeés... Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 4

5 Töltéshorozók mozgása m v(t) t = q[e + v B] B = 0 r(t) t = v(t) m v(t) t = qe(r,t) VÁKUUMBAN r(t) r(t + t) v(t) v(t + t) iő GÁZBAN r(t) r(t + t) v(t) v(t + t) Ütközés iő Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 5

6 Hatáskeresztmetszet Essen egy részecskenyaláb egy gázzal töltött térfogatra! A gáz sűrűsége: A nyaláb fluxusa: n 0 = nv A nyaláb sűrűségének csökkenése a háttérgázzal való (valamilyen) kölcsönhatás miatt: v Részecskenyaláb x n = nn 0 x = n 0 x = n 0 x Ez az összefüggés efiniálja a σ hatáskeresztmetszetet (különböző folyamatok) (energiafüggés) (számítások, kísérleti meghatározás) (x) = (0)e n 0 x = (0) e x/ = n 0 Átlagos szaba úthossz Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 6

7 Differenciális hatáskeresztmetszet A szórás szög szerinti eloszlása χ Szórási szög Differenciális hatáskeresztmetszet (efiníciója): = N 0 A t = N s = Fluxus: felületegységre iőegység alatt érkező részecskék száma N s t N 0 A t = N s t t Mértékegysége: cm /sr (Ennyi részecskét észlel a etektor) η N s t Azimut szög térszögbe egységnyi iő alatt szórt részecskék száma Az azimutális szimmetria miatt: (, ) =sin = ( ) Energiafüggés: (, ) Teljes hatáskeresztmetszet: ( )= (, ) = 0 0 (, ) sin = 0 (, ) sin Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 7

8 Momentum transzfer hatáskeresztmetszet Differenciális hatáskeresztmetszet: = N s = N s t N 0 A t = N s t t Teljes hatáskeresztmetszet: = ( ) = 0 ( ) sin m v χ Szórási szög η v x Momentum transzfer hatáskeresztmetszet: m = ( cos ) ( ) = 0 ( cos ) ( ) sin Tegyük fel, hogy az ütköző részecske az x irányba mozog, hogy a céltárgy nyugalomban van és sokkal nagyobb tömegű a bejövő részecskénél! p x = mv x p 0 x = mv 0 x v 0 x = v x cos Az x irányú impulzusátaás : p x = p x p 0 x = p x ( cos ) Relatív impulzusátaás A szórás szög szerinti eloszlásától függően a momentum transzfer h.k. kisebb / nagyobb is lehet, mint a teljes h.k. Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 8

9 Ütközési folyamatok Kemény gömb hatáskeresztmetszet = (a + a ) A (minket éreklő ) valóság sokkal bonyolultabb, pl. elektron - Ar hatáskeresztmetszetek: a + a a a bejövő részecske és a Ütközés feltétele: a céltárgy gömb átfe Fontos péla: a = a Hayashi M 003 Bibliography of Electron an Photon cross sections with Atoms an Molecules Publishe in the 0th Century: Argon NIFS-DATA-7, National Institute for Fusion Science (Jpn), ISSN Jelenak Z M, Velikić Z B, Božin J V, Petrović Z Lj an Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 9

10 Ütközések kinematikája Szórási folyamat leírása aott kölcsönhatási potenciál mellett Laboratóriumi és tömegközépponti renszerek A szórási szög kiszámítása Pélák: Coulomb és polarizációs szórás Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 0

11 Ütközések kinematikája Felaat: rugalmas szórási folyamat leírása aott kölcsönhatási potenciál mellett Két részecske találkozása : általános szórási probléma 3 imenzióban Laboratóriumi renszer tömegközépponti renszer -imenziós probléma Megmaraási tételek Egyrészecske szórási probléma Donkó Zoltán: Alacsony hőmérsékletű plazmafizika

12 Ütközések kinematikája Felaat: rugalmas szórási folyamat leírása aott kölcsönhatási potenciál mellett Laboratóriumi renszer (LAB) Tömegközépponti (TK) renszer ( Center of mass, COM) v F m V m V m F v m TK pozíciója: r tk = m r + m r m + m TK-i koorináták: R = r r tk R = r r tk Relatív pozíció: r = r r TK sebessége: Relatív sebesség: w = m v + m v m + m g = v v TK-i sebességek: V = v w V = v w Egymással párhuzamosak és ellentétes irányúak A tömegközéppont egyenes vonalú egyenletes mozgást végez: r tk = m r + m r m + m = F + F m + m =0 (F = F ) Donkó Zoltán: Alacsony hőmérsékletű plazmafizika

13 Ütközések kinematikája F = m r m F = m m r Tömegközépponti renszer F = m r m F = m F = m m r V m (a két egyenletet egymásból kivonva) (m + m )F = m m ( r r ) V F = m m m + m ( r r )=µ r m µ = m m m + m Reukált tömeg F = µ r Mozgásegyenlet a reukált tömegre és a relatív pozícióra r F = µ r r mivel Képezzük a következő mennyiséget: r F r r =0 (r g) =ṙ g + r ġ = r ġ = r r (ṙ g) t (r g) =0 r g = K = const. t Az ütközés a tömegközépponti renszerben egy síkban játszóik le, a laboratóriumi renszerben 3-imenziós problémát imenzióban kezelhetjük!! Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 3

14 Ütközések kinematikája -imenziós probléma V y V, V ütközés előtti sebességek V, V ütközés utáni sebességek tk V m b m V R TK R Legkisebb távolság:r 0 tk x A trajektóriák szimmetrikusak a legkisebb távolsághoz tartozó pozíciókat összekötő egyenesre : r és az x tengely szöge a szög a legkisebb távolságnál tk = szórási szög V TK R, R b tömegközéppont pozíciók (TK rensz.) ütközési paraméter r = r r = R R Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 4

15 Ütközések kinematikája Számítsuk ki a mozgási energiát és az impulzusnyomatékot a tömegközépponti renszerben! R = r r tk = X Y R = r r tk = X Y r tk = m r + m r m + m V m E tk = m Ẋ + Ẏ + m Ẋ + Ẏ = µ(ṙ + r ) m V R TK R J tk = m R V + m R V pl. 0 R V = R Ṙ = 0 X Y Ẋ Y J tk = m (X Ẏ Ẋ Y )+m (X Ẏ Ẋ Y )=µr Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 5

16 Ütközések kinematikája E tk = µ(ṙ + r ) J tk = µr Egy-részecske szórási probléma Szórási középpont tk r g0 µ Reukált tömeg b Távol a szórócentrumtól: U(r) = 0, E 0 = µg 0/ potenciális energia kinetikus energia Teljes energia: Impulzusmomentum: r t = µ E 0 µg 0 + U( )= µ ṙ + r + U(r) J tk = µg 0 b = µr E 0 = µṙ + µr g 0b b r U(r) = g 0b r r 4 + U(r) = µṙ + µg 0 r t = ± µ E 0 felhasználásával kiküszöböljük a szöget és csak a távolság koorináta mara : b r + U(r) = b µṙ + E 0 b r U() =0 U(r) -imenziós mozgás r mentén / } r + U(r) effektív potenciál Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 6

17 Ütközések kinematikája A legkisebb távolság kiszámítása Legkisebb távolságnál r t r=r 0 =0 tk R 0 Szórási középpont r g0 µ Reukált tömeg b Taszító potenciálra minig van megolás, vonzóra nem feltétlenül. r t = ± µ E 0 E 0 b r U(r) E 0 b r =0 U(r) b r U(r) =0 / R 0 A szórási szög kiszámítása Legkisebb távolságnál: Szórási szög: tk = J tk = µg 0 b = µr r = ± r g 0 b µ E 0 b r = g 0b r U(r) / = ± r b µg 0 E 0 b r U(r) / = ± r b = R 0 b r r r U(r) E 0 / Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 7

18 Ütközések kinematikája A szórási szög kiszámítása Legkisebb távolságnál: Szórási szög: tk = r t r=r 0 =0 tk g0 µ R 0 r Reukált tömeg b r = ±r b b r U(r) E 0 / Szórási középpont = R 0 r r = (b/r )r R 0 U(r) b E 0 r A potenciál és a kezeti paraméterek ismeretében a szórási szög meghatározható: tk = = b r/r R 0 U(r) E 0 b r r = R 0 : U(r) E 0 b r =0 E 0 = µg 0/ Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 8

19 Az ütközési paraméter és a szórási szög kapcsolata Továbbra is tömegközépponti renszerben olgozunk tk + tk tk b b tk η Azimut szög A = b b Szórási szög = sin tk tk A b és b ütközési paraméterek mellett bejövő, A* felületen áthalaó részecskék a tk és tk + tk közé eső szögtartományba szórónak, számuk t iő alatt: N s = A t = b b t b b = sin tk tk A ifferenciális hatáskeresztmetszet efiníciója alapján: N s = t = b b( tk ) sin tk tk Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 9

20 Coulomb szórás Kiinulás: tk = = b r/r U(r) = R 0 U(r) b E 0 r Z Z e 4 0r Új változókat efiniálva: U(r) = Z Z e 4 " 0 r = A r, B = b r, C = A E 0 b A legkisebb távolság: A szórási szög: B 0 C B 0 =0 B 0 = C + C 4 +, R 0 = b B 0 tk = = b b r U(r) E 0 = BC B r/r B0 R 0 BC B = 0 B BC B Coulomb szórás szöge a részecskék és az ütközés paramétereinek függvényében: tan tk = Z Z e 4 " 0 µg0 b Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 0

21 Coulomb szórás ifferenciális hatáskeresztmetszete tk + tk tk b b tk η Azimut szög A = b b Szórási szög = b b( tk ) sin tk tk tan tk = Z Z e 4 0µg0 b b( tk )= Z Z e 4 0µg 0 tan tk (E 0, tk) = Z Z e 4 0µg 0 sin 4 tk Az ebből a ifferenciális hatáskeresztmetszetből számolt teljes hatáskeresztmetszet ivergál, ennek oka, hogy nagy ütközési paraméter esetén történő kismértékű szórás is a hozzájárulást a hatáskeresztmetszethez, a Coulomb-potenciál hosszú hatótávolsága miatt. Donkó Zoltán: Alacsony hőmérsékletű plazmafizika

22 Polarizációs szórás Töltött részecske ütközése semleges atommal: A bejövő töltött részecske az atommagra és a körülötte lévő elektronfelhőre ellentétes erővel hat, ennek következtében az elektronfelhő középpontja és az atommag egymástól távolságra mozul el. q Q = Ze = Ze 4 3 a3 Elektronfelhő r a Atommag Q = Ze Q + = Ze Az atommag helyén az elektronfelhő által inukált Ein elektromos térerősséget a Gauss-törvény alkalmazásával számíthatjuk ki, amit az elektronfelhő középpontjától mérve sugarú gömbre írunk fel: " 0 E in 4 = 4 3 3! E in = 3" 0 = Ze 4 " 0 a 3 Az atommag helyén a q töltésű bejövő részecske által keltett elektromos térerősség: E ext = q 4 0 r Donkó Zoltán: Alacsony hőmérsékletű plazmafizika

23 Polarizációs szórás Töltött részecske ütközése semleges atommal: A bejövő töltött részecske az atommagra és a körülötte lévő elektronfelhőre ellentétes erővel hat, ennek következtében az elektronfelhő középpontja és az atommag egymástól távolságra mozul el. q Q = Ze = Ze 4 3 a3 Elektronfelhő r a Atommag Q = Ze Q + = Ze Egyensúly esetén: E in + E ext =0! = qa3 r Q + A két részecske között ható erő: F = qq+ 4 " 0 apple qq + = (r ) r " 0 r 3 = q a 3 " 0 r 5 Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 3

24 Polarizációs szórás Töltött részecske ütközése semleges atommal: A bejövő töltött részecske az atommagra és a körülötte lévő elektronfelhőre ellentétes erővel hat, ennek következtében az elektronfelhő középpontja és az atommag egymástól távolságra mozul el. q Q = Ze = Ze 4 3 a3 Elektronfelhő MIKOR MEGY VÉGBE VALAMILYEN ELEMI REAKCIÓ?? r a Atommag Q = Ze Q + = Ze A két részecske közötti potenciál: U(r) = Z r F (r 0 )r 0 = q a 3 " 0 Z r r 0 (r 0 ) 5 = q a 3 8 " 0 r 4 Az atomra jellemző = a 3 molekuláris polarizálhatóság bevezetésével: U(r) = q 8 0r 4 Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 4

25 Polarizációs szórás A potenciál ismeretében (a korábbiak alapján) kiszámítható a legkisebb távolság: U(r) = q 8 0r 4 U(R 0 ) E 0 b R 0 =+ q 8 " 0 R 4 0 E 0 b R 0 =0 Az egyszerű eltérülés feltétele az, hogy az egyenletnek legyen megolása, ellenkező esetben spirális trajektóriák állnak elő. Ez utóbbinak a feltétle, hogy a fenti egyenlet iszkriminánsa negatív legyen, azaz a b ütközési paraméterre fennálljon: b apple s q " 0 µ g 0 E 0 = µg 0/ Feltételezzük, hogy a spirális trajektória valamilyen kölcsönhatáshoz vezet, ennek a folyamatnak a hatáskeresztmetszete (Langevin-hatáskeresztmetszet) : L = b L = s q " 0 µ g 0 Ion-molekula reakciók esetén gyakran alkalmazott közelítés. Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 5

26 Ütközési folyamatok gyengén ionizált gázokban Mi ütközik és mi történik ütközéskor?? Alacsony ionizációs fok a legtöbb ütközés töltött részecske - semleges részecske típusú Gázatomok - álló, vagy termikus eloszlású háttér Nemesgázok esetét tárgyaljuk, az egyszerűség miatt Gázkisülések elemi folyamatainak leírására általában kvantummechanikai számolások szükségesek Alternatívaként használhatunk kísérletileg mért hatáskeresztmetszet aatokat Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 6

27 Elemi folyamatok : elektron-atom ütközések Folyamat Típus Jellemzők e + Ar e + Ar e + Ar e + Ar e + Ar e + Ar + e + Ar e + Ar e + Ar e + Ar e + Ar e + Ar + Rugalmas szórás Gerjesztés Ionizáció Többlépéses gerjesztés Legerjesztés Többlépéses ionizáció A partnerek az energiát újraosztják Az atom egyik elektronja egy magasabb gerjesztett állapotba kerül Az ütközés hatására egy elektron kilép az atom elektronhéjából Gerjesztett állapotú atom az ütközés hatására egy másik gerjesztett állapotba kerül Az ütközés hatására a gerjesztett atom alapállapotba kerül Gerjesztett állapotban lévő atom az ütközés hatására ionizálóik A táblázatokban itt nem jelöljük az energetikai viszonyokat ( ± E )! Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 7

28 Atomi elemi folyamatok Energia Gerjesztett ion-állapotok Ion-alapállapot Gerjesztett állapotok Sugárzás Ionizáció Rezonáns nívó(k) Metastabil nívó(k) Rezonancia sugárzás Elektronütközéses gerjesztés Elektronütközéses legerjesztés Alapállapot Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 8

29 Elemi folyamatok : ion-atom & atom-atom ütközések Folyamat Típus Jellemzők Ar + + Ar Ar + + Ar Ar + + Ar Ar + + Ar Ar + + Ar Ar + +e Rugalmas szórás Gerjesztés Ionizáció A partnerek az energiát újraosztják Az atom egyik elektronja egy magasabb gerjesztett állapotba kerül Az ütközés hatására egy elektron kilép az atom elektronhéjából Ar + + Ar + Ar Ar + + Ar Ion konverzió * Atomi ionból molekuláris ion keletkezik He + + Ar He + Ar + Töltéskicserélés Alacsonyabb ionizációs potenciálú atom ionizálóik He M +Ar He + Ar + +e Penning ionizáció Kellően magas energiájú metastabil atom ionizál He M + Ne He + Ne Energiaátaás Közel rezonáns nívók között hatékony * Miért kell a harmaik test? Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 9

30 Elemi folyamatok : rekombináció Folyamat Típus Jellemzők e + Ar + Ar + h Sugárzásos rekombináció e +e + Ar + Ar + e Háromtest* rekombináció Elektron által segített e + Ar + + Ar Ar + Ar Háromtest rekombináció Semleges atom által segített e + Ar + Ar + Ar Disszociatív rekombináció Fontos veszteségi mechanizmus nagyobb nyomásokon * Miért kell a harmaik test? Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 30

31 Néhány fontos ütközési folyamat elemzése Pélák: e + Ar e + Ar Elektron rugalmas szórása Ar + + Ar Ar + + Ar Ion rugalmas szórása e + Ar e + Ar Elektronütközéses gerjesztés Ar + + Ar Ar + + Ar Ionütközéses gerjesztés Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 3

32 Rugalmas ütközések Ütközés előtt löveék m v céltárgy m v m m v Ütközés után w, g v w, g w = m v + m v m + m w = m v + m v m + m g = v v v = w + v = w Impulzusmegmaraás: Energiamegmaraás: m v = w + g = v v g m + m m g m + m m v + m v = m v + m v v = w m v + m v = m v + m v m g m + m m g m + m w = w A tömegközéppont mozgása változatlan g = g A relatív sebesség nagysága nem változik Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 3

33 Rugalmas ütközések Ütközés előtt löveék m v céltárgy m v m m v Ütközés után w, g v w, g A szórás a relatív sebességvektor irányát változtatja: g g az energiafüggő ifferenciális hatáskeresztmetszetnek megfelelően v = w + v = w m m + m g m m + m g w = w Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 33

34 Rugalmas ütközések Ütközés előtt löveék m v céltárgy m v m m v Ütközés után w, g v w, g Elektron - atom rugalmas szórás e + Ar e + Ar m m w = m v + m v m + m g g v = w + g = v v m m + m g Hieg gáz közelítés v =0 w = m v + m v m + m = 0 g = v v = g Kismértékű energiacsere Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 34

35 Rugalmas ütközések Ütközés előtt löveék m v céltárgy m v m m v Ütközés után w, g v w, g Szimmetrikus ion - atom rugalmas szórás m = m Ar + + Ar Ar + + Ar Szimmetrikus renszer w = m v + m v = v + v g = v v m + m g g v = w + m m + m g = w + g Jelentős energiacsere Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 35

36 Rugalmatlan ütközések Ütközés előtt löveék m v céltárgy m v E m m v Ütközés után w, g v w, g w = m v + m v m + m w = m v + m v m + m v = w + v = w Impulzusmegmaraás: Energiamegmaraás: m v = w + g = v v g m + m m g m + m m v + m v = m v + m v v = w g = v v m g m + m m g m + m w = w A tömegközéppont mozgása változatlan m v + m v = m v + m v + E g g Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 36

37 Rugalmatlan ütközések Ütközés előtt löveék m v céltárgy m v E m m v Ütközés után w, g v w, g Energiamegmaraás: m v + m v = m v + m v + E m v + m v = m + m w + m m (m + m ) g = m + m w + µ g E tk = µg Tömegközépponti energia E tk = µg Állanó, az impulzusmegmaraás miatt = E tk E A tömegközépponti sebesség nagysága ÉS iránya is megváltozik! v = w + v = w Tömegközépponti energia - maximálisan ez forítható rugalmatlan folyamatokra m g m + m m g m + m g g w = w Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 37

38 Rugalmatlan ütközések Ütközés előtt löveék m v céltárgy m v E m m v Ütközés után w, g v w, g Elektronütközéses gerjesztés e + Ar e + Ar m m Hieg gáz közelítés v =0 w = m v + m v m + m = 0 g = v v = g E tk = µv = m v E tk = m v = E tk E Az ütköző elektron teljes mozgási energiája felhasználható rugalmatlan folyamatra Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 38

39 Rugalmatlan ütközések Ütközés előtt löveék m v céltárgy m v E m m v Ütközés után w, g v w, g Ionütközéses gerjesztés Ar + + Ar Ar + + Ar m = m Szimmetrikus renszer w = v + v E tk = µg g = v v g g E tk = µg v = w + g Az ütköző ion teljes mozgási energiájának csak egy része használható fel rugalmatlan folyamatra (ugyanis a tömegközéppontnak változatlanul tovább kell halania) = E tk E Hieg gáz közelítés m v + m v = m + m w + v =0 w = v g = v m m (m + m ) g = m w g + m 4 = m E tk v 4 + m v gerjesztési küszöb: E exc, Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 39

40 Számonkérés pontjai Töltött részecskék mozgása vákuumban / gázban, elektromos / mágneses tér jelenlétében Ütközési (teljes, ill. ifferenciális) hatáskeresztmetszetek efiníciója Ütközések kinematikája: Laboratóriumi és tömegközépponti koorináta-renszerek, bináris szórási folyamat leírásának elvei és lépései (képletek nélkül!) Hatáskeresztmetszet kiszámítása polarizációs potenciál esetére Elemi folyamatok típusai és szerepük gyengén ionizált gázokban Rugalmas és rugalmatlan elektron-atom és ion-atom folyamatok analízise Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 40

ALACSONY HŐMÉRSÉKLETŰ PLAZMAFIZIKA

ALACSONY HŐMÉRSÉKLETŰ PLAZMAFIZIKA ALACSONY HŐMÉRSÉKLETŰ PLAZMAFIZIKA Dr. Donkó Zoltán / Dr. Derzsi Aranka MTA Wigner Fizikai Kutatóközpont Szilártestfizikai és Optikai Intézet Komplex Folyaékok Osztály MTA Csillebérc / KFKI onko.zoltan@wigner.mta.hu

Részletesebben

ALACSONY HŐMÉRSÉKLETŰ PLAZMAFIZIKA

ALACSONY HŐMÉRSÉKLETŰ PLAZMAFIZIKA ALACSONY HŐMÉRSÉKLETŰ PLAZMAFIZIKA Dr. Donkó Zoltán MTA Wigner Fizikai Kutatóközpont Szilártestfizikai és Optikai Intézet Komplex Folyaékok Osztály MTA Csillebérc / KFKI onko.zoltan@wigner.mta.hu zoltan.onko@gmail.com

Részletesebben

FIZIKA II. Dr. Rácz Ervin. egyetemi docens

FIZIKA II. Dr. Rácz Ervin. egyetemi docens FIZIKA II. Dr. Rácz Ervin egyetemi docens Fontos tudnivalók e-mail: racz.ervin@kvk.uni-obuda.hu web: http://uni-obuda.hu/users/racz.ervin/index.htm Iroda: Bécsi út, C. épület, 124. szoba Fizika II. - ismertetés

Részletesebben

Atomenergetikai alapismeretek

Atomenergetikai alapismeretek Atomenergetikai alapismeretek 2. előadás Dr. Szieberth Máté Dr. Sükösd Csaba előadásanyagának felhasználásával Négyfaktor formula (végtelen kiterjedésű n-sokszorozó közeg) n Maghasadás (gyors neutronok)

Részletesebben

http://www.nature.com 1) Magerő-sugár: a magközéppontból mért távolság, ameddig a magerők hatótávolsága terjed. Rutherford-szórásból határozható meg. R=1,4 x 10-13 A 1/3 cm Az atommag terének potenciálja

Részletesebben

Elektrodinamika. Maxwell egyenletek: Kontinuitási egyenlet: div n v =0. div E =4 div B =0. rot E = rot B=

Elektrodinamika. Maxwell egyenletek: Kontinuitási egyenlet: div n v =0. div E =4 div B =0. rot E = rot B= Elektrodinamika Maxwell egyenletek: div E =4 div B =0 rot E = rot B= 1 B c t 1 E c t 4 c j Kontinuitási egyenlet: n t div n v =0 Vektoranalízis rot rot u=grad divu u rot grad =0 div rotu=0 udv= ud F V

Részletesebben

Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2)

Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2) 2. Gyakorlat 30B-14 Az Egyenlítőnél, a földfelszín közelében a mágneses fluxussűrűség iránya északi, nagysága kb. 50µ T,az elektromos térerősség iránya lefelé mutat, nagysága; kb. 100 N/C. Számítsuk ki,

Részletesebben

Kirchhoff 2. törvénye (huroktörvény) szerint az áramkörben levő elektromotoros erők. E i = U j (3.1)

Kirchhoff 2. törvénye (huroktörvény) szerint az áramkörben levő elektromotoros erők. E i = U j (3.1) 3. Gyakorlat 29A-34 Egy C kapacitású kondenzátort R ellenálláson keresztül sütünk ki. Mennyi idő alatt csökken a kondenzátor töltése a kezdeti érték 1/e 2 ed részére? Kirchhoff 2. törvénye (huroktörvény)

Részletesebben

9. évfolyam. Osztályozóvizsga tananyaga FIZIKA

9. évfolyam. Osztályozóvizsga tananyaga FIZIKA 9. évfolyam Osztályozóvizsga tananyaga A testek mozgása 1. Egyenes vonalú egyenletes mozgás 2. Változó mozgás: gyorsulás fogalma, szabadon eső test mozgása 3. Bolygók mozgása: Kepler törvények A Newtoni

Részletesebben

Elektromos alapjelenségek

Elektromos alapjelenségek Elektrosztatika Elektromos alapjelenségek Dörzselektromos jelenség: egymással szorosan érintkező, vagy egymáshoz dörzsölt testek a szétválasztásuk után vonzó, vagy taszító kölcsönhatást mutatnak. Ilyenkor

Részletesebben

Sugárzások és anyag kölcsönhatása

Sugárzások és anyag kölcsönhatása Sugárzások és anyag kölcsönhatása Az anyaggal kölcsönhatásba lépő részecskék Töltött részecskék Semleges részecskék Nehéz Könnyű Nehéz Könnyű T D p - + n Radioaktív sugárzás + anyag energia- szóródás abszorpció

Részletesebben

a térerősség mindig az üreg falára merőleges, ezért a tér ott nem gömbszimmetrikus.

a térerősség mindig az üreg falára merőleges, ezért a tér ott nem gömbszimmetrikus. 2. Gyakorlat 25A-0 Tekintsünk egy l0 cm sugarú üreges fémgömböt, amelyen +0 µc töltés van. Legyen a gömb középpontja a koordinátarendszer origójában. A gömb belsejében az x = 5 cm pontban legyen egy 3

Részletesebben

Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása.

Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása. Különböző sugárzások tulajdonságai Típus töltés Energia hordozó E spektrum Radioaktí sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktí sugárzások detektálása. α-sugárzás pozití

Részletesebben

A TÖMEGSPEKTROMETRIA ALAPJAI

A TÖMEGSPEKTROMETRIA ALAPJAI A TÖMEGSPEKTROMETRIA ALAPJAI web.inc.bme.hu/csonka/csg/oktat/tomegsp.doc alapján tömeg-töltés arány szerinti szétválasztás a legérzékenyebb módszerek közé tartozik (Nagyon kis anyagmennyiség kimutatására

Részletesebben

A kémiai kötés eredete; viriál tétel 1

A kémiai kötés eredete; viriál tétel 1 A kémiai kötés ereete; viriál tétel 1 Probléma felvetés Ha egy molekula atommagjai közötti távolság csökken, akkor a közöttük fellép elektrosztatikus taszításhoz tartozó energia n. Ugyanez igaz az elektronokra

Részletesebben

A sugárzás és az anyag kölcsönhatása. A béta-sugárzás és anyag kölcsönhatása

A sugárzás és az anyag kölcsönhatása. A béta-sugárzás és anyag kölcsönhatása A sugárzás és az anyag kölcsönhatása A béta-sugárzás és anyag kölcsönhatása Cserenkov-sugárzás v>c/n, n törésmutató cos c nv Cserenkov-sugárzás Pl. vízre (n=1,337): 0,26 MeV c 8 m / s 2. 2* 10 A sugárzás

Részletesebben

Theory hungarian (Hungary)

Theory hungarian (Hungary) Q3-1 A Nagy Hadronütköztető (10 pont) Mielőtt elkezded a feladat megoldását, olvasd el a külön borítékban lévő általános utasításokat! Ez a feladat a CERN-ben működő részecskegyorsító, a Nagy Hadronütköztető

Részletesebben

azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra ábra

azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra ábra 4. Gyakorlat 31B-9 A 31-15 ábrán látható, téglalap alakú vezetőhurok és a hosszúságú, egyenes vezető azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra. 31-15 ábra

Részletesebben

http://www.nucleonica.net Az atommag tömege A hidrogénre vonatkoztatott relatív atomtömeg (=atommag tömegével, ha az e - tömegét elhanyagoljuk) a hidrogénnek nem egész számú többszöröse. Az elemek különböző

Részletesebben

A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra

A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra . Gyakorlat 4B-9 A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld. 4-6 ábra.). Számítsuk ki az E elektromos térerősséget a vonal irányában lévő, annak.. ábra. 4-6 ábra végpontjától

Részletesebben

Compton-effektus. Zsigmond Anna. jegyzıkönyv. Fizika BSc III.

Compton-effektus. Zsigmond Anna. jegyzıkönyv. Fizika BSc III. Compton-effektus jegyzıkönyv Zsigmond Anna Fizika BSc III. Mérés vezetıje: Csanád Máté Mérés dátuma: 010. április. Leadás dátuma: 010. május 5. Mérés célja A kvantumelmélet egyik bizonyítékának a Compton-effektusnak

Részletesebben

1. ábra. 24B-19 feladat

1. ábra. 24B-19 feladat . gyakorlat.. Feladat: (HN 4B-9) A +Q töltés egy hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld.. ábra.). Számítsuk ki az E elektromos térerősséget a vonal. ábra. 4B-9 feladat irányában lévő,

Részletesebben

Atomfizika. A hidrogén lámpa színképei. Elektronok H atom. Fényképlemez. emisszió H 2. gáz

Atomfizika. A hidrogén lámpa színképei. Elektronok H atom. Fényképlemez. emisszió H 2. gáz Atomfizika A hidrogén lámpa színképei - Elektronok H atom emisszió Fényképlemez V + H 2 gáz Az atom és kvantumfizika fejlődésének fontos szakasza volt a hidrogén lámpa színképeinek leírása, és a vonalas

Részletesebben

Vezetők elektrosztatikus térben

Vezetők elektrosztatikus térben Vezetők elektrosztatikus térben Vezető: a töltések szabadon elmozdulhatnak Ha a vezető belsejében a térerősség nem lenne nulla akkor áram folyna. Ha a felületen a térerősségnek lenne tangenciális (párhuzamos)

Részletesebben

Gyorsítók. Veszprémi Viktor ATOMKI, Debrecen. Supported by NKTH and OTKA (H07-C 74281) 2009. augusztus 17 Hungarian Teacher Program, CERN 1

Gyorsítók. Veszprémi Viktor ATOMKI, Debrecen. Supported by NKTH and OTKA (H07-C 74281) 2009. augusztus 17 Hungarian Teacher Program, CERN 1 Gyorsítók Veszprémi Viktor ATOMKI, Debrecen Supported by NKTH and OTKA (H07-C 74281) 2009. augusztus 17 Hungarian Teacher Program, CERN 1 Az anyag felépítése Részecskefizika kvark, lepton Erős, gyenge,

Részletesebben

Q 1 D Q 2 (D x) 2 (1.1)

Q 1 D Q 2 (D x) 2 (1.1) . Gyakorlat 4B-9 Két pontszerű töltés az x tengelyen a következőképpen helyezkedik el: egy 3 µc töltés az origóban, és egy + µc töltés az x =, 5 m koordinátájú pontban van. Keressük meg azt a helyet, ahol

Részletesebben

Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008.

Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008. Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008. Kiss István,Vértes Attila: Magkémia (Akadémiai Kiadó) Nagy Lajos György,

Részletesebben

Sztehlo Gábor Evangélikus Óvoda, Általános Iskola és Gimnázium. Osztályozóvizsga témakörök 1. FÉLÉV. 9. osztály

Sztehlo Gábor Evangélikus Óvoda, Általános Iskola és Gimnázium. Osztályozóvizsga témakörök 1. FÉLÉV. 9. osztály Osztályozóvizsga témakörök 1. FÉLÉV 9. osztály I. Testek mozgása 1. Egyenes vonalú egyenletes mozgás 2. Változó mozgás; átlagsebesség, pillanatnyi sebesség 3. Gyorsulás 4. Szabadesés, szabadon eső test

Részletesebben

FOTOKÉMIAI REAKCIÓK, REAKCIÓKINETIKAI ALAPOK

FOTOKÉMIAI REAKCIÓK, REAKCIÓKINETIKAI ALAPOK FOTOKÉMIAI REAKCIÓK, REAKCIÓKINETIKAI ALAPOK Légköri nyomanyagok forrásai: bioszféra hiroszféra litoszféra világűr emberi tevékenység AMI BELÉP, ANNAK TÁVOZNIA IS KELL! Légköri nyomanyagok nyelői: száraz

Részletesebben

Fizika minta feladatsor

Fizika minta feladatsor Fizika minta feladatsor 10. évf. vizsgára 1. A test egyenes vonalúan egyenletesen mozog, ha A) a testre ható összes erő eredője nullával egyenlő B) a testre állandó értékű erő hat C) a testre erő hat,

Részletesebben

Újpesti Bródy Imre Gimnázium és Ál tal án os Isk ola

Újpesti Bródy Imre Gimnázium és Ál tal án os Isk ola Újpesti Bródy Imre Gimnázium és Ál tal án os Isk ola 1047 Budapest, Langlet Valdemár utca 3-5. www.brody-bp.sulinet.hu e-mail: titkar@big.sulinet.hu Telefon: (1) 369 4917 OM: 034866 Osztályozóvizsga részletes

Részletesebben

Fermi Dirac statisztika elemei

Fermi Dirac statisztika elemei Fermi Dirac statisztika elemei A Fermi Dirac statisztika alapjai Nagy részecskeszámú rendszerek fizikai jellemzéséhez statisztikai leírást kell alkalmazni. (Pl. gázokra érvényes klasszikus statisztika

Részletesebben

Sugárzások kölcsönhatása az anyaggal

Sugárzások kölcsönhatása az anyaggal Radioaktivitás Biofizika előadások 2013 december Sugárzások kölcsönhatása az anyaggal PTE ÁOK Biofizikai Intézet, Orbán József Összefoglaló radioaktivitás alapok Nukleononkénti kötési energia (MeV) Egy

Részletesebben

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gáz egyenlet és általánosított gáz egyenlet 5-4 A tökéletes gáz egyenlet alkalmazása 5-5 Gáz halmazállapotú reakciók

Részletesebben

Pótlap nem használható!

Pótlap nem használható! 1. 2. 3. Mondat E1 E2 Össz Gépészmérnöki alapszak Mérnöki fizika 2. ZH NÉV:.. 2018. november 29. Neptun kód:... Pótlap nem használható! g=10 m/s 2 ; εε 0 = 8.85 10 12 F/m; μμ 0 = 4ππ 10 7 Vs/Am; cc = 3

Részletesebben

Az elektromágneses tér energiája

Az elektromágneses tér energiája Az elektromágneses tér energiája Az elektromos tér energiasűrűsége korábbról: Hasonlóképpen, a mágneses tér energiája: A tér egy adott pontjában az elektromos és mágneses terek együttes energiasűrűsége

Részletesebben

Termodinamika (Hőtan)

Termodinamika (Hőtan) Termodinamika (Hőtan) Termodinamika A hőtan nagyszámú részecskéből (pl. gázmolekulából) álló makroszkópikus rendszerekkel foglalkozik. A nagy számok miatt érdemes a mólt bevezetni, ami egy Avogadro-számnyi

Részletesebben

MTA Atommagkutató Intézet, 4026 Debrecen, Bem tér 18/c.

MTA Atommagkutató Intézet, 4026 Debrecen, Bem tér 18/c. Negatív hidrogénionok keletkezése 7 kev-es OH + + Ar és OH + + aceton ütközésekben: Egy általános mechanizmus hidrogént tartalmazó molekuláris rendszerekre JUHASZ Zoltán a), BENE Erika a), RANGAMA Jimmy

Részletesebben

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya.

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendület Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendülettétel: Az lendület erő hatására változik meg. Az eredő erő határozza meg

Részletesebben

A csillagközi anyag. Interstellar medium (ISM) Bonyolult dinamika. turbulens áramlások MHD

A csillagközi anyag. Interstellar medium (ISM) Bonyolult dinamika. turbulens áramlások MHD A csillagközi anyag Interstellar medium (ISM) gáz + por Ebből jönnek létre az újabb és újabb csillagok Bonyolult dinamika turbulens áramlások lökéshullámok MHD Speciális kémia porszemcsék képződése, bomlása

Részletesebben

A testek részecskéinek szerkezete

A testek részecskéinek szerkezete A testek részecskéinek szerkezete Minden test részecskékből, atomokból vagy több atomból álló molekulákból épül fel. Az atomok is összetettek: elektronok, protonok és neutronok találhatók bennük. Az elektronok

Részletesebben

Kifejtendő kérdések június 13. Gyakorló feladatok

Kifejtendő kérdések június 13. Gyakorló feladatok Kifejtendő kérdések 2016. június 13. Gyakorló feladatok 1. Adott egy egyenletes térfogati töltéssel rendelkező, R sugarú gömb, melynek felületén a potenciál U 0. Az elektromos potenciál definíciója (1p)

Részletesebben

Munka, energia Munkatétel, a mechanikai energia megmaradása

Munka, energia Munkatétel, a mechanikai energia megmaradása Munka, energia Munkatétel, a mechanikai energia megmaradása Munkavégzés történik ha: felemelek egy könyvet kihúzom az expandert A munka Fizikai értelemben munkavégzésről akkor beszélünk, ha egy test erő

Részletesebben

A gamma-sugárzás kölcsönhatásai

A gamma-sugárzás kölcsönhatásai Ref. [3] A gamma-sugárzás kölcsönhatásai Az anyaggal való kölcsönhatás kis valószínűségű hatótávolság nagy A sugárzás gyengülését 3 féle kölcsönhatás okozza. fotoeffektus Compton-szórás párkeltés A gamma-fotonok

Részletesebben

Z bozonok az LHC nehézion programjában

Z bozonok az LHC nehézion programjában Z bozonok az LHC nehézion programjában Zsigmond Anna Julia MTA Wigner FK Max Planck Institut für Physik Fizikus Vándorgyűlés Szeged, 2016 augusztus 24-27. Nehézion-ütközések az LHC-nál A-A és p-a ütközések

Részletesebben

Molekuláris dinamika I. 10. előadás

Molekuláris dinamika I. 10. előadás Molekuláris dinamika I. 10. előadás Miről is szól a MD? nagy részecskeszámú rendszerek ismerjük a törvényeket mikroszkópikus szinten minden részecske mozgását szimuláljuk? Hogyan tudjuk megérteni a folyadékok,

Részletesebben

Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet

Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet Utolsó módosítás: 2016. május 4. 1 Előzmények Az atomok színképe (1) A fehér fény komponensekre bontható: http://en.wikipedia.org/wiki/spectrum

Részletesebben

Atomok és molekulák elektronszerkezete

Atomok és molekulák elektronszerkezete Atomok és molekulák elektronszerkezete Szabad atomok és molekulák Schrödinger egyenlete Tekintsünk egy kvantummechanikai rendszert amely N n magból és N e elektronból áll. Koordinátáikat jelölje rendre

Részletesebben

Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény

Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény Orvosi iofizika I. Fénysugárzásanyaggalvalókölcsönhatásai. Fényszóródás, fényabszorpció. Az abszorpciós spektrometria alapelvei. (Segítséga 12. tételmegértéséhezésmegtanulásához, továbbá a Fényabszorpció

Részletesebben

Elméleti kérdések 11. osztály érettségire el ı készít ı csoport

Elméleti kérdések 11. osztály érettségire el ı készít ı csoport Elméleti kérdések 11. osztály érettségire el ı készít ı csoport MECHANIKA I. 1. Definiálja a helyvektort! 2. Mondja meg mit értünk vonatkoztatási rendszeren! 3. Fogalmazza meg kinematikailag, hogy mikor

Részletesebben

-2σ. 1. A végtelen kiterjedésű +σ és 2σ felületi töltéssűrűségű síklapok terében az ábrának megfelelően egy dipól helyezkedik el.

-2σ. 1. A végtelen kiterjedésű +σ és 2σ felületi töltéssűrűségű síklapok terében az ábrának megfelelően egy dipól helyezkedik el. 1. 2. 3. Mondat E1 E2 Össz Energetikai mérnöki alapszak Mérnöki fizika 2. ZH NÉV:.. 2018. május 15. Neptun kód:... g=10 m/s 2 ; ε 0 = 8.85 10 12 F/m; μ 0 = 4π 10 7 Vs/Am; c = 3 10 8 m/s Előadó: Márkus

Részletesebben

Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása.

Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása. Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása. Magsugárzások (α, β, γ) kölcsönhatása atomi rendszerekkel (170-174, 540-545 o.) Direkt és

Részletesebben

Beugró kérdések. Elektrodinamika 2. vizsgához. Számítsa ki a gradienst, divergenciát és a skalár Laplace operátort henger koordinátákban!

Beugró kérdések. Elektrodinamika 2. vizsgához. Számítsa ki a gradienst, divergenciát és a skalár Laplace operátort henger koordinátákban! Beugró kérdések Elektrodinamika 2. vizsgához. Görbült koordináták Henger koordináták: r=(ρ cos φ, ρ sin φ, z) Számítsa ki a gradienst, divergenciát és a skalár Laplace operátort henger koordinátákban!

Részletesebben

Tornyai Sándor Fizikaverseny 2009. Megoldások 1

Tornyai Sándor Fizikaverseny 2009. Megoldások 1 Tornyai Sánor Fizikaerseny 9. Megolások. Aatok: á,34 m/s, s 6,44 km 644 m,,68 m/s,,447 m/s s Az első szakasz megtételéez szükséges iő: t 43 s. pont A másoik szakaszra fennáll, ogy s t pont s + s t + t

Részletesebben

http://www.flickr.com Az atommag állapotait kvantummechanikai állapotfüggvénnyel írjuk le. A mag paritását ezen fv. paritása adja meg. Paritás: egy állapot tértükrözéssel szemben mutatott viselkedését

Részletesebben

A Standard modellen túli Higgs-bozonok keresése

A Standard modellen túli Higgs-bozonok keresése A Standard modellen túli Higgs-bozonok keresése Elméleti fizikai iskola, Gyöngyöstarján, 2007. okt. 29. Horváth Dezső MTA KFKI Részecske és Magfizikai Kutatóintézet, Budapest és ATOMKI, Debrecen Horváth

Részletesebben

Elektrosztatika. 1.2. Mekkora két egyenlő nagyságú töltés taszítja egymást 10 m távolságból 100 N nagyságú erővel? megoldás

Elektrosztatika. 1.2. Mekkora két egyenlő nagyságú töltés taszítja egymást 10 m távolságból 100 N nagyságú erővel? megoldás Elektrosztatika 1.1. Mekkora távolságra van egymástól az a két pontszerű test, amelynek töltése 2. 10-6 C és 3. 10-8 C, és 60 N nagyságú erővel taszítják egymást? 1.2. Mekkora két egyenlő nagyságú töltés

Részletesebben

2, = 5221 K (7.2)

2, = 5221 K (7.2) 7. Gyakorlat 4A-7 Az emberi szem kb. 555 nm hullámhossznál a Iegnagyobb érzékenységű. Adjuk meg annak a fekete testnek a hőmérsékletét, amely sugárzásának a spektrális teljesitménye ezen a hullámhosszon

Részletesebben

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (korlátok) Fókusz: a légzsák (Air-Bag Systems) kémiája

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (korlátok) Fókusz: a légzsák (Air-Bag Systems) kémiája Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gázegyenlet és általánosított gázegyenlet 5-4 A tökéletes gázegyenlet alkalmazása 5-5 Gáz reakciók 5-6 Gázkeverékek

Részletesebben

1. SI mértékegységrendszer

1. SI mértékegységrendszer I. ALAPFOGALMAK 1. SI mértékegységrendszer Alapegységek 1 Hosszúság (l): méter (m) 2 Tömeg (m): kilogramm (kg) 3 Idő (t): másodperc (s) 4 Áramerősség (I): amper (A) 5 Hőmérséklet (T): kelvin (K) 6 Anyagmennyiség

Részletesebben

Előadás menete. Magfúzióból nyerhető energia és az energiatermelés feltétele. Fúziós kutatási ágazatok

Előadás menete. Magfúzióból nyerhető energia és az energiatermelés feltétele. Fúziós kutatási ágazatok Előadás menete Magfúzióból nyerhető energia és az energiatermelés feltétele Fúziós kutatási ágazatok Hőmérséklet és sűrűségmérés egyik módszere plazmafizikában a Thomson szórás Fúziós kutatás célja A nap

Részletesebben

Elektronegativitás. Elektronegativitás

Elektronegativitás. Elektronegativitás Általános és szervetlen kémia 3. hét Elektronaffinitás Az az energiaváltozás, ami akkor következik be, ha 1 mól gáz halmazállapotú atomból 1 mól egyszeresen negatív töltésű anion keletkezik. Mértékegysége:

Részletesebben

Mozgás centrális erőtérben

Mozgás centrális erőtérben Mozgás centális eőtében 1. A centális eő Válasszunk egy olyan potenciális enegia függvényt, amely csak az oigótól való távolságtól függ: V = V(). A tömegponta ható eő a potenciális enegiája gaiensének

Részletesebben

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele Rezgőmozgás A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele A rezgés fogalma Minden olyan változás, amely az időben valamilyen ismétlődést mutat rezgésnek nevezünk. A rezgések fajtái:

Részletesebben

Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja

Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja Mágneses erőtér Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat A villamos forgógépek mutatós műszerek működésének alapja Magnetosztatikai mező: nyugvó állandó mágnesek és egyenáramok időben

Részletesebben

Elektrosztatikai alapismeretek

Elektrosztatikai alapismeretek Elektrosztatikai alapismeretek THALÉSZ: a borostyánt (élektron) megdörzsölve az a könnyebb testeket magához vonzza. Az egymással szorosan érintkező anyagok elektromosan feltöltődnek, elektromos állapotba

Részletesebben

2. Plazmafizikai alapfogalmak

2. Plazmafizikai alapfogalmak 2. Plazmafizikai alapfogalmak Dósa Melinda A Naprendszer fizikája 2016 1 Mi a plazma? Ionizált gáz, melyre igaz: kívűlről semleges (=kvázineutrális) kollektív tulajdonsággal rendelkezik (árnyékolás működik)

Részletesebben

3. (b) Kereszthatások. Utolsó módosítás: április 1. Dr. Márkus Ferenc BME Fizika Tanszék

3. (b) Kereszthatások. Utolsó módosítás: április 1. Dr. Márkus Ferenc BME Fizika Tanszék 3. (b) Kereszthatások Utolsó módosítás: 2013. április 1. Vezetési együtthatók fémekben (1) 1 Az elektrongáz hővezetési együtthatója A levezetésben alkalmazott feltételek: 1. Minden elektron ugyanazzal

Részletesebben

2. Plazmafizikai alapfogalmak. Dósa Melinda

2. Plazmafizikai alapfogalmak. Dósa Melinda 2. Plazmafizikai alapfogalmak Dósa Melinda Mi a plazma? PLAZMA: Ionizált gáz, melyre igaz: kívűlről semleges (=kvázineutrális) kollektív tulajdonsággal rendelkezik (egy részecske egyszerre több részecskével

Részletesebben

Az expanziós ködkamra

Az expanziós ködkamra A ködkamra Mi az a ködkamra? Olyan nyomvonaljelző detektor, mely képes ionizáló sugárzások és töltött részecskék útját kimutatni. A kamrában túlhűtött gáz található, mely a részecskék által keltett ionokon

Részletesebben

3.1. ábra ábra

3.1. ábra ábra 3. Gyakorlat 28C-41 A 28-15 ábrán két, azonos anyagból gyártott ellenállás látható. A véglapokat vezető 3.1. ábra. 28-15 ábra réteggel vonták be. Tételezzük fel, hogy az ellenállások belsejében az áramsűrűség

Részletesebben

Számítógépes szimulációk: molekuláris dinamika és Monte Carlo

Számítógépes szimulációk: molekuláris dinamika és Monte Carlo Számítógépes szimulációk: molekuláris dinamika és Monte Carlo Boda Dezső Fizikai Kémiai Tanszék Pannon Egyetem boda@almos.vein.hu 2014. március 21. Boda Dezső (Pannon Egyetem) Habilitációs előadás 2014.

Részletesebben

Kötések kialakítása - oktett elmélet

Kötések kialakítása - oktett elmélet Kémiai kötések Az elemek és vegyületek halmazai az atomok kapcsolódásával - kémiai kötések kialakításával - jönnek létre szabad atomként csak a nemesgázatomok léteznek elsődleges kémiai kötések Kötések

Részletesebben

1. fejezet. Gyakorlat C-41

1. fejezet. Gyakorlat C-41 1. fejezet Gyakorlat 3 1.1. 28C-41 A 1.1 ábrán két, azonos anyagból gyártott ellenállás látható. A véglapokat vezető réteggel vonták be. Tételezzük fel, hogy az ellenállások belsejében az áramsűrűség bármely,

Részletesebben

Alkalmazás a makrókanónikus sokaságra: A fotongáz

Alkalmazás a makrókanónikus sokaságra: A fotongáz Alkalmazás a makrókanónikus sokaságra: A fotongáz A fotonok az elektromágneses sugárzás hordozó részecskéi. Spinkvantumszámuk S=, tehát kvantumstatisztikai szempontból bozonok. Fotonoknak habár a spinkvantumszámuk,

Részletesebben

DINAMIKA ALAPJAI. Tömeg és az erő

DINAMIKA ALAPJAI. Tömeg és az erő DINAMIKA ALAPJAI Tömeg és az erő NEWTON ÉS A TEHETETLENSÉG Tehetetlenség: A testek maguktól nem képesek megváltoztatni a mozgásállapotukat Newton I. törvénye (tehetetlenség törvénye): Minden test nyugalomban

Részletesebben

Nemlineáris szállítószalag fúziós plazmákban

Nemlineáris szállítószalag fúziós plazmákban Nemlineáris szállítószalag fúziós plazmákban Pokol Gergő BME NTI BME TTK Kari Nyílt Nap 2018. november 16. Hogyan termeljünk villamos energiát? Bőséges üzemanyag: Amennyit csak akarunk, egyenletesen elosztva!

Részletesebben

FIZIKA KÖZÉPSZINTŐ SZÓBELI FIZIKA ÉRETTSÉGI TÉTELEK Premontrei Szent Norbert Gimnázium, Gödöllı, 2012. május-június

FIZIKA KÖZÉPSZINTŐ SZÓBELI FIZIKA ÉRETTSÉGI TÉTELEK Premontrei Szent Norbert Gimnázium, Gödöllı, 2012. május-június 1. Egyenes vonalú mozgások kinematikája mozgásokra jellemzı fizikai mennyiségek és mértékegységeik. átlagsebesség egyenes vonalú egyenletes mozgás egyenes vonalú egyenletesen változó mozgás mozgásokra

Részletesebben

Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, december 05. Feladatok (maximum 3x6 pont=18 pont)

Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, december 05. Feladatok (maximum 3x6 pont=18 pont) 1. 2. 3. Mondat E1 E2 NÉV: Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, 2017. december 05. Neptun kód: Aláírás: g=10 m/s 2 ; ε 0 = 8.85 10 12 F/m; μ 0 = 4π 10 7 Vs/Am; c = 3 10 8 m/s Előadó: Márkus /

Részletesebben

Ricz Sándor. MTA Atommagkutató Intézete. SZFKI, Budapest 2013. 12. 10

Ricz Sándor. MTA Atommagkutató Intézete. SZFKI, Budapest 2013. 12. 10 Aszimmetrikus fotoelektron emisszió foton- atom és foton-h molekula kölcsönhatásban Ricz Sánor MTA Atommagkutató Intézete SZFKI, Buapest 013. 1. 10 Tartalom I. Fotoelektronok ifferenciális hatáskeresztmetszete

Részletesebben

1. Elektromos alapjelenségek

1. Elektromos alapjelenségek 1. Elektromos alapjelenségek 1. Bizonyos testek dörzsölés hatására különleges állapotba kerülhetnek: más testekre vonzerőt fejthetnek ki, apróbb tárgyakat magukhoz vonzhatnak. Ezt az állapotot elektromos

Részletesebben

Atomfizika. Fizika kurzus Dr. Seres István

Atomfizika. Fizika kurzus Dr. Seres István Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés J.J. Thomson (1897) Katódsugárcsővel végzett kísérleteket az elektron fajlagos töltésének (e/m) meghatározására. A katódsugarat alkotó részecskét

Részletesebben

Részecskefizikai gyorsítók

Részecskefizikai gyorsítók Részecskefizikai gyorsítók 2010.12.09. Kísérleti mag- és részecskefizikai szeminárium Márton Krisztina Hogyan látunk különböző méreteket? 2 A működés alapelve az elektromos tér gyorsítja a részecskét különböző

Részletesebben

Molekuláris dinamika. 10. előadás

Molekuláris dinamika. 10. előadás Molekuláris dinamika 10. előadás Mirőlis szól a MD? nagy részecskeszámú rendszerek ismerjük a törvényeket mikroszkópikus szinten? Hogyan tudjuk megérteni a folyadékok, gázok, szilárdtestek makroszkópikus

Részletesebben

összetevője változatlan marad, a falra merőleges összetevő iránya ellenkezőjére változik, miközben nagysága ugyanakkora marad.

összetevője változatlan marad, a falra merőleges összetevő iránya ellenkezőjére változik, miközben nagysága ugyanakkora marad. A termodinamika 2. főtétele kis rendszerekben Osváth Szabolcs Semmelweis Egyetem Statisztikus sokaságok Nyomás Nyomás: a tartály falával ütköző molekulák, a falra erőt fejtenek ki Az ütközésben a részecske

Részletesebben

Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések

Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések 1. Melyek a rezgőmozgást jellemző fizikai mennyiségek?. Egy rezgés során mely helyzetekben maximális a sebesség, és mikor a gyorsulás? 3. Milyen

Részletesebben

Atomok. szilárd. elsődleges kölcsönhatás. kovalens ionos fémes. gázok, folyadékok, szilárd anyagok. ionos fémek vegyületek ötvözetek

Atomok. szilárd. elsődleges kölcsönhatás. kovalens ionos fémes. gázok, folyadékok, szilárd anyagok. ionos fémek vegyületek ötvözetek Atomok elsődleges kölcsönhatás kovalens ionos fémes véges számú atom térhálós szerkezet 3D ionos fémek vegyületek ötvözetek molekulák atomrácsos vegyületek szilárd gázok, folyadékok, szilárd anyagok Gázok

Részletesebben

ELEKTROSZTATIKA. Ma igazán feltöltődhettek!

ELEKTROSZTATIKA. Ma igazán feltöltődhettek! ELEKTROSZTATIKA Ma igazán feltöltődhettek! Elektrosztatikai alapismeretek THALÉSZ: a borostyánt (élektron) megdörzsölve az a könnyebb testeket magához vonzza. Elektrosztatikai alapjelenségek Az egymással

Részletesebben

Egy részecske mozgási energiája: v 2 3 = k T, ahol T a gáz hőmérséklete Kelvinben 2 2 (k = 1, J/K Boltzmann-állandó) Tehát a gáz hőmérséklete

Egy részecske mozgási energiája: v 2 3 = k T, ahol T a gáz hőmérséklete Kelvinben 2 2 (k = 1, J/K Boltzmann-állandó) Tehát a gáz hőmérséklete Hőtan III. Ideális gázok részecske-modellje (kinetikus gázmodell) Az ideális gáz apró pontszerű részecskékből áll, amelyek állandó, rendezetlen mozgásban vannak. Rugalmasan ütköznek egymással és a tartály

Részletesebben

W = F s A munka származtatott, előjeles skalármennyiség.

W = F s A munka származtatott, előjeles skalármennyiség. Ha az erő és az elmozdulás egymásra merőleges, akkor fizikai értelemben nem történik munkavégzés. Pl.: ha egy táskát függőlegesen tartunk, és úgy sétálunk, akkor sem a tartóerő, sem a nehézségi erő nem

Részletesebben

Rádl Attila december 11. Rádl Attila Spalláció december / 21

Rádl Attila december 11. Rádl Attila Spalláció december / 21 Spalláció Rádl Attila 2018. december 11. Rádl Attila Spalláció 2018. december 11. 1 / 21 Definíció Atommagok nagyenergiás részecskével történő ütközése során másodlagos részecskéket létrehozó rugalmatlan

Részletesebben

TestLine - Fizika 8. évfolyam elektromosság alapok Minta feladatsor

TestLine - Fizika 8. évfolyam elektromosság alapok Minta feladatsor Mi az áramerősség fogalma? (1 helyes válasz) 1. 1:56 Normál Egységnyi idő alatt áthaladó töltések száma. Egységnyi idő alatt áthaladó feszültségek száma. Egységnyi idő alatt áthaladó áramerősségek száma.

Részletesebben

A mágneses tulajdonságú magnetit ásvány, a görög Magnészia városról kapta nevét.

A mágneses tulajdonságú magnetit ásvány, a görög Magnészia városról kapta nevét. MÁGNESES MEZŐ A mágneses tulajdonságú magnetit ásvány, a görög Magnészia városról kapta nevét. Megfigyelések (1, 2) Minden mágnesnek két pólusa van, északi és déli. A felfüggesztett mágnes - iránytű -

Részletesebben

A radioaktív bomlás típusai

A radioaktív bomlás típusai A radioaktív bomlás típusai Párhuzamos negatív és pozitív bétabomlás/elektronbefogás 40 19 K kb.89% 0.001%, kb.11% EX 40 40 Ca Ar Felszabaduló energia Ca-40: 1311 kev Ar-40: 1505 kev Felezési idő P-40

Részletesebben

Mit nevezünk nehézségi erőnek?

Mit nevezünk nehézségi erőnek? Mit nevezünk nehézségi erőnek? Azt az erőt, amelynek hatására a szabadon eső testek g (gravitációs) gyorsulással esnek a vonzó test centruma felé, nevezzük nehézségi erőnek. F neh = m g Mi a súly? Azt

Részletesebben

Úton az elemi részecskék felé. Atommag és részecskefizika 2. előadás február 16.

Úton az elemi részecskék felé. Atommag és részecskefizika 2. előadás február 16. Úton az elemi részecskék felé Atommag és részecskefizika 2. előadás 2010. február 16. A neutron létének következményei I. 1. Az atommag alkotórészei Z db proton + N db neutron, A=N+Z az atommag tömege

Részletesebben

Hadronok, atommagok, kvarkok

Hadronok, atommagok, kvarkok Zétényi Miklós Hadronok, atommagok, kvarkok Teleki Blanka Gimnázium Székesfehérvár, 2012. február 21. www.meetthescientist.hu 1 26 Atomok Démokritosz: atom = legkisebb, oszthatatlan részecske Rutherford

Részletesebben

Atommagok alapvető tulajdonságai

Atommagok alapvető tulajdonságai Atommagok alapvető tulajdonságai Mag és részecskefizika 5. előadás 017. március 17. Áttekintés Atommagok szerkezete a kvarkképben proton szerkezete, atommagok szerkezete, magerő Atommagok összetétele izotópok,

Részletesebben

8. AZ ATOMMAG FIZIKÁJA

8. AZ ATOMMAG FIZIKÁJA 8. AZ ATOMMAG FIZIKÁJA Az atommag szerkezete (40-44 oldal) A tömegspektrométer elve Az atommag komponensei Izotópok Tömeghiány, kötési energia, stabilitás Magerők Magmodellek Az atommag stabilitásának

Részletesebben

1. Feladatok a dinamika tárgyköréből

1. Feladatok a dinamika tárgyköréből 1. Feladatok a dinamika tárgyköréből Newton három törvénye 1.1. Feladat: Három azonos m tömegű gyöngyszemet fonálra fűzünk, egymástól kis távolságokban a fonálhoz rögzítünk, és az elhanyagolható tömegű

Részletesebben