Theory hungarian (Hungary)
|
|
- Barnabás Vass
- 8 évvel ezelőtt
- Látták:
Átírás
1 Q3-1 A Nagy Hadronütköztető (10 pont) Mielőtt elkezded a feladat megoldását, olvasd el a külön borítékban lévő általános utasításokat! Ez a feladat a CERN-ben működő részecskegyorsító, a Nagy Hadronütköztető (Large Hadron Collider, LHC) fizikájával foglalkozik. A CERN a legnagyobb részecskefizikai laboratóriuma. Célja, hogy betekintést nyújtson a természet alapvető törvényeibe. Két részecskenyalábot gyorsítanak fel nagy energiára úgy, hogy azokat erős mágneses térrel gyorsítógyűrűben vezetik, és utána egymással ütköztetik őket. A protonok nem egyenletesen oszlanak el a gyorsító kerületén, hanem úgynevezett csomagokba rendeződve. Az ütközés során keletkezett részecskéket nagy detektorokkal figyelik meg. Az LHC néhány paramétere az 1. táblázatban található. LHC gyűrű Gyűrű kerülete m Részecskecsomagok száma egy protonnyalábban 2808 Protonok száma egy részecskecsomagban Protonnyalábok Protonok energiája 7.00 TeV Tömegközépponti energia 14.0 TeV 1. táblázat: Az LHC releváns paramétereinek jellemző numerikus értékei. A részecskefizikusok alkalmasabb egységeket használnak az energia, az impulzus és a tömeg kifejezésére: az energiát elektronvoltban [ev] mérik. Definíció szerint 1 ev energiát nyer az az e elemi töltéssel rendelkező részecske, amelyik 1 volt potenciálkülönbségen haladt át (1 ev = kg m 2 s 2 ). Az impulzust ev/c, a tömeget ev/c 2 egységekben adják meg, ahol c a vákuumbeli fénysebesség. Mivel 1 ev nagyon kicsi energiamennyiség, a részecskefizikusok gyakran MeV-ot (1 MeV = 10 6 ev), GeV-ot (1 GeV = 10 9 ev) vagy TeV-ot (1 TeV = ev) használnak. Part A a protonok vagy az elektronok gyorsításával, Part B a CERN-ben ütközéskor keletkezett részecskék azonosításával foglalkozik. Part A. Az LHC gyorsító (6 pont) Gyorsítás Tegyük fel, hogy a protonokat V feszültséggel gyorsítjuk fel a fénysebességhez nagyon közeli sebességre. Hanyagoljuk el a sugárzásból és más részecskékkel való ütközésből eredő energiaveszteségeket. A.1 Add meg a protonok v végsebességének pontos kifejezését a V gyorsítófeszültség és fizikai állandók függvényében! 0.7pt Egy tervezet szerint a CERN-ben egy jövőbeli kísérlethez azt tervezik, hogy az LHC-ből érkező protonokat 60.0 GeVenergiájú elektronokkal ütköztetik.
2 Q3-2 A.2 Egy nagy energiájú és kicsi tömegű részecskére a v végsebesség és a fénysebesség közötti Δ = (c v)/c relatív eltérés nagyon kicsi. Adj elsőrendű közelítést Δ-ra, és számítsd ki Δ értékét 60.0 GeV energiájú elektronokra, a V gyorsítófeszültség és fizikai állandók segítségével! 0.8pt Most visszatérünk az LHC-beli protonokra. Tegyük fel, hogy a nyalábvezető cső kör alakú. A.3 Vezess le egy kifejezést a B homogén mágneses indukció nagyságára, ami ahhoz szükséges, hogy a protonnyalábot kör alakú pályán tartsuk! A kifejezés csak a protonok E energiáját, az L kerületet, fizikai állandókat és számokat tartalmazhat. Használhatsz megfelelő közelítéseket, ha azok hatása az utolsó értékes jegy pontosságánál kisebb. Számítsd ki a B mágneses indukciót, elhanyagolva a protonok közötti kölcsönhatásokat, ha a proton energiája E = 7.00 TeV. 1.0pt Kisugárzott teljesítmény Egy gyorsuló, töltött részecske elektromágneses hullám formájában energiát sugároz. Az állandó szögsebességgel keringő, töltött részecske által kisugárzott P rad teljesítmény csak az a gyorsulásától, a q töltésétől, a c fénysebességtől és a vákuum ε 0 permittivitásától függ. A.4 Dimenzióanalízissel add meg a P rad kisugárzott teljesítmény kifejezését! 1.0pt A kisugárzott teljesítmény valódi alakja tartalmaz egy 1/(6π) faktort. Ezenfelül a relativisztikus levezetés egy γ 4 szorzófaktort is ad, ahol γ = (1 v 2 /c 2 ) 1 2. A.5 Számítsd ki az LHC P tot teljes kisugárzott teljesítményét, ha a proton energiája E = 7.00 TeV (1. táblázat). Használhatsz alkalmas közelítéseket. 1.0pt Lineáris gyorsító A CERN-ben nyugvó protonokat gyorsítanak fel d = 30.0 m hosszúságú lineáris gyorsítóval V = 500 MV potenciálkülönbségen keresztül. Tegyük fel, hogy az elektromos mező homogén. A lineáris gyorsító két lemezből áll, ahogyan azt az 1. ábra mutatja. A.6 Határozd meg azt a T időt, ami alatt a protonok áthaladnak ezen a mezőn! 1.5pt
3 Q3-3 d + - V 1. ábra: A gyorsítóegység vázlata.
4 Q3-4 Part B. Részecskeazonosítás (4 pont) Repülési idő A kölcsönhatási folyamatok értelmezéséhez fontos az ütközésekben keletkező, nagy energájú részecskék azonosítása. Létezik egy egyszerű módszer, amivel azt az időt (t) mérik, ami ahhoz szükséges, hogy egy ismert impulzusú részecske l utat tegyen meg egy ún. repülési idő (Time of Flight - ToF) detektorban. A detektorban azonosított, tipikus részecskék és tömegeik a 2. táblázatban találhatók. Részecske Tömeg [MeV/c 2 ] Deuteron 1876 Proton 938 Töltött kaon 494 Töltött pion 140 Elektron táblázat: Részecskék és tömegeik. tömeg m impluzus p y x idő t 1 úthossz l idő t 2 2. ábra: A repülési idő detektor sematikus ábrája. B.1 Fejezd ki a részecske m tömegét a p impulzus, az l repülési úthossz és a t repülési idő függvényében feltételezve, hogy a részecske az e elemi töltéssel rendelkezik, és a ToF detektorban a c fénysebességhez nagyon közeli sebességgel egyenes pályán, a két érzékelési síkra merőlegesen halad (lásd a 2. ábrát)! 0.8pt
5 Q3-5 B.2 Számítsd ki azon ToF detektor legkisebb l hosszát, amelyben a töltött kaon a töltött piontól biztosan megkülönböztethetők, ha mindkét részecske impulzusát 1.00 GeV/c-nek mérik! A jól elkülönítéshez az kell, hogy a repülési idők különbsége háromszor akkora legyen, mint a detektor időfelbontása. Egy ToF detektor tipikus felbontása 150 ps (1 ps = s). 0.7pt A következőkben egy tipikus LHC detektorban létrejövő részecskéket olyan kétlépcsős detektorban azonosítjuk, amely egy nyomkövető detektorból és egy ToF detektorból áll. A 3. ábra mutatja az elrendezést a protonnyalábok kereszt- és hosszanti irányában. Mindkét detektor egy-egy cső, amelyek körülveszik a kölcsönhatási területet, benne a csövek közepén haladó nyalábbal. A nyomkövető detektor méri a protonnyalábbal párhuzamos irányú mágneses téren áthaladó töltött részecske pályáját. A pálya r sugarával meghatározható a részecske keresztirányú p T impulzusa. Mivel az ütközés ideje ismert, a ToF detektorhoz csak egy cső szükséges ahhoz, hogy mérjék a repülési időt az ütközési pont és a ToF cső között. Ez a ToF cső szorosan a nyomkövető kamra külsején helyezkedik el. Ebben a feladatban felteheted, hogy az összes, ütközésben keletkezett részecske a protonnyalábokra merőlegesen halad. Ez azt jelenti, hogy a keletkező részecskék nem rendelkeznek a protonnyalábok irányába mutató impulzussal. y x (2) y z (2) (1) (4) (4) (3) R (1) (5) (3) (5) (4) keresztirányú sík a cső hosszirányú metszete középen a nyaláb vonalával (1) (1) - ToF cső (2) - pálya (3) - ütközési pont (4) - nyomkövetési cső (5) - protonnyalábok - mágneses tér 3. ábra: A részecskeazonosítás kísérleti elrendezése a nyomkövető kamrával és a ToF detektorral. Mindkét detektor egy-egy cső, amelyek a középen levő ütközési pontot veszik körül. Bal oldal: keresztirányú nézet a nyaláb vonalára merőlegesen. Jobb oldal: hosszanti nézet a nyaláb vonalával párhuzamosan.
6 Q3-6 B.3 Fejezd ki a részecske tömegét a B mágneses indukcióval, a ToF cső R sugarával és fizikai állandókkal, valamint a mért mennyiségekkel: az r pályasugárral és a t repülési idővel! 1.7pt Négy részecskét deteketáltunk, és szeretnénk ezeket azonosítani. A nyomkövető detektorban a mágneses indukció B = T. A ToF cső R sugara 3.70 m. A mérési eredmények a következők (1 ns = 10 9 s): Részecske r pályasugár [m] t repülési idő [ns] A B C D B.4 Azonosítsd a négy részecskét a tömegük kiszámításával! 0.8pt
Részecskefizikai gyorsítók
Részecskefizikai gyorsítók 2010.12.09. Kísérleti mag- és részecskefizikai szeminárium Márton Krisztina Hogyan látunk különböző méreteket? 2 A működés alapelve az elektromos tér gyorsítja a részecskét különböző
Részecske azonosítás kísérleti módszerei
Részecske azonosítás kísérleti módszerei Galgóczi Gábor Előadás vázlata A részecske azonosítás létjogosultsága Részecske azonosítás: Módszerek Detektorok ALICE-ból példa A részecskeazonosítás létjogosultsága
Gyorsítók. Veszprémi Viktor ATOMKI, Debrecen. Supported by NKTH and OTKA (H07-C 74281) 2009. augusztus 17 Hungarian Teacher Program, CERN 1
Gyorsítók Veszprémi Viktor ATOMKI, Debrecen Supported by NKTH and OTKA (H07-C 74281) 2009. augusztus 17 Hungarian Teacher Program, CERN 1 Az anyag felépítése Részecskefizika kvark, lepton Erős, gyenge,
Hadronok, atommagok, kvarkok
Zétényi Miklós Hadronok, atommagok, kvarkok Teleki Blanka Gimnázium Székesfehérvár, 2012. február 21. www.meetthescientist.hu 1 26 Atomok Démokritosz: atom = legkisebb, oszthatatlan részecske Rutherford
A részecskefizika kísérleti eszközei
A részecskefizika kísérleti eszközei (Gyorsítók és Detektorok) Hamar Gergő MTA Wigner FK 1 Tartalom Mit kell/lehet mérni egy részecskén? miben különböznek? hogyan és mit mérünk? Részecskegyorsítók, CERN
Mikrofizika egy óriási gyorsítón: a Nagy Hadron-ütköztető
Mikrofizika egy óriási gyorsítón: a Nagy Hadron-ütköztető MAFIOK 2010 Békéscsaba, 2010.08.24. Hajdu Csaba MTA KFKI RMKI hajdu@mail.kfki.hu 1 Large Hadron Nagy Collider Hadron-ütköztető proton ólom mag
Megmérjük a láthatatlant
Megmérjük a láthatatlant (részecskefizikai detektorok) Hamar Gergő MTA Wigner FK 1 Tartalom Mik azok a részecskék? mennyi van belőlük? miben különböznek? Részecskegyorsítók, CERN mire jó a gyorsító? hogy
A legkisebb részecskék a világ legnagyobb gyorsítójában
A legkisebb részecskék a világ legnagyobb gyorsítójában Varga Dezső, ELTE Fiz. Int. Komplex Rendszerek Fizikája Tanszék AtomCsill 2010 november 18. Az ismert világ építőkövei: az elemi részecskék Elemi
CERN: a szubatomi részecskék kutatásának európai központja
CERN: a szubatomi részecskék kutatásának európai központja 1954-ben alapította 12 ország Ma 20 tagország 2007-ben több mint 9000 felhasználó (9133 user ) ~1 GCHF éves költségvetés (0,85%-a magyar Ft) Az
Z bozonok az LHC nehézion programjában
Z bozonok az LHC nehézion programjában Zsigmond Anna Julia MTA Wigner FK Max Planck Institut für Physik Fizikus Vándorgyűlés Szeged, 2016 augusztus 24-27. Nehézion-ütközések az LHC-nál A-A és p-a ütközések
Detektorok. Siklér Ferenc MTA KFKI Részecske- és Magfizikai Kutatóintézet Budapest
Detektorok Siklér Ferenc sikler@rmki.kfki.hu MTA KFKI Részecske- és Magfizikai Kutatóintézet Budapest Hungarian Teachers Programme 2008 Genf, 2008. augusztus 19. Detektorok 1970 16 GeV π nyaláb, folyékony
FIZIKA II. Dr. Rácz Ervin. egyetemi docens
FIZIKA II. Dr. Rácz Ervin egyetemi docens Fontos tudnivalók e-mail: racz.ervin@kvk.uni-obuda.hu web: http://uni-obuda.hu/users/racz.ervin/index.htm Iroda: Bécsi út, C. épület, 124. szoba Fizika II. - ismertetés
Fizika 2 - Gyakorló feladatok
2015. június 19. ε o =8.85 10-12 AsV -1 m -1 μ o =4π10-7 VsA -1 m -1 e=1,6 10-19 C m e =9,11 10-31 kg m p =1,67 10-27 kg h=6,63 10-34 Js 1. Egy R sugarú gömbben -ρ állandó töltéssűrűség van. a. Határozza
CERN-i látogatás. A mágnesgyár az a hely,ahol a mágneseket tesztelik és nem igazán gyártják őket. Itt magyarázták el nekünk a gyorsító alkotórészeit.
CERN-i látogatás Mágnesgyár A mágnesgyár az a hely,ahol a mágneseket tesztelik és nem igazán gyártják őket. Itt magyarázták el nekünk a gyorsító alkotórészeit. Ez a berendezés gyorsítja a részecskéket.,és
Gyorsítók. Veszprémi Viktor ATOMKI, Debrecen. Supported by OTKA MB augusztus 16. Hungarian Teacher Program, CERN 1
Gyorsítók Veszprémi Viktor ATOMKI, Debrecen Supported by OTKA MB08-80137 2010. augusztus 16. Hungarian Teacher Program, CERN 1 Hogyan látunk különböző méreteket? A világban megtalálható tárgyak mérete
RÉSZECSKEGYORSÍTÓ CERN. Készítette: Laboda Lilla, Pokorny Orsolya, Vajda Bettina
RÉSZECSKEGYORSÍTÓ CERN Készítette: Laboda Lilla, Pokorny Orsolya, Vajda Bettina A RÉSZECSKEGYORSÍTÓ A részecskegyorsítók töltött részecskéket: leptonokat, hadronokat, atommagokat, ionokat és molekulákat
Speciális relativitás
Bevezetés a modern fizika fejezeteibe 3. (b) Speciális relativitás Relativisztikus dinamika Utolsó módosítás: 2013 október 15. 1 A relativisztikus tömeg (1) A bevezetett Lorentz-transzformáció biztosítja
Kirchhoff 2. törvénye (huroktörvény) szerint az áramkörben levő elektromotoros erők. E i = U j (3.1)
3. Gyakorlat 29A-34 Egy C kapacitású kondenzátort R ellenálláson keresztül sütünk ki. Mennyi idő alatt csökken a kondenzátor töltése a kezdeti érték 1/e 2 ed részére? Kirchhoff 2. törvénye (huroktörvény)
Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet
Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet Utolsó módosítás: 2016. május 4. 1 Előzmények Az atomok színképe (1) A fehér fény komponensekre bontható: http://en.wikipedia.org/wiki/spectrum
Nehézion-ütköztetők, részecskegyorsítók
Nehézion-ütköztetők, részecskegyorsítók NAGYENERGIÁS NEHÉZIONFIZIKA, AVAGY A TÖKÉLETES KVARKFOLYADÉK 2017. 09. 28. NEHÉZION-ÜTKÖZTETŐK ÉS KÍSÉRLETEK 1 Miről lesz szó? Mire jók a részecskegyorsítók Hogyan
Részecskegyorsítók. Barna Dániel. University of Tokyo Wigner Fizikai Kutatóközpont
Részecskegyorsítók Barna Dániel University of Tokyo Wigner Fizikai Kutatóközpont Részecskegyorsítók a háztartásban Töltött részecskék manipulálása Miért akarunk nagyenergiás gyorsítókat? A klasszikus nagyenergiás
http://www.nature.com 1) Magerő-sugár: a magközéppontból mért távolság, ameddig a magerők hatótávolsága terjed. Rutherford-szórásból határozható meg. R=1,4 x 10-13 A 1/3 cm Az atommag terének potenciálja
Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2)
2. Gyakorlat 30B-14 Az Egyenlítőnél, a földfelszín közelében a mágneses fluxussűrűség iránya északi, nagysága kb. 50µ T,az elektromos térerősség iránya lefelé mutat, nagysága; kb. 100 N/C. Számítsuk ki,
Indul az LHC: a kísérletek
Horváth Dezső: Indul az LHC: a kísérletek Debreceni Egyetem, 2008. szept. 10. p. 1 Indul az LHC: a kísérletek Debreceni Egyetem Kísérleti Fizikai Intézete, 2008. szept. 10. Horváth Dezső horvath@rmki.kfki.hu
A tau lepton felfedezése
A tau lepton felfedezése Szabó Attila András ELTE TTK Kísérleti mag- és részecskefizikai szeminárium 2014.12.04. Tartalom 1 Előzmények(-1973) e-μ probléma e+e- annihiláció kísérletekhez vezető út 2 Felfedezés(1973-1976)
A TÖMEGSPEKTROMETRIA ALAPJAI
A TÖMEGSPEKTROMETRIA ALAPJAI web.inc.bme.hu/csonka/csg/oktat/tomegsp.doc alapján tömeg-töltés arány szerinti szétválasztás a legérzékenyebb módszerek közé tartozik (Nagyon kis anyagmennyiség kimutatására
Detektorok. Fodor Zoltán MTA-KFKI Részecske és Magfizikai Kutató Intézete. Hungarian Teachers Programme 2010 CERN
Detektorok Fodor Zoltán MTA-KFKI Részecske és Magfizikai Kutató Intézete CERN Hungarian Teachers Programme 2010 Mit is nevezünk detektornak? Az egyszerű részecske áthaladást kimutató műszert Összetettebb
Kifejtendő kérdések június 13. Gyakorló feladatok
Kifejtendő kérdések 2016. június 13. Gyakorló feladatok 1. Adott egy egyenletes térfogati töltéssel rendelkező, R sugarú gömb, melynek felületén a potenciál U 0. Az elektromos potenciál definíciója (1p)
3.1. ábra ábra
3. Gyakorlat 28C-41 A 28-15 ábrán két, azonos anyagból gyártott ellenállás látható. A véglapokat vezető 3.1. ábra. 28-15 ábra réteggel vonták be. Tételezzük fel, hogy az ellenállások belsejében az áramsűrűség
-2σ. 1. A végtelen kiterjedésű +σ és 2σ felületi töltéssűrűségű síklapok terében az ábrának megfelelően egy dipól helyezkedik el.
1. 2. 3. Mondat E1 E2 Össz Energetikai mérnöki alapszak Mérnöki fizika 2. ZH NÉV:.. 2018. május 15. Neptun kód:... g=10 m/s 2 ; ε 0 = 8.85 10 12 F/m; μ 0 = 4π 10 7 Vs/Am; c = 3 10 8 m/s Előadó: Márkus
11. tétel - Elektromágneses sugárzás és ionizáló sugárzás kölcsönhatása kondenzált anyaggal, áthatolóképesség, záporjelenségek.
11. tétel - Elektromágneses sugárzás és ionizáló sugárzás kölcsönhatása kondenzált anyaggal, áthatolóképesség, záporjelenségek. Ionizáció Bevezetés Ionizációra minden töltött részecske képes, de az elektront
Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, december 05. Feladatok (maximum 3x6 pont=18 pont)
1. 2. 3. Mondat E1 E2 NÉV: Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, 2017. december 05. Neptun kód: Aláírás: g=10 m/s 2 ; ε 0 = 8.85 10 12 F/m; μ 0 = 4π 10 7 Vs/Am; c = 3 10 8 m/s Előadó: Márkus /
2. tétel - Gyorsítók és nyalábok (x target, ütköz nyalábok, e, p, nyalábok).
2. tétel - Gyorsítók és nyalábok (x target, ütköz nyalábok, e, p, nyalábok). Gyorsítók Cockcroft-Walton generátor (1928) Kondenzátorokból és diódákból épített gyorsító, amit sokáig használtak el gyorsítóként.
Vastag GEM alapú trigger detektor fejlesztése az LHC ALICE kísérlethez
Vastag GEM alapú trigger detektor fejlesztése az LHC ALICE kísérlethez Hamar Gergő (MTA RMKI) az RMKI ELTE Gázdetektor R&D csoport és az ALICE Budapest csoport nevében Magfizikus találkozó, Jávorkút, 2009.09.03.
Gyorsítók. Veszprémi Viktor ATOMKI, Debrecen. Supported by OTKA MB augusztus 18. Hungarian Teacher Program, CERN 1
Gyorsítók Veszprémi Viktor ATOMKI, Debrecen Supported by OTKA MB08-80137 2011. augusztus 18. Hungarian Teacher Program, CERN 1 szilárdtest, folyadék molekula A részecskefizika célja EM, gravitáció Elektromágneses
1. fejezet. Gyakorlat C-41
1. fejezet Gyakorlat 3 1.1. 28C-41 A 1.1 ábrán két, azonos anyagból gyártott ellenállás látható. A véglapokat vezető réteggel vonták be. Tételezzük fel, hogy az ellenállások belsejében az áramsűrűség bármely,
Atomfizika. A hidrogén lámpa színképei. Elektronok H atom. Fényképlemez. emisszió H 2. gáz
Atomfizika A hidrogén lámpa színképei - Elektronok H atom emisszió Fényképlemez V + H 2 gáz Az atom és kvantumfizika fejlődésének fontos szakasza volt a hidrogén lámpa színképeinek leírása, és a vonalas
Elektrosztatika. 1.2. Mekkora két egyenlő nagyságú töltés taszítja egymást 10 m távolságból 100 N nagyságú erővel? megoldás
Elektrosztatika 1.1. Mekkora távolságra van egymástól az a két pontszerű test, amelynek töltése 2. 10-6 C és 3. 10-8 C, és 60 N nagyságú erővel taszítják egymást? 1.2. Mekkora két egyenlő nagyságú töltés
Határtalan neutrínók
Határtalan neutrínók Trócsányi Zoltán Eötvös Loránd Tudományegyetem és MTA-DE Részecskefizikai Kutatócsoport HTP utótalálkozó Budapest 218. december 8 Mottó A tudománynak azonban, hogy el ne satnyuljon,
Detektorok. Fodor Zoltán. Wigner fizikai Kutatóközpont. Hungarian Teachers Programme 2015
Detektorok Fodor Zoltán Wigner fizikai Kutatóközpont Hungarian Teachers Programme 2015 Mi is a kisérleti fizika HTP 2015 Detektorok, Fodor Zoltán 2 A természetben is lejátszodó eseményeket ismételjük meg
A CERN, az LHC és a vadászat a Higgs bozon után. Genf
A CERN, az LHC és a vadászat a Higgs bozon után Genf European Organization for Nuclear Research 20 tagállam (Magyarország 1992 óta) CERN küldetése: on ati uc Ed on Alapítva 1954-ben Inn ov ati CERN uniting
CMS Pixel Detektor működése
CMS Pixel Detektor működése VÁMI Tamás Álmos Kísérleti mag- és részecskefizikai szeminárium (ELTE) Large Hadron Collider Large Hadron Collider @P5 p + p + 15 m Nyomkövető rendszer Töltött részecskék
A Lederman-Steinberger-Schwartz-f ele k et neutrn o ks erlet
A Lederman-Steinberger-Schwartz-f ele k et neutrn o ks erlet Modern zikai ks erletek szemin arium Kincses D aniel E otv os Lor and Tudom anyegyetem 2017. február 21. Kincses Dániel (ELTE) A két neutrínó
Gyorsítók. Veszprémi Viktor Wigner Fizikai Kutatóközpont OTKA NK augusztus 12. Hungarian Teacher Program, CERN 1
Gyorsítók Veszprémi Viktor Wigner Fizikai Kutatóközpont OTKA NK81447 2013. augusztus 12. Hungarian Teacher Program, CERN 1 A részecskefizika alapkérdései Hogyan alakult ki a Világegyetem? Miből áll? Mi
Elektromos alapjelenségek
Elektrosztatika Elektromos alapjelenségek Dörzselektromos jelenség: egymással szorosan érintkező, vagy egymáshoz dörzsölt testek a szétválasztásuk után vonzó, vagy taszító kölcsönhatást mutatnak. Ilyenkor
Detektorok. Fodor Zoltán. MTA Wigner FK RMI. Hungarian Teachers Programme 2012
Detektorok Fodor Zoltán MTA Wigner FK RMI Hungarian Teachers Programme 2012 Mi is a kisérleti fizika HTP 2012 Detektorok, Fodor Zoltán 2 A természetben is lejátszodó eseményeket ismételjük meg kontrolált
Mágneses mező tesztek. d) Egy mágnesrúd északi pólusához egy másik mágnesrúd déli pólusát közelítjük.
Mágneses mező tesztek 1. Melyik esetben nem tapasztalunk vonzóerőt? a) A mágnesrúd északi pólusához vasdarabot közelítünk. b) A mágnesrúd közepéhez vasdarabot közelítünk. c) A mágnesrúd déli pólusához
A mágneses tulajdonságú magnetit ásvány, a görög Magnészia városról kapta nevét.
MÁGNESES MEZŐ A mágneses tulajdonságú magnetit ásvány, a görög Magnészia városról kapta nevét. Megfigyelések (1, 2) Minden mágnesnek két pólusa van, északi és déli. A felfüggesztett mágnes - iránytű -
Az elektron hullámtermészete. Készítette Kiss László
Az elektron hullámtermészete Készítette Kiss László Az elektron részecske jellemzői Az elektront Joseph John Thomson fedezte fel 1897-ben. 1906-ban Nobel díj! Az elektronoknak, az elektromos és mágneses
Bevezetés a részecske fizikába
Bevezetés a részecske fizikába Kölcsönhatások és azok jellemzése Kölcsönhatás Erősség Erős 1 Elektromágnes 1 / 137 10-2 Gyenge 10-12 Gravitációs 10-44 Erős kölcsönhatás Közvetítő részecske: gluonok Hatótávolság:
1. ábra. 24B-19 feladat
. gyakorlat.. Feladat: (HN 4B-9) A +Q töltés egy hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld.. ábra.). Számítsuk ki az E elektromos térerősséget a vonal. ábra. 4B-9 feladat irányában lévő,
Képlet levezetése :F=m a = m Δv/Δt = ΔI/Δt
Lendület, lendületmegmaradás Ugyanakkora sebességgel mozgó test, tárgy nagyobb erőhatást fejt ki ütközéskor, és csak nagyobb erővel fékezhető, ha nagyobb a tömege. A tömeg és a sebesség együtt jellemezheti
Bevezetés a nehéz-ion fizikába
Bevezetés a nehéz-ion fizikába Zoltán Fodor KFKI RMKI CERN Zoltán Fodor Bevezetés a nehéz ion fizikába 2 A világmindenség fejlődése A Nagy Bummnál minden anyag egy pontban sűrűsödött össze, ami azután
Vezetők elektrosztatikus térben
Vezetők elektrosztatikus térben Vezető: a töltések szabadon elmozdulhatnak Ha a vezető belsejében a térerősség nem lenne nulla akkor áram folyna. Ha a felületen a térerősségnek lenne tangenciális (párhuzamos)
Atommodellek. Az atom szerkezete. Atommodellek. Atommodellek. Atommodellek, A Rutherford-kísérlet. Atommodellek
Démokritosz: a világot homogén szubsztanciájú oszthatatlan részecskék, atomok és a közöttük lévı őr alkotja. Az atom szerkezete Egy atommodellt akkor fogadunk el érvényesnek, ha megmagyarázza a tapasztalati
Milyen eszközökkel figyelhetők meg a világ legkisebb alkotórészei?
Milyen eszközökkel figyelhetők meg a világ legkisebb alkotórészei? Veres Gábor ELTE Fizikai Intézet Atomfizikai Tanszék e-mail: vg@ludens.elte.hu Az atomoktól a csillagokig előadássorozat nem csak középiskolásoknak
A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra
. Gyakorlat 4B-9 A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld. 4-6 ábra.). Számítsuk ki az E elektromos térerősséget a vonal irányában lévő, annak.. ábra. 4-6 ábra végpontjától
Időben állandó mágneses mező jellemzése
Időben állandó mágneses mező jellemzése Mágneses erőhatás Mágneses alapjelenségek A mágnesek egymásra és a vastárgyakra erőhatást fejtenek ki. vonzó és taszító erő Mágneses pólusok északi pólus: a mágnestű
Modern fizika laboratórium
Modern fizika laboratórium Röntgen-fluoreszcencia analízis Készítette: Básti József és Hagymási Imre 1. Bevezetés A röntgen-fluoreszcencia analízis (RFA) egy roncsolásmentes anyagvizsgálati módszer. Rövid
Országos Szilárd Leó Fizikaverseny
Országos Szilárd Leó Fizikaverseny Döntő Paks, 2001. április 27. Számítógépes feladat Bevezetés 1931-ben Szilárd Leó szabadalmi kérelmet nyújtott be egy olyan részecskegyorsítóra vonatkozóan, amelyen a
Magfizika tesztek. 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem
1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem 2. Mit nevezünk az atom tömegszámának? a) a protonok számát b) a neutronok számát c) a protonok és neutronok
Töltött részecske multiplicitás analízise 14 TeV-es p+p ütközésekben
Töltött részecske multiplicitás analízise 14 TeV-es p+p ütközésekben Veres Gábor, Krajczár Krisztián Tanszéki értekezlet, 2008.03.04 LHC, CMS LHC - Nagy Hadron Ütköztető, gyorsító a CERN-ben 5 nagy kísérlet:
A II. kategória Fizika OKTV mérési feladatainak megoldása
Nyomaték (x 0 Nm) O k t a t á si Hivatal A II. kategória Fizika OKTV mérési feladatainak megoldása./ A mágnes-gyűrűket a feladatban meghatározott sorrendbe és helyre rögzítve az alábbi táblázatban feltüntetett
Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008.
Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008. Kiss István,Vértes Attila: Magkémia (Akadémiai Kiadó) Nagy Lajos György,
Mérés: Millikan olajcsepp-kísérlete
Mérés: Millikan olajcsepp-kísérlete Mérés célja: 1909-ben ezt a mérést Robert Millikan végezte el először. Mérése során meg tudta határozni az elemi részecskék töltését. Ezért a felfedezéséért Nobel-díjat
Úton az elemi részecskék felé. Atommag és részecskefizika 2. előadás február 16.
Úton az elemi részecskék felé Atommag és részecskefizika 2. előadás 2010. február 16. A neutron létének következményei I. 1. Az atommag alkotórészei Z db proton + N db neutron, A=N+Z az atommag tömege
Fizikai olimpiász. 52. évfolyam. 2010/2011-es tanév. B kategória
Fizikai olimpiász 52. évfolyam 2010/2011-es tanév B kategória A kerületi forduló feladatai (további információk a http://fpv.uniza.sk/fo honlapokon találhatók) 1. A Föld mágneses pajzsa Ivo Čáp A Napból
Röntgendiagnosztikai alapok
Röntgendiagnosztikai alapok Dr. Voszka István A röntgensugárzás keltésének alternatív lehetőségei (röntgensugárzás keletkezik nagy sebességű, töltéssel rendelkező részecskék lefékeződésekor) Röntgencső:
Az Ampère-Maxwell-féle gerjesztési törvény
Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér
Modern fizika vegyes tesztek
Modern fizika vegyes tesztek 1. Egy fotonnak és egy elektronnak ugyanakkora a hullámhossza. Melyik a helyes állítás? a) A foton lendülete (impulzusa) kisebb, mint az elektroné. b) A fotonnak és az elektronnak
A sötét anyag nyomában. Krasznahorkay Attila MTA Atomki, Debrecen
A sötét anyag nyomában Krasznahorkay Attila MTA Atomki, Debrecen Látható és láthatatlan világunk A levegő Túl kicsi dolgok Mikroszkóp Túl távoli dolgok távcső, teleszkópok Gravitációs vonzás, Mágneses
ELEMI RÉSZECSKÉK ATOMMODELLEK
ELEMI RÉSZECSKÉK ATOMMODELLEK Az atomok felépítése Készítette: Horváthné Vlasics Zsuzsanna Mi van az atomok belsejében? DÉMOKRITOSZ (Kr.e. 460-370) az anyag nem folytonos parányi, tovább nem bontható,
Mit nevezünk nehézségi erőnek?
Mit nevezünk nehézségi erőnek? Azt az erőt, amelynek hatására a szabadon eső testek g (gravitációs) gyorsulással esnek a vonzó test centruma felé, nevezzük nehézségi erőnek. F neh = m g Mi a súly? Azt
Elektron mozgása kristályrácsban Drude - féle elektrongáz
Elektron mozgása kristályrácsban Drude - féle elektrongáz Dr. Berta Miklós bertam@sze.hu 2017. október 13. 1 / 24 Drude - féle elektrongáz Tapasztalat alapján a fémekben vannak szabad töltéshordozók. Szintén
Atomfizika előadás 2. Elektromosság elemi egysége szeptember 17.
Atomfizika előadás. Elektromosság elemi egysége 014. szeptember 17. Az elektrolízis Faraday-törvényei mkit Nm/A(k/A)It k/a 1--szer egy adott érték (egység létezése) minden egy vegyértékű elem 1 moljának
Elektrodinamika. Maxwell egyenletek: Kontinuitási egyenlet: div n v =0. div E =4 div B =0. rot E = rot B=
Elektrodinamika Maxwell egyenletek: div E =4 div B =0 rot E = rot B= 1 B c t 1 E c t 4 c j Kontinuitási egyenlet: n t div n v =0 Vektoranalízis rot rot u=grad divu u rot grad =0 div rotu=0 udv= ud F V
Bevezetés a modern fizika fejezeteibe. 4. (e) Kvantummechanika. Utolsó módosítás: december 3. Dr. Márkus Ferenc BME Fizika Tanszék
Bevezetés a modern fizika fejezeteibe 4. (e) Kvantummechanika Utolsó módosítás: 2014. december 3. 1 A Klein-Gordon-egyenlet (1) A relativisztikus dinamikából a tömegnövekedésre és impulzusra vonatkozó
Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya.
Lendület Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendülettétel: Az lendület erő hatására változik meg. Az eredő erő határozza meg
Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása.
Különböző sugárzások tulajdonságai Típus töltés Energia hordozó E spektrum Radioaktí sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktí sugárzások detektálása. α-sugárzás pozití
A gamma-sugárzás kölcsönhatásai
Ref. [3] A gamma-sugárzás kölcsönhatásai Az anyaggal való kölcsönhatás kis valószínűségű hatótávolság nagy A sugárzás gyengülését 3 féle kölcsönhatás okozza. fotoeffektus Compton-szórás párkeltés A gamma-fotonok
A hőmérsékleti sugárzás
A hőmérsékleti sugárzás Alapfogalmak 1. A hőmérsékleti sugárzás Értelmezés (hőmérsékleti sugárzás): A testek hőmérsékletével kapcsolatos, a teljes elektromágneses spektrumra kiterjedő sugárzást hőmérsékleti
Tömegspektrometria. Tömeganalizátorok
Tömegspektrometria Tömeganalizátorok Mintabeviteli rendszer Működési elv Vákuumrendszer Ionforrás Tömeganalizátor Detektor Electron impact (EI) Chemical ionization (CI) Atmospheric pressure (API) Electrospray
Geometriai és hullámoptika. Utolsó módosítás: május 10..
Geometriai és hullámoptika Utolsó módosítás: 2016. május 10.. 1 Mi a fény? Részecske vagy hullám? Isaac Newton (1642-1727) Pierre de Fermat (1601-1665) Christiaan Huygens (1629-1695) Thomas Young (1773-1829)
Hőmérsékleti sugárzás
Ideális fekete test sugárzása Hőmérsékleti sugárzás Elméleti háttér Egy ideális fekete test leírható egy egyenletes hőmérsékletű falú üreggel. A fala nemcsak kibocsát, hanem el is nyel energiát, és spektrális
Fizika II. feladatsor főiskolai szintű villamosmérnök szak hallgatóinak. Levelező tagozat
Fizika. feladatsor főiskolai szintű villamosmérnök szak hallgatóinak Levelező tagozat 1. z ábra szerinti félgömb alakú, ideális vezetőnek tekinthető földelőbe = 10 k erősségű áram folyik be. föld fajlagos
Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja
Mágneses erőtér Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat A villamos forgógépek mutatós műszerek működésének alapja Magnetosztatikai mező: nyugvó állandó mágnesek és egyenáramok időben
Bevezetés a modern fizika fejezeteibe. 4. (a) Kvantummechanika. Utolsó módosítás: november 15. Dr. Márkus Ferenc BME Fizika Tanszék
Bevezetés a modern fizika fejezeteibe 4. (a) Kvantummechanika Utolsó módosítás: 2015. november 15. 1 Előzmények Az atomok színképe (1) A fehér fény komponensekre bontható: http://en.wikipedia.org/wiki/spectrum
Kirándulás a CERN-ben
Röviden a CERN-ről Kirándulás a CERN-ben A félreértések elkerülése végett először is tisztáznunk kell azt a tényt, hogy a CERN nem egyezik meg az LHC-vel ( Large Hadron Collider, azaz Nagy Hadronütköztető),
Fizika minta feladatsor
Fizika minta feladatsor 10. évf. vizsgára 1. A test egyenes vonalúan egyenletesen mozog, ha A) a testre ható összes erő eredője nullával egyenlő B) a testre állandó értékű erő hat C) a testre erő hat,
NA61/SHINE: Az erősen kölcsönható anyag fázisdiagramja
NA61/SHINE: Az erősen kölcsönható anyag fázisdiagramja László András Wigner Fizikai Kutatóintézet, Részecske- és Magfizikai Intézet 1 Kivonat Az erősen kölcsönható anyag és fázisai Megfigyelések a fázisszerkezettel
Kvarkok. Mag és részecskefizika 2. előadás Február 24. MRF2 Kvarkok, neutrínók
Kvarkok Mag és részecskefizika. előadás 017. Február 4. V-részecskék 1. A15 felfedezés 1946, Rochester, Butler ezen a képen egy semleges részecske bomlásakor két töltött részecske (pionok) nyoma villa
7. Mágneses szuszceptibilitás mérése
7. Mágneses szuszceptibilitás mérése Klasszikus fizika laboratórium Mérési jegyzőkönyv Mérést végezte: Vitkóczi Fanni Mérés időpontja: 2012. 10. 25. I. A mérés célja: Egy mágneses térerősségmérő műszer
Megoldás: A feltöltött R sugarú fémgömb felületén a térerősség és a potenciál pontosan akkora, mintha a teljes töltése a középpontjában lenne:
3. gyakorlat 3.. Feladat: (HN 27A-2) Becsüljük meg azt a legnagyo potenciált, amelyre egy 0 cm átmérőjű fémgömöt fel lehet tölteni, anélkül, hogy a térerősség értéke meghaladná a környező száraz levegő
2, = 5221 K (7.2)
7. Gyakorlat 4A-7 Az emberi szem kb. 555 nm hullámhossznál a Iegnagyobb érzékenységű. Adjuk meg annak a fekete testnek a hőmérsékletét, amely sugárzásának a spektrális teljesitménye ezen a hullámhosszon
Innovatív gáztöltésű részecskedetektorok
Innovatív gáztöltésű részecskedetektorok Varga Dezső, MTA Wigner FK RMI NFO Gáztöltésű detektorok szerepe Mikrostruktúrás detektorok: régi ötletek új technológiával Nyitott kérdések a detektorfizikában
A CERN bemutatása. Horváth Dezső MTA KFKI RMKI és ATOMKI Hungarian Teachers Programme, 2011
A CERN bemutatása Horváth Dezső MTA KFKI RMKI és ATOMKI Hungarian Teachers Programme, 2011 CERN: Conseil Européen pour la Recherche Nucléaire Európai Nukleáris Kutatási Tanács Európai Részecskefizikai
Kvarkok. Mag és részecskefizika 2. előadás Február 23. MRF2 Kvarkok, neutrínók
Kvarkok Mag és részecskefizika. előadás 018. Február 3. A pozitron felfedezése A1 193 Anderson (Cal Tech) ködkamra kozmikus sugárzás 1300 db fénykép pozitrónium PET Antihidrogén Kozmikus sugárzás antirészecske:
A kvantummechanika kísérleti előzményei A részecske hullám kettősségről
A kvantummechanika kísérleti előzményei A részecske hullám kettősségről Utolsó módosítás: 2016. május 4. 1 Előzmények Franck-Hertz-kísérlet (1) A Franck-Hertz-kísérlet vázlatos elrendezése: http://hyperphysics.phy-astr.gsu.edu/hbase/frhz.html
Európai Nukleáris Kutatási Szervezet Európai Részecskefizikai Laboratórium. 58 év a részecskefizikai kutatásban
Európai Nukleáris Kutatási Szervezet Európai Részecskefizikai Laboratórium 58 év a részecskefizikai kutatásban CERN Európai Nukleáris Kutatási Szervezet Európai Részecskefizikai Laboratórium 1954-ben 12
Elektromágnesség tesztek
Elektromágnesség tesztek 1. Melyik esetben nem tapasztalunk onzóerőt? a) A mágnesrúd északi pólusához asdarabot közelítünk. b) A mágnesrúd közepéhez asdarabot közelítünk. c) A mágnesrúd déli pólusához