ALACSONY HŐMÉRSÉKLETŰ PLAZMAFIZIKA
|
|
- Erik Kozma
- 6 évvel ezelőtt
- Látták:
Átírás
1 ALACSONY HŐMÉRSÉKLETŰ PLAZMAFIZIKA Dr. Donkó Zoltán / Dr. Derzsi Aranka MTA Wigner Fizikai Kutatóközpont Szilártestfizikai és Optikai Intézet Komplex Folyaékok Osztály MTA Csillebérc / KFKI onko.zoltan@wigner.mta.hu zoltan.onko@gmail.com ()
2 Tartalom Töltött részecskék mozgása vákuumban / gázban, elektromos / mágneses tér jelenlétében Ütközési hatáskeresztmetszetek Ütközések kinematikája Szórási folyamat leírása aott kölcsönhatási potenciál mellett, laboratóriumi és tömegközépponti renszerek Szórás Coulomb- és polarizációs potenciál esetén, hatáskeresztmetszet kiszámítása Ütközési folyamatok gyengén ionizált gázokban Elektron-atom ütközések (az elektronok kulcsfontosságúak!) Ion-atom & atom-atom ütközések Rekombinációs folyamatok Néhány fontos elemi ütközési folyamat analízise Donkó Zoltán: Alacsony hőmérsékletű plazmafizika
3 Töltéshorozók mozgása vákuumban m v(t) t = q[e + v B] (gravitációt elhanyagolva) Mágneses tér nélkül: Velocity Verlet séma (... vs. Euler ) r(t) t m v(t) t = v(t) = qe(r,t) iszkretizálás r(t + t) = r(t)+v(t) t + a(t) t a(t)+a(t + t) v(t + t) = v(t)+ t a(t) = q m E r(t),t Egyszerű esetekben analitikus megolás, általános esetben numerikus megolás r(t) r(t + t) v(t) v(t + t) iő Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 3
4 Töltéshorozók mozgása vákuumban m v(t) t = q[e + v(t) B] Elektromos tér nélkül, állanó, homogén mágneses térben: m v(t) t = qv(t) B B = 0 0 B v = v x v y v z Lorentz erő és centripetális erő egyensúlya: Körpálya v B = v y B v x B 0 m v x(t) t m v y(t) t = qv y B = qv x B qbv = mv R L v = v x + v y v x t + qb m vx =0 Ciklotronfrekvencia Larmor sugár v x = v 0 sin( c t) v x t = c v x c = qb m R L = mv qb Elektromos tér ÉS mágneses tér jelenlétében: általában bonyolult viselkeés... Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 4
5 Töltéshorozók mozgása m v(t) t = q[e + v B] B = 0 r(t) t = v(t) m v(t) t = qe(r,t) VÁKUUMBAN r(t) r(t + t) v(t) v(t + t) iő GÁZBAN r(t) r(t + t) v(t) v(t + t) Ütközés iő Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 5
6 Hatáskeresztmetszet Essen egy részecskenyaláb egy gázzal töltött térfogatra! A gáz sűrűsége: A nyaláb fluxusa: n 0 = nv A nyaláb sűrűségének csökkenése a háttérgázzal való (valamilyen) kölcsönhatás miatt: v Részecskenyaláb x n = nn 0 x = n 0 x = n 0 x Ez az összefüggés efiniálja a σ hatáskeresztmetszetet (különböző folyamatok) (energiafüggés) (számítások, kísérleti meghatározás) (x) = (0)e n 0 x = (0) e x/ = n 0 Átlagos szaba úthossz Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 6
7 Differenciális hatáskeresztmetszet A szórás szög szerinti eloszlása χ Szórási szög Differenciális hatáskeresztmetszet (efiníciója): = N 0 A t = N s = Fluxus: felületegységre iőegység alatt érkező részecskék száma N s t N 0 A t = N s t t Mértékegysége: cm /sr (Ennyi részecskét észlel a etektor) η N s t Azimut szög térszögbe egységnyi iő alatt szórt részecskék száma Az azimutális szimmetria miatt: (, ) =sin = ( ) Energiafüggés: (, ) Teljes hatáskeresztmetszet: ( )= (, ) = 0 0 (, ) sin = 0 (, ) sin Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 7
8 Ütközési folyamatok Kemény gömb hatáskeresztmetszet = (a + a ) A (minket éreklő ) valóság sokkal bonyolultabb, pl. elektron - Ar hatáskeresztmetszetek: a + a a a bejövő részecske és a Ütközés feltétele: a céltárgy gömb átfe Fontos péla: a = a Hayashi M 003 Bibliography of Electron an Photon cross sections with Atoms an Molecules Publishe in the 0th Century: Argon NIFS-DATA-7, National Institute for Fusion Science (Jpn), ISSN Jelenak Z M, Velikić Z B, Božin J V, Petrović Z Lj an Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 8
9 Ütközések kinematikája Szórási folyamat leírása aott kölcsönhatási potenciál mellett Laboratóriumi és tömegközépponti renszerek A szórási szög kiszámítása Pélák: Coulomb és polarizációs szórás Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 9
10 Ütközések kinematikája Felaat: rugalmas szórási folyamat leírása aott kölcsönhatási potenciál mellett Két részecske találkozása : általános szórási probléma 3 imenzióban Laboratóriumi renszer tömegközépponti renszer -imenziós probléma Megmaraási tételek Egyrészecske szórási probléma Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 0
11 Ütközések kinematikája Felaat: rugalmas szórási folyamat leírása aott kölcsönhatási potenciál mellett Laboratóriumi renszer (LAB) Tömegközépponti (TK) renszer ( Center of mass, COM) v F m V m V m F v m TK pozíciója: r tk = m r + m r TK-i koorináták: R = r r tk R = r r tk Relatív pozíció: r = r r TK sebessége: Relatív sebesség: w = m v + m v g = v v TK-i sebességek: V = v w V = v w Egymással párhuzamosak és ellentétes irányúak A tömegközéppont egyenes vonalú egyenletes mozgást végez: r tk = m r + m r = F + F =0 (F = F ) Donkó Zoltán: Alacsony hőmérsékletű plazmafizika
12 Ütközések kinematikája F = m r m F = m m r Tömegközépponti renszer F = m r m F = m F = m m r V m (a két egyenletet egymásból kivonva) ( )F = m m ( r r ) V F = m m ( r r )=µ r m µ = m m Reukált tömeg F = µ r Mozgásegyenlet a reukált tömegre és a relatív pozícióra r F = µ r r mivel Képezzük a következő mennyiséget: r F r r =0 (r g) =ṙ g + r ġ = r ġ = r r (ṙ g) t (r g) =0 r g = K = const. t Az ütközés a tömegközépponti renszerben egy síkban játszóik le, a laboratóriumi renszerben 3-imenziós problémát imenzióban kezelhetjük!! Donkó Zoltán: Alacsony hőmérsékletű plazmafizika
13 Ütközések kinematikája -imenziós probléma V y V, V ütközés előtti sebességek V, V ütközés utáni sebességek tk V m b m V R TK R Legkisebb távolság:r 0 tk x A trajektóriák szimmetrikusak a legkisebb távolsághoz tartozó pozíciókat összekötő egyenesre : r és az x tengely szöge a szög a legkisebb távolságnál tk = szórási szög V TK R, R b tömegközéppont pozíciók (TK rensz.) ütközési paraméter r = r r = R R Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 3
14 Ütközések kinematikája Számítsuk ki a mozgási energiát és az impulzusnyomatékot a tömegközépponti renszerben! R = r r tk = X Y R = r r tk = X Y r tk = m r + m r V m E tk = m Ẋ + Ẏ + m Ẋ + Ẏ = µ(ṙ + r ) m V R TK R J tk = m R V + m R V 0 R V = R Ṙ = 0 X Y Ẋ Y J tk = m (X Ẏ Ẋ Y )+m (X Ẏ Ẋ Y )=µr Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 4
15 Ütközések kinematikája E tk = µ(ṙ + r ) J tk = µr Egy részecske szórási probléma Szórási középpont tk r g0 µ Reukált tömeg b Távol a szórócentrumtól: U(r) = 0, E 0 = µg 0/ potenciális energia kinetikus energia Teljes energia: Impulzusmomentum: r t = µ E 0 µg 0 + U( )= µ ṙ + r + U(r) J tk = µg 0 b = µr E 0 = µṙ + µr g 0b b r U(r) = g 0b r r 4 + U(r) = µṙ + µg 0 r t = ± µ E 0 felhasználásával kiküszöböljük a szöget és csak a távolság koorináta mara : b r + U(r) = b µṙ + E 0 b r U() =0 U(r) -imenziós mozgás r mentén / } r + U(r) effektív potenciál Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 5
16 Ütközések kinematikája A legkisebb távolság kiszámítása Legkisebb távolságnál r t r=r 0 =0 tk R 0 Szórási középpont r g0 µ Reukált tömeg b Taszító potenciálra minig van megolás, vonzóra nem feltétlenül. r t = ± µ E 0 E 0 b r U(r) E 0 b r =0 U(r) b r U(r) =0 / R 0 A szórási szög kiszámítása Legkisebb távolságnál: Szórási szög: tk = J tk = µg 0 b = µr r = ± r g 0 b µ E 0 b r = g 0b r U(r) / = ± r b µg 0 E 0 b r U(r) / = ± r b = R 0 b r r r U(r) E 0 / Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 6
17 Ütközések kinematikája A szórási szög kiszámítása Legkisebb távolságnál: Szórási szög: tk = r t r=r 0 =0 tk g0 µ R 0 r Reukált tömeg b r = ±r b b r U(r) E 0 / Szórási középpont = R 0 r r = (b/r )r R 0 U(r) b E 0 r A potenciál és a kezeti paraméterek ismeretében a szórási szög meghatározható: tk = = b r/r R 0 U(r) E 0 b r r = R 0 : U(r) E 0 b r =0 E 0 = µg 0/ Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 7
18 Ütközések kinematikája Coulomb-szórás Kiinulás: tk = = b r/r U(r) = R 0 U(r) b E 0 r Z Z e 4 0r Új változókat efiniálva: U(r) = Z Z e 4 0r = A r, B = b r, C = A E 0 B A legkisebb távolság: A szórási szög: B 0 C B 0 =0 B 0 = C + C 4 +, R 0 = b B 0 tk = = b b r U(r) E 0 = BC B r/r B0 R 0 BC B = 0 B BC B Coulomb szórás szöge a részecskék és az ütközés paramétereinek függvényében: tan tk = Z Z e 4 " 0 µg0 b Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 8
19 Coulomb szórás ifferenciális hatáskeresztmetszete Továbbra is tömegközépponti renszerben olgozunk tk + tk tk b b tk η tan Azimut szög tk = Z Z e 4 0µg0 b A = b b Szórási szög Differenciális hatáskeresztmetszet: = N s = N s t N 0 A t = N s t t = sin tk tk b b = = sin tk tk b b( tk ) sin tk tk Az ütközési paraméter és a szórási szög összefüggéséből tujuk, hogy a A* felületen bejövő részecskék tk és tk + tk közé szórónak N s = A t Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 9
20 Coulomb szórás ifferenciális hatáskeresztmetszete Továbbra is tömegközépponti renszerben olgozunk tk + tk tk b b tk η Azimut szög A = b b Szórási szög = b b( tk ) sin tk tk tan tk = Z Z e 4 0µg0 b b( tk )= Z Z e 4 0µg 0 tan tk (E 0, tk) = Z Z e 4 0µg 0 sin 4 tk Az ebből a ifferenciális hatáskeresztmetszetből számolt teljes hatáskeresztmetszet ivergál, ennek oka, hogy nagy ütközési paraméter esetén történő kismértékű szórás is a hozzájárulást a hatáskeresztmetszethez, a Coulombpotenciál hosszú hatótávolsága miatt. Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 0
21 Polarizációs szórás Töltött részecske ütközése semleges atommal: A bejövő töltött részecske az atommagra és a körülötte lévő elektronfelhőre ellentétes erővel hat, ennek következtében az elektronfelhő középpontja és az atommag egymástól távolságra mozul el. = Ze 4 3 a3 q MIKOR MEGY VÉGBE VALAMILYEN ELEMI REAKCIÓ?? r a Q = Ze Az atommag helyén a -Q töltésű elektronfelhő által inukált Ein elektromos térerősséget a Gauss-törvény alkalmazásával számíthatjuk ki, amit az elektronfelhő középpontjától mérve sugarú gömbre írunk fel: 0E in 4 = E in = Q 4 0 a 3 A Q töltésű atommag helyén a q töltésű bejövő részecske által keltett elektromos térerősség: E ext = q 4 0 r Donkó Zoltán: Alacsony hőmérsékletű plazmafizika
22 Polarizációs szórás Töltött részecske ütközése semleges atommal: A bejövő töltött részecske az atommagra és a körülötte lévő elektronfelhőre ellentétes erővel hat, ennek következtében az elektronfelhő középpontja és az atommag egymástól távolságra mozul el. = Ze 4 3 a3 q MIKOR MEGY VÉGBE VALAMILYEN ELEMI REAKCIÓ?? r a Q = Ze Egyensúly esetén: E in + E ext =0! = qa3 Qr A két részecske között ható erő: F = qq 4 " 0 apple (r ) r = qq " 0 r 3! F = q a 3 " 0 r 5 Donkó Zoltán: Alacsony hőmérsékletű plazmafizika
23 Polarizációs szórás Töltött részecske ütközése semleges atommal: A bejövő töltött részecske az atommagra és a körülötte lévő elektronfelhőre ellentétes erővel hat, ennek következtében az elektronfelhő középpontja és az atommag egymástól távolságra mozul el. = Ze 4 3 a3 q MIKOR MEGY VÉGBE VALAMILYEN ELEMI REAKCIÓ?? r a Q = Ze A két részecske közötti potenciál: U(r) = r F (r )r = q a 3 0 r r r 5 = q a 3 8 0r 4 Az atomra jellemző polarizálhatóság (α) bevezetésével: U(r) = q 8 0r 4 Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 3
24 Polarizációs szórás A potenciál ismeretében (a korábbiak alapján) kiszámítható a legkisebb távolság: U(r) = q 8 0r 4 + U(r) E 0 b r =0 q b 8 0r 4 E 0 r =0 E 0 = mv 0/ Az egyszerű eltérülés feltétele az, hogy az egyenletnek legyen megolása, ellenkező esetben spirális trajektóriák állnak elő. Ez utóbbinak a feltétle, hogy a fenti egyenlet iszkriminánsa negatív legyen, azaz a b ütközési paraméterre fennálljon: b q 0m v 0 Feltételezzük, hogy a spirális trajektória valamilyen kölcsönhatáshoz vezet, ennek a folyamatnak a hatáskeresztmetszete (Langevin-hatáskeresztmetszet) : L = b L = q 0m v 0 Ion-molekula reakciók esetén gyakran alkalmazott közelítés. Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 4
25 Ütközési folyamatok gyengén ionizált gázokban Mi ütközik és mi történik ütközéskor?? Alacsony ionizációs fok a legtöbb ütközés töltött részecske - semleges részecske típusú Gázatomok - álló, vagy termikus eloszlású háttér Nemesgázok esetét tárgyaljuk, az egyszerűség miatt Gázkisülések elemi folyamatainak leírására általában kvantummechanikai számolások szükségesek Alternatívaként használhatunk kísérletileg mért hatáskeresztmetszet aatokat Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 5
26 Elemi folyamatok : elektron-atom ütközések Folyamat Típus Jellemzők e + Ar e + Ar e + Ar e + Ar e + Ar e + Ar + e + Ar e + Ar e + Ar e + Ar e + Ar e + Ar + Rugalmas szórás Gerjesztés Ionizáció Többlépéses gerjesztés Legerjesztés Többlépéses ionizáció A partnerek az energiát újraosztják Az atom egyik elektronja egy magasabb gerjesztett állapotba kerül Az ütközés hatására egy elektron kilép az atom elektronhéjából Gerjesztett állapotú atom az ütközés hatására egy másik gerjesztett állapotba kerül Az ütközés hatására a gerjesztett atom alapállapotba kerül Gerjesztett állapotban lévő atom az ütközés hatására ionizálóik A táblázatokban itt nem jelöljük az energetikai viszonyokat ( ± E )! Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 6
27 Atomi elemi folyamatok Energia Gerjesztett ion-állapotok Ion-alapállapot Gerjesztett állapotok Sugárzás Ionizáció Rezonáns nívó(k) Metastabil nívó(k) Rezonancia sugárzás Elektronütközéses gerjesztés Elektronütközéses legerjesztés Alapállapot Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 7
28 Elemi folyamatok : ion-atom & atom-atom ütközések Folyamat Típus Jellemzők Ar + + Ar Ar + + Ar Ar + + Ar Ar + + Ar Ar + + Ar Ar + +e Rugalmas szórás Gerjesztés Ionizáció A partnerek az energiát újraosztják Az atom egyik elektronja egy magasabb gerjesztett állapotba kerül Az ütközés hatására egy elektron kilép az atom elektronhéjából Ar + + Ar + Ar Ar + + Ar Ion konverzió * Atomi ionból molekuláris ion keletkezik He + + Ar He + Ar + Töltéskicserélés Alacsonyabb ionizációs potenciálú atom ionizálóik He M +Ar He + Ar + +e Penning ionizáció Kellően magas energiájú metastabil atom ionizál He M + Ne He + Ne Energiaátaás Közel rezonáns nívók között hatékony * Miért kell a harmaik test? Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 8
29 Elemi folyamatok : rekombináció Folyamat Típus Jellemzők e + Ar + Ar + h Sugárzásos rekombináció e +e + Ar + Ar + e Háromtest* rekombináció Elektron által segített e + Ar + + Ar Ar + Ar Háromtest rekombináció Semleges atom által segített e + Ar + Ar + Ar Disszociatív rekombináció Fontos veszteségi mechanizmus nagyobb nyomásokon * Miért kell a harmaik test? Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 9
30 Néhány fontos ütközési folyamat elemzése Pélák: e + Ar e + Ar Elektron rugalmas szórása Ar + + Ar Ar + + Ar Ion rugalmas szórása e + Ar e + Ar Elektronütközéses gerjesztés Ar + + Ar Ar + + Ar Ionütközéses gerjesztés Feltételezzük a ifferenciális hatáskeresztmetszet ismeretét. Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 30
31 Rugalmas ütközések Ütközés előtt löveék m v céltárgy m v m m v Ütközés után w, g v w, g w = m v + m v w = m v + m v g = v v v = w + v = w Impulzusmegmaraás: Energiamegmaraás: m v = w + g = v v g m g m v + m v = m v + m v v = w m v + m v = m v + m v m g m g w = w A tömegközéppont mozgása változatlan g = g A relatív sebesség nagysága nem változik Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 3
32 Rugalmas ütközések Ütközés előtt löveék m v céltárgy m v m m v Ütközés után w, g v w, g A szórás a relatív sebességvektor irányát változtatja: g g az energiafüggő ifferenciális hatáskeresztmetszetnek megfelelően v = w + v = w m g m g w = w Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 3
33 Rugalmas ütközések Ütközés előtt löveék m v céltárgy m v m m v Ütközés után w, g v w, g Elektron - atom rugalmas szórás e + Ar e + Ar m m w = m v + m v g g v = w + g = v v m g Hieg gáz közelítés v =0 w = m v + m v = 0 g = v v = g Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 33
34 Rugalmas ütközések Ütközés előtt löveék m v céltárgy m v m m v Ütközés után w, g v w, g Szimmetrikus ion - atom rugalmas szórás m = m Ar + + Ar Ar + + Ar Szimmetrikus renszer w = m v + m v = v + v g = v v g g v = w + m g = w + g Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 34
35 Rugalmatlan ütközések Ütközés előtt löveék m v céltárgy m v E m m v Ütközés után w, g v w, g w = m v + m v w = m v + m v v = w + v = w Impulzusmegmaraás: Energiamegmaraás: m v = w + g = v v g m g m v + m v = m v + m v v = w g = v v m g m g w = w A tömegközéppont mozgása változatlan m v + m v = m v + m v + E g g Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 35
36 Rugalmatlan ütközések Ütközés előtt löveék m v céltárgy m v E m m v Ütközés után w, g v w, g Energiamegmaraás: m v + m v = m v + m v + E m v + m v = w + m m ( ) g = w + µ g E tk = µg Tömegközépponti energia E tk = µg Állanó, az impulzusmegmaraás miatt = E tk E A tömegközépponti sebesség nagysága ÉS iránya is megváltozik! v = w + v = w Tömegközépponti energia - maximálisan ez forítható rugalmatlan folyamatokra m g m g g g w = w Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 36
37 Rugalmatlan ütközések Ütközés előtt löveék m v céltárgy m v E m m v Ütközés után w, g v w, g Elektronütközéses gerjesztés e + Ar e + Ar m m Hieg gáz közelítés v =0 w = m v + m v = 0 g = v v = g E tk = µv = m v E tk = m v = E tk E Az ütköző elektron teljes mozgási energiája felhasználható rugalmatlan folyamatra Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 37
38 Rugalmatlan ütközések Ütközés előtt löveék m v céltárgy m v E m m v Ütközés után w, g v w, g Ionütközéses gerjesztés Ar + + Ar Ar + + Ar m = m Szimmetrikus renszer w = v + v E tk = µg g = v v g g E tk = µg v = w + g Az ütköző ion teljes mozgási energiájának csak egy része használható fel rugalmatlan folyamatra (ugyanis a tömegközéppontnak változatlanul tovább kell halania) = E tk E Hieg gáz közelítés m v + m v = w + v =0 w = v g = v m m ( ) g = m w g + m 4 = m E tk v 4 + m v gerjesztési küszöb: E exc, Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 38
39 Számonkérés pontjai Töltött részecskék mozgása vákuumban / gázban, elektromos / mágneses tér jelenlétében Ütközési (teljes, ill. ifferenciális) hatáskeresztmetszetek efiníciója Ütközések kinematikája: Laboratóriumi és tömegközépponti koorináta-renszerek, bináris szórási folyamat leírásának elvei és lépései (képletek nélkül!) Hatáskeresztmetszet kiszámítása polarizációs potenciál esetére Elemi folyamatok típusai és szerepük gyengén ionizált gázokban Rugalmas és rugalmatlan elektron-atom és ion-atom folyamatok analízise Donkó Zoltán: Alacsony hőmérsékletű plazmafizika 39
ALACSONY HŐMÉRSÉKLETŰ PLAZMAFIZIKA
ALACSONY HŐMÉRSÉKLETŰ PLAZMAFIZIKA Dr. Donkó Zoltán MTA Wigner Fizikai Kutatóközpont Szilártestfizikai és Optikai Intézet Komplex Folyaékok Osztály MTA Csillebérc / KFKI onko.zoltan@wigner.mta.hu zoltan.onko@gmail.com
ALACSONY HŐMÉRSÉKLETŰ PLAZMAFIZIKA
ALACSONY HŐMÉRSÉKLETŰ PLAZMAFIZIKA Dr. Donkó Zoltán MTA Wigner Fizikai Kutatóközpont Szilártestfizikai és Optikai Intézet Komplex Folyaékok Osztály MTA Csillebérc / KFKI onko.zoltan@wigner.mta.hu zoltan.onko@gmail.com
FIZIKA II. Dr. Rácz Ervin. egyetemi docens
FIZIKA II. Dr. Rácz Ervin egyetemi docens Fontos tudnivalók e-mail: racz.ervin@kvk.uni-obuda.hu web: http://uni-obuda.hu/users/racz.ervin/index.htm Iroda: Bécsi út, C. épület, 124. szoba Fizika II. - ismertetés
Atomenergetikai alapismeretek
Atomenergetikai alapismeretek 2. előadás Dr. Szieberth Máté Dr. Sükösd Csaba előadásanyagának felhasználásával Négyfaktor formula (végtelen kiterjedésű n-sokszorozó közeg) n Maghasadás (gyors neutronok)
http://www.nature.com 1) Magerő-sugár: a magközéppontból mért távolság, ameddig a magerők hatótávolsága terjed. Rutherford-szórásból határozható meg. R=1,4 x 10-13 A 1/3 cm Az atommag terének potenciálja
Elektrodinamika. Maxwell egyenletek: Kontinuitási egyenlet: div n v =0. div E =4 div B =0. rot E = rot B=
Elektrodinamika Maxwell egyenletek: div E =4 div B =0 rot E = rot B= 1 B c t 1 E c t 4 c j Kontinuitási egyenlet: n t div n v =0 Vektoranalízis rot rot u=grad divu u rot grad =0 div rotu=0 udv= ud F V
Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2)
2. Gyakorlat 30B-14 Az Egyenlítőnél, a földfelszín közelében a mágneses fluxussűrűség iránya északi, nagysága kb. 50µ T,az elektromos térerősség iránya lefelé mutat, nagysága; kb. 100 N/C. Számítsuk ki,
Kirchhoff 2. törvénye (huroktörvény) szerint az áramkörben levő elektromotoros erők. E i = U j (3.1)
3. Gyakorlat 29A-34 Egy C kapacitású kondenzátort R ellenálláson keresztül sütünk ki. Mennyi idő alatt csökken a kondenzátor töltése a kezdeti érték 1/e 2 ed részére? Kirchhoff 2. törvénye (huroktörvény)
Sugárzások és anyag kölcsönhatása
Sugárzások és anyag kölcsönhatása Az anyaggal kölcsönhatásba lépő részecskék Töltött részecskék Semleges részecskék Nehéz Könnyű Nehéz Könnyű T D p - + n Radioaktív sugárzás + anyag energia- szóródás abszorpció
9. évfolyam. Osztályozóvizsga tananyaga FIZIKA
9. évfolyam Osztályozóvizsga tananyaga A testek mozgása 1. Egyenes vonalú egyenletes mozgás 2. Változó mozgás: gyorsulás fogalma, szabadon eső test mozgása 3. Bolygók mozgása: Kepler törvények A Newtoni
Elektromos alapjelenségek
Elektrosztatika Elektromos alapjelenségek Dörzselektromos jelenség: egymással szorosan érintkező, vagy egymáshoz dörzsölt testek a szétválasztásuk után vonzó, vagy taszító kölcsönhatást mutatnak. Ilyenkor
Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása.
Különböző sugárzások tulajdonságai Típus töltés Energia hordozó E spektrum Radioaktí sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktí sugárzások detektálása. α-sugárzás pozití
a térerősség mindig az üreg falára merőleges, ezért a tér ott nem gömbszimmetrikus.
2. Gyakorlat 25A-0 Tekintsünk egy l0 cm sugarú üreges fémgömböt, amelyen +0 µc töltés van. Legyen a gömb középpontja a koordinátarendszer origójában. A gömb belsejében az x = 5 cm pontban legyen egy 3
A TÖMEGSPEKTROMETRIA ALAPJAI
A TÖMEGSPEKTROMETRIA ALAPJAI web.inc.bme.hu/csonka/csg/oktat/tomegsp.doc alapján tömeg-töltés arány szerinti szétválasztás a legérzékenyebb módszerek közé tartozik (Nagyon kis anyagmennyiség kimutatására
A kémiai kötés eredete; viriál tétel 1
A kémiai kötés ereete; viriál tétel 1 Probléma felvetés Ha egy molekula atommagjai közötti távolság csökken, akkor a közöttük fellép elektrosztatikus taszításhoz tartozó energia n. Ugyanez igaz az elektronokra
Compton-effektus. Zsigmond Anna. jegyzıkönyv. Fizika BSc III.
Compton-effektus jegyzıkönyv Zsigmond Anna Fizika BSc III. Mérés vezetıje: Csanád Máté Mérés dátuma: 010. április. Leadás dátuma: 010. május 5. Mérés célja A kvantumelmélet egyik bizonyítékának a Compton-effektusnak
A sugárzás és az anyag kölcsönhatása. A béta-sugárzás és anyag kölcsönhatása
A sugárzás és az anyag kölcsönhatása A béta-sugárzás és anyag kölcsönhatása Cserenkov-sugárzás v>c/n, n törésmutató cos c nv Cserenkov-sugárzás Pl. vízre (n=1,337): 0,26 MeV c 8 m / s 2. 2* 10 A sugárzás
Theory hungarian (Hungary)
Q3-1 A Nagy Hadronütköztető (10 pont) Mielőtt elkezded a feladat megoldását, olvasd el a külön borítékban lévő általános utasításokat! Ez a feladat a CERN-ben működő részecskegyorsító, a Nagy Hadronütköztető
Vezetők elektrosztatikus térben
Vezetők elektrosztatikus térben Vezető: a töltések szabadon elmozdulhatnak Ha a vezető belsejében a térerősség nem lenne nulla akkor áram folyna. Ha a felületen a térerősségnek lenne tangenciális (párhuzamos)
Pótlap nem használható!
1. 2. 3. Mondat E1 E2 Össz Gépészmérnöki alapszak Mérnöki fizika 2. ZH NÉV:.. 2018. november 29. Neptun kód:... Pótlap nem használható! g=10 m/s 2 ; εε 0 = 8.85 10 12 F/m; μμ 0 = 4ππ 10 7 Vs/Am; cc = 3
azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra ábra
4. Gyakorlat 31B-9 A 31-15 ábrán látható, téglalap alakú vezetőhurok és a hosszúságú, egyenes vezető azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra. 31-15 ábra
FOTOKÉMIAI REAKCIÓK, REAKCIÓKINETIKAI ALAPOK
FOTOKÉMIAI REAKCIÓK, REAKCIÓKINETIKAI ALAPOK Légköri nyomanyagok forrásai: bioszféra hiroszféra litoszféra világűr emberi tevékenység AMI BELÉP, ANNAK TÁVOZNIA IS KELL! Légköri nyomanyagok nyelői: száraz
A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra
. Gyakorlat 4B-9 A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld. 4-6 ábra.). Számítsuk ki az E elektromos térerősséget a vonal irányában lévő, annak.. ábra. 4-6 ábra végpontjától
Atomfizika. A hidrogén lámpa színképei. Elektronok H atom. Fényképlemez. emisszió H 2. gáz
Atomfizika A hidrogén lámpa színképei - Elektronok H atom emisszió Fényképlemez V + H 2 gáz Az atom és kvantumfizika fejlődésének fontos szakasza volt a hidrogén lámpa színképeinek leírása, és a vonalas
Újpesti Bródy Imre Gimnázium és Ál tal án os Isk ola
Újpesti Bródy Imre Gimnázium és Ál tal án os Isk ola 1047 Budapest, Langlet Valdemár utca 3-5. www.brody-bp.sulinet.hu e-mail: titkar@big.sulinet.hu Telefon: (1) 369 4917 OM: 034866 Osztályozóvizsga részletes
1. ábra. 24B-19 feladat
. gyakorlat.. Feladat: (HN 4B-9) A +Q töltés egy hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld.. ábra.). Számítsuk ki az E elektromos térerősséget a vonal. ábra. 4B-9 feladat irányában lévő,
Gyorsítók. Veszprémi Viktor ATOMKI, Debrecen. Supported by NKTH and OTKA (H07-C 74281) 2009. augusztus 17 Hungarian Teacher Program, CERN 1
Gyorsítók Veszprémi Viktor ATOMKI, Debrecen Supported by NKTH and OTKA (H07-C 74281) 2009. augusztus 17 Hungarian Teacher Program, CERN 1 Az anyag felépítése Részecskefizika kvark, lepton Erős, gyenge,
Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája
Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gáz egyenlet és általánosított gáz egyenlet 5-4 A tökéletes gáz egyenlet alkalmazása 5-5 Gáz halmazállapotú reakciók
Fermi Dirac statisztika elemei
Fermi Dirac statisztika elemei A Fermi Dirac statisztika alapjai Nagy részecskeszámú rendszerek fizikai jellemzéséhez statisztikai leírást kell alkalmazni. (Pl. gázokra érvényes klasszikus statisztika
-2σ. 1. A végtelen kiterjedésű +σ és 2σ felületi töltéssűrűségű síklapok terében az ábrának megfelelően egy dipól helyezkedik el.
1. 2. 3. Mondat E1 E2 Össz Energetikai mérnöki alapszak Mérnöki fizika 2. ZH NÉV:.. 2018. május 15. Neptun kód:... g=10 m/s 2 ; ε 0 = 8.85 10 12 F/m; μ 0 = 4π 10 7 Vs/Am; c = 3 10 8 m/s Előadó: Márkus
Q 1 D Q 2 (D x) 2 (1.1)
. Gyakorlat 4B-9 Két pontszerű töltés az x tengelyen a következőképpen helyezkedik el: egy 3 µc töltés az origóban, és egy + µc töltés az x =, 5 m koordinátájú pontban van. Keressük meg azt a helyet, ahol
MTA Atommagkutató Intézet, 4026 Debrecen, Bem tér 18/c.
Negatív hidrogénionok keletkezése 7 kev-es OH + + Ar és OH + + aceton ütközésekben: Egy általános mechanizmus hidrogént tartalmazó molekuláris rendszerekre JUHASZ Zoltán a), BENE Erika a), RANGAMA Jimmy
Sztehlo Gábor Evangélikus Óvoda, Általános Iskola és Gimnázium. Osztályozóvizsga témakörök 1. FÉLÉV. 9. osztály
Osztályozóvizsga témakörök 1. FÉLÉV 9. osztály I. Testek mozgása 1. Egyenes vonalú egyenletes mozgás 2. Változó mozgás; átlagsebesség, pillanatnyi sebesség 3. Gyorsulás 4. Szabadesés, szabadon eső test
Fizika minta feladatsor
Fizika minta feladatsor 10. évf. vizsgára 1. A test egyenes vonalúan egyenletesen mozog, ha A) a testre ható összes erő eredője nullával egyenlő B) a testre állandó értékű erő hat C) a testre erő hat,
A csillagközi anyag. Interstellar medium (ISM) Bonyolult dinamika. turbulens áramlások MHD
A csillagközi anyag Interstellar medium (ISM) gáz + por Ebből jönnek létre az újabb és újabb csillagok Bonyolult dinamika turbulens áramlások lökéshullámok MHD Speciális kémia porszemcsék képződése, bomlása
A testek részecskéinek szerkezete
A testek részecskéinek szerkezete Minden test részecskékből, atomokból vagy több atomból álló molekulákból épül fel. Az atomok is összetettek: elektronok, protonok és neutronok találhatók bennük. Az elektronok
Z bozonok az LHC nehézion programjában
Z bozonok az LHC nehézion programjában Zsigmond Anna Julia MTA Wigner FK Max Planck Institut für Physik Fizikus Vándorgyűlés Szeged, 2016 augusztus 24-27. Nehézion-ütközések az LHC-nál A-A és p-a ütközések
Sugárzások kölcsönhatása az anyaggal
Radioaktivitás Biofizika előadások 2013 december Sugárzások kölcsönhatása az anyaggal PTE ÁOK Biofizikai Intézet, Orbán József Összefoglaló radioaktivitás alapok Nukleononkénti kötési energia (MeV) Egy
http://www.nucleonica.net Az atommag tömege A hidrogénre vonatkoztatott relatív atomtömeg (=atommag tömegével, ha az e - tömegét elhanyagoljuk) a hidrogénnek nem egész számú többszöröse. Az elemek különböző
Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény
Orvosi iofizika I. Fénysugárzásanyaggalvalókölcsönhatásai. Fényszóródás, fényabszorpció. Az abszorpciós spektrometria alapelvei. (Segítséga 12. tételmegértéséhezésmegtanulásához, továbbá a Fényabszorpció
Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása.
Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása. Magsugárzások (α, β, γ) kölcsönhatása atomi rendszerekkel (170-174, 540-545 o.) Direkt és
Molekuláris dinamika I. 10. előadás
Molekuláris dinamika I. 10. előadás Miről is szól a MD? nagy részecskeszámú rendszerek ismerjük a törvényeket mikroszkópikus szinten minden részecske mozgását szimuláljuk? Hogyan tudjuk megérteni a folyadékok,
Elméleti kérdések 11. osztály érettségire el ı készít ı csoport
Elméleti kérdések 11. osztály érettségire el ı készít ı csoport MECHANIKA I. 1. Definiálja a helyvektort! 2. Mondja meg mit értünk vonatkoztatási rendszeren! 3. Fogalmazza meg kinematikailag, hogy mikor
Termodinamika (Hőtan)
Termodinamika (Hőtan) Termodinamika A hőtan nagyszámú részecskéből (pl. gázmolekulából) álló makroszkópikus rendszerekkel foglalkozik. A nagy számok miatt érdemes a mólt bevezetni, ami egy Avogadro-számnyi
Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008.
Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008. Kiss István,Vértes Attila: Magkémia (Akadémiai Kiadó) Nagy Lajos György,
A Standard modellen túli Higgs-bozonok keresése
A Standard modellen túli Higgs-bozonok keresése Elméleti fizikai iskola, Gyöngyöstarján, 2007. okt. 29. Horváth Dezső MTA KFKI Részecske és Magfizikai Kutatóintézet, Budapest és ATOMKI, Debrecen Horváth
Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya.
Lendület Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendülettétel: Az lendület erő hatására változik meg. Az eredő erő határozza meg
http://www.flickr.com Az atommag állapotait kvantummechanikai állapotfüggvénnyel írjuk le. A mag paritását ezen fv. paritása adja meg. Paritás: egy állapot tértükrözéssel szemben mutatott viselkedését
Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (korlátok) Fókusz: a légzsák (Air-Bag Systems) kémiája
Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gázegyenlet és általánosított gázegyenlet 5-4 A tökéletes gázegyenlet alkalmazása 5-5 Gáz reakciók 5-6 Gázkeverékek
1. SI mértékegységrendszer
I. ALAPFOGALMAK 1. SI mértékegységrendszer Alapegységek 1 Hosszúság (l): méter (m) 2 Tömeg (m): kilogramm (kg) 3 Idő (t): másodperc (s) 4 Áramerősség (I): amper (A) 5 Hőmérséklet (T): kelvin (K) 6 Anyagmennyiség
A gamma-sugárzás kölcsönhatásai
Ref. [3] A gamma-sugárzás kölcsönhatásai Az anyaggal való kölcsönhatás kis valószínűségű hatótávolság nagy A sugárzás gyengülését 3 féle kölcsönhatás okozza. fotoeffektus Compton-szórás párkeltés A gamma-fotonok
Az elektromágneses tér energiája
Az elektromágneses tér energiája Az elektromos tér energiasűrűsége korábbról: Hasonlóképpen, a mágneses tér energiája: A tér egy adott pontjában az elektromos és mágneses terek együttes energiasűrűsége
Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet
Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet Utolsó módosítás: 2016. május 4. 1 Előzmények Az atomok színképe (1) A fehér fény komponensekre bontható: http://en.wikipedia.org/wiki/spectrum
Mozgás centrális erőtérben
Mozgás centális eőtében 1. A centális eő Válasszunk egy olyan potenciális enegia függvényt, amely csak az oigótól való távolságtól függ: V = V(). A tömegponta ható eő a potenciális enegiája gaiensének
Tornyai Sándor Fizikaverseny 2009. Megoldások 1
Tornyai Sánor Fizikaerseny 9. Megolások. Aatok: á,34 m/s, s 6,44 km 644 m,,68 m/s,,447 m/s s Az első szakasz megtételéez szükséges iő: t 43 s. pont A másoik szakaszra fennáll, ogy s t pont s + s t + t
Atomok és molekulák elektronszerkezete
Atomok és molekulák elektronszerkezete Szabad atomok és molekulák Schrödinger egyenlete Tekintsünk egy kvantummechanikai rendszert amely N n magból és N e elektronból áll. Koordinátáikat jelölje rendre
Elektrosztatikai alapismeretek
Elektrosztatikai alapismeretek THALÉSZ: a borostyánt (élektron) megdörzsölve az a könnyebb testeket magához vonzza. Az egymással szorosan érintkező anyagok elektromosan feltöltődnek, elektromos állapotba
Beugró kérdések. Elektrodinamika 2. vizsgához. Számítsa ki a gradienst, divergenciát és a skalár Laplace operátort henger koordinátákban!
Beugró kérdések Elektrodinamika 2. vizsgához. Görbült koordináták Henger koordináták: r=(ρ cos φ, ρ sin φ, z) Számítsa ki a gradienst, divergenciát és a skalár Laplace operátort henger koordinátákban!
3.1. ábra ábra
3. Gyakorlat 28C-41 A 28-15 ábrán két, azonos anyagból gyártott ellenállás látható. A véglapokat vezető 3.1. ábra. 28-15 ábra réteggel vonták be. Tételezzük fel, hogy az ellenállások belsejében az áramsűrűség
Kifejtendő kérdések június 13. Gyakorló feladatok
Kifejtendő kérdések 2016. június 13. Gyakorló feladatok 1. Adott egy egyenletes térfogati töltéssel rendelkező, R sugarú gömb, melynek felületén a potenciál U 0. Az elektromos potenciál definíciója (1p)
1. fejezet. Gyakorlat C-41
1. fejezet Gyakorlat 3 1.1. 28C-41 A 1.1 ábrán két, azonos anyagból gyártott ellenállás látható. A véglapokat vezető réteggel vonták be. Tételezzük fel, hogy az ellenállások belsejében az áramsűrűség bármely,
Az expanziós ködkamra
A ködkamra Mi az a ködkamra? Olyan nyomvonaljelző detektor, mely képes ionizáló sugárzások és töltött részecskék útját kimutatni. A kamrában túlhűtött gáz található, mely a részecskék által keltett ionokon
Előadás menete. Magfúzióból nyerhető energia és az energiatermelés feltétele. Fúziós kutatási ágazatok
Előadás menete Magfúzióból nyerhető energia és az energiatermelés feltétele Fúziós kutatási ágazatok Hőmérséklet és sűrűségmérés egyik módszere plazmafizikában a Thomson szórás Fúziós kutatás célja A nap
Rádl Attila december 11. Rádl Attila Spalláció december / 21
Spalláció Rádl Attila 2018. december 11. Rádl Attila Spalláció 2018. december 11. 1 / 21 Definíció Atommagok nagyenergiás részecskével történő ütközése során másodlagos részecskéket létrehozó rugalmatlan
Számítógépes szimulációk: molekuláris dinamika és Monte Carlo
Számítógépes szimulációk: molekuláris dinamika és Monte Carlo Boda Dezső Fizikai Kémiai Tanszék Pannon Egyetem boda@almos.vein.hu 2014. március 21. Boda Dezső (Pannon Egyetem) Habilitációs előadás 2014.
Nemlineáris szállítószalag fúziós plazmákban
Nemlineáris szállítószalag fúziós plazmákban Pokol Gergő BME NTI BME TTK Kari Nyílt Nap 2018. november 16. Hogyan termeljünk villamos energiát? Bőséges üzemanyag: Amennyit csak akarunk, egyenletesen elosztva!
Elektrosztatika. 1.2. Mekkora két egyenlő nagyságú töltés taszítja egymást 10 m távolságból 100 N nagyságú erővel? megoldás
Elektrosztatika 1.1. Mekkora távolságra van egymástól az a két pontszerű test, amelynek töltése 2. 10-6 C és 3. 10-8 C, és 60 N nagyságú erővel taszítják egymást? 1.2. Mekkora két egyenlő nagyságú töltés
Alkalmazás a makrókanónikus sokaságra: A fotongáz
Alkalmazás a makrókanónikus sokaságra: A fotongáz A fotonok az elektromágneses sugárzás hordozó részecskéi. Spinkvantumszámuk S=, tehát kvantumstatisztikai szempontból bozonok. Fotonoknak habár a spinkvantumszámuk,
FIZIKA KÖZÉPSZINTŐ SZÓBELI FIZIKA ÉRETTSÉGI TÉTELEK Premontrei Szent Norbert Gimnázium, Gödöllı, 2012. május-június
1. Egyenes vonalú mozgások kinematikája mozgásokra jellemzı fizikai mennyiségek és mértékegységeik. átlagsebesség egyenes vonalú egyenletes mozgás egyenes vonalú egyenletesen változó mozgás mozgásokra
Elektronegativitás. Elektronegativitás
Általános és szervetlen kémia 3. hét Elektronaffinitás Az az energiaváltozás, ami akkor következik be, ha 1 mól gáz halmazállapotú atomból 1 mól egyszeresen negatív töltésű anion keletkezik. Mértékegysége:
Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, december 05. Feladatok (maximum 3x6 pont=18 pont)
1. 2. 3. Mondat E1 E2 NÉV: Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, 2017. december 05. Neptun kód: Aláírás: g=10 m/s 2 ; ε 0 = 8.85 10 12 F/m; μ 0 = 4π 10 7 Vs/Am; c = 3 10 8 m/s Előadó: Márkus /
8. AZ ATOMMAG FIZIKÁJA
8. AZ ATOMMAG FIZIKÁJA Az atommag szerkezete (40-44 oldal) A tömegspektrométer elve Az atommag komponensei Izotópok Tömeghiány, kötési energia, stabilitás Magerők Magmodellek Az atommag stabilitásának
1. Elektromos alapjelenségek
1. Elektromos alapjelenségek 1. Bizonyos testek dörzsölés hatására különleges állapotba kerülhetnek: más testekre vonzerőt fejthetnek ki, apróbb tárgyakat magukhoz vonzhatnak. Ezt az állapotot elektromos
Részecskefizikai gyorsítók
Részecskefizikai gyorsítók 2010.12.09. Kísérleti mag- és részecskefizikai szeminárium Márton Krisztina Hogyan látunk különböző méreteket? 2 A működés alapelve az elektromos tér gyorsítja a részecskét különböző
Molekuláris dinamika. 10. előadás
Molekuláris dinamika 10. előadás Mirőlis szól a MD? nagy részecskeszámú rendszerek ismerjük a törvényeket mikroszkópikus szinten? Hogyan tudjuk megérteni a folyadékok, gázok, szilárdtestek makroszkópikus
ELEKTROSZTATIKA. Ma igazán feltöltődhettek!
ELEKTROSZTATIKA Ma igazán feltöltődhettek! Elektrosztatikai alapismeretek THALÉSZ: a borostyánt (élektron) megdörzsölve az a könnyebb testeket magához vonzza. Elektrosztatikai alapjelenségek Az egymással
Atomok. szilárd. elsődleges kölcsönhatás. kovalens ionos fémes. gázok, folyadékok, szilárd anyagok. ionos fémek vegyületek ötvözetek
Atomok elsődleges kölcsönhatás kovalens ionos fémes véges számú atom térhálós szerkezet 3D ionos fémek vegyületek ötvözetek molekulák atomrácsos vegyületek szilárd gázok, folyadékok, szilárd anyagok Gázok
Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja
Mágneses erőtér Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat A villamos forgógépek mutatós műszerek működésének alapja Magnetosztatikai mező: nyugvó állandó mágnesek és egyenáramok időben
ELEMI RÉSZECSKÉK ATOMMODELLEK
ELEMI RÉSZECSKÉK ATOMMODELLEK Az atomok felépítése Készítette: Horváthné Vlasics Zsuzsanna Mi van az atomok belsejében? DÉMOKRITOSZ (Kr.e. 460-370) az anyag nem folytonos parányi, tovább nem bontható,
Kötések kialakítása - oktett elmélet
Kémiai kötések Az elemek és vegyületek halmazai az atomok kapcsolódásával - kémiai kötések kialakításával - jönnek létre szabad atomként csak a nemesgázatomok léteznek elsődleges kémiai kötések Kötések
TestLine - Fizika 8. évfolyam elektromosság alapok Minta feladatsor
Mi az áramerősség fogalma? (1 helyes válasz) 1. 1:56 Normál Egységnyi idő alatt áthaladó töltések száma. Egységnyi idő alatt áthaladó feszültségek száma. Egységnyi idő alatt áthaladó áramerősségek száma.
A mágneses tulajdonságú magnetit ásvány, a görög Magnészia városról kapta nevét.
MÁGNESES MEZŐ A mágneses tulajdonságú magnetit ásvány, a görög Magnészia városról kapta nevét. Megfigyelések (1, 2) Minden mágnesnek két pólusa van, északi és déli. A felfüggesztett mágnes - iránytű -
Radioaktív sugárzások abszorpciója
Radioaktív sugárzások abszorpciója Bevezetés A gyakorlat során különböző sugárforrásokat két β-sugárzót ( 204 Tl és 90 Sr), egy tiszta γ-forrást ( 60 Co) és egy β- és γ-sugárzást is kibocsátó preparátumot
alapvető tulajdonságai
A z a to m m a g o k alapvető tulajdonságai Mérhető mennyiségek Az atommagok mérete, tömege, töltése, spinje, mágneses momentuma, elektromos kvadrupól momentuma Az atommag töltés- és nukleon-eloszlása
Úton az elemi részecskék felé. Atommag és részecskefizika 2. előadás február 16.
Úton az elemi részecskék felé Atommag és részecskefizika 2. előadás 2010. február 16. A neutron létének következményei I. 1. Az atommag alkotórészei Z db proton + N db neutron, A=N+Z az atommag tömege
A radioaktív bomlás típusai
A radioaktív bomlás típusai Párhuzamos negatív és pozitív bétabomlás/elektronbefogás 40 19 K kb.89% 0.001%, kb.11% EX 40 40 Ca Ar Felszabaduló energia Ca-40: 1311 kev Ar-40: 1505 kev Felezési idő P-40
2. Plazmafizikai alapfogalmak. Dósa Melinda
2. Plazmafizikai alapfogalmak Dósa Melinda Mi a plazma? PLAZMA: Ionizált gáz, melyre igaz: kívűlről semleges (=kvázineutrális) kollektív tulajdonsággal rendelkezik (egy részecske egyszerre több részecskével
2. Plazmafizikai alapfogalmak
2. Plazmafizikai alapfogalmak Dósa Melinda A Naprendszer fizikája 2016 1 Mi a plazma? Ionizált gáz, melyre igaz: kívűlről semleges (=kvázineutrális) kollektív tulajdonsággal rendelkezik (árnyékolás működik)
2, = 5221 K (7.2)
7. Gyakorlat 4A-7 Az emberi szem kb. 555 nm hullámhossznál a Iegnagyobb érzékenységű. Adjuk meg annak a fekete testnek a hőmérsékletét, amely sugárzásának a spektrális teljesitménye ezen a hullámhosszon
3. (b) Kereszthatások. Utolsó módosítás: április 1. Dr. Márkus Ferenc BME Fizika Tanszék
3. (b) Kereszthatások Utolsó módosítás: 2013. április 1. Vezetési együtthatók fémekben (1) 1 Az elektrongáz hővezetési együtthatója A levezetésben alkalmazott feltételek: 1. Minden elektron ugyanazzal
2. tétel - Gyorsítók és nyalábok (x target, ütköz nyalábok, e, p, nyalábok).
2. tétel - Gyorsítók és nyalábok (x target, ütköz nyalábok, e, p, nyalábok). Gyorsítók Cockcroft-Walton generátor (1928) Kondenzátorokból és diódákból épített gyorsító, amit sokáig használtak el gyorsítóként.
A Hamilton-Jacobi-egyenlet
A Hamilton-Jacobi-egyenlet Ha sikerül olyan kanonikus transzformációt találnunk, amely a Hamilton-függvényt zérusra transzformálja akkor valamennyi új koordináta és impulzus állandó lesz: H 0 Q k = H P
A Tycho-szupernova. 1572ben Tycho Brahe megfigyelt egy felrobbanó csillagot. 400 évvel később egy többmillió fokos buborék látható (zöld és kék a
A plazmaállapot + és tötésekből álló semleges gáz A részecskék közötti kcshatás jelentős A Debye-sugáron belül sok részecske található A Debye-sugár kicsi a plazma méreteihez képest Az elektron-kcsh erősebb,
Egy részecske mozgási energiája: v 2 3 = k T, ahol T a gáz hőmérséklete Kelvinben 2 2 (k = 1, J/K Boltzmann-állandó) Tehát a gáz hőmérséklete
Hőtan III. Ideális gázok részecske-modellje (kinetikus gázmodell) Az ideális gáz apró pontszerű részecskékből áll, amelyek állandó, rendezetlen mozgásban vannak. Rugalmasan ütköznek egymással és a tartály
Zárthelyi dolgozat I. /A.
Zárthelyi dolgozat I. /A. 1. Az FCC rács és reciprokrácsa (és tudjuk, hogy: V W.S. * V B.z. /() 3 = 1 / mindig!/) a 1 = ½ a (0,1,1) ; a = ½ a (1,0,1) ; a 3 = ½ a (1,1,0) b 1 = (/a) (-1,1,1); b = (/a) (1,-1,1);
Atomfizika. Fizika kurzus Dr. Seres István
Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés J.J. Thomson (1897) Katódsugárcsővel végzett kísérleteket az elektron fajlagos töltésének (e/m) meghatározására. A katódsugarat alkotó részecskét
Atomok. szilárd. elsődleges kölcsönhatás. kovalens ionos fémes. gázok, folyadékok, szilárd anyagok. ionos fémek vegyületek ötvözetek
Atomok elsődleges kölcsönhatás kovalens ionos fémes véges számú atom térhálós szerkezet 3D ionos fémek vegyületek ötvözetek molekulák atomrácsos vegyületek szilárd gázok, folyadékok, szilárd anyagok Gázok
Átmenetifém-komplexek mágneses momentuma
Átmenetifém-komplexek mágneses momentuma Csakspin-momentum μ g e S(S 1) μ B μ n(n 2) μ B A komplexek mágneses momentuma többnyire közel van ahhoz a csakspin-momentum értékhez, ami az adott elektronkonfigurációjú
Elektrotechnika. Ballagi Áron
Elektrotechnika Ballagi Áron Mágneses tér Elektrotechnika x/2 Mágneses indukció kísérlet Állandó mágneses térben helyezzünk el egy l hosszúságú vezetőt, és bocsássunk a vezetőbe I áramot! Tapasztalat:
Munka, energia Munkatétel, a mechanikai energia megmaradása
Munka, energia Munkatétel, a mechanikai energia megmaradása Munkavégzés történik ha: felemelek egy könyvet kihúzom az expandert A munka Fizikai értelemben munkavégzésről akkor beszélünk, ha egy test erő