Atomenergetikai alapismeretek
|
|
- Marika Nikolett Péter
- 5 évvel ezelőtt
- Látták:
Átírás
1 Atomenergetikai alapismeretek 2. előadás Dr. Szieberth Máté Dr. Sükösd Csaba előadásanyagának felhasználásával
2 Négyfaktor formula (végtelen kiterjedésű n-sokszorozó közeg) n Maghasadás (gyors neutronok) Lassulás (rezonancia neutronok) Rezonanciabefogás ( 238 U) (1-p) p Lassulás (termikus neutronok) f Befogódás más anyagban (1-f) Befogódás hasadóanyagban e 235 U(n,g) æ ç1- ç è æ σ ç f ç σ è abs Maghasadás ö ø σ f σ abs ö ø Rezonancia-kikerülési tényező 0,6 < p < 0,9 Termikus hasznosítási tényező (f) Termikus neutronhozam (csak a hasadó magtól függ) k = n p f σ η = ν f σ abs æ ç ç è σ f σ abs ö ø e Gyorshasítási tényező 1,00 < e < 1,03
3 Neutronlassulás alapjai A neutronok az atommagokon szóródva lassulnak Rugalmas szórás: Impulzus-megmaradás Kinetikus energia megmaradása Összefüggés a szórási szög és az energiaátadás között Rugalmatlan szórás Kinetikus energia nem marad meg (a mag gerjesztődik) Izotróp szórás Csak nagy energián jelentős, elhanyagolható
4 Rugalmas neutronszórás leírása v 2 Laboratóriumi rendszer neutron tömegközéppont atommag Ψ v 1 v k w 1 =0 w 2 Tömegközépponti rendszer v 2 v k =0 " v 1 w 1 w 2
5 Szórás leírása Laboratóriumi (L) rendszer ( valóság ) ütközés előtt a neutron mozog, a mag nyugalomban Tömegközépponti (TK) rendszer tömegközéppont nyugalomban neutron és mag egymás felé mozog, majd ellentétes irányban repül szét összimpulzus zérus (matematikailag könnyebb) v 2 v 2 " Ψ v k
6 Neutronszórási hatáskeresztmetszet Emlékeztető: atommagreakció: a + b c + d a b c Jelölés: b (a, c ) d céltárgy d Reakcióenergia: Q = (M a + M b M c M d ) c 2 Reakciósebesség: R = f N s Mikroszkopikus hatáskeresztmetszet: Makroszkopikus hatáskeresztmetszet: I. additivitás: II. additivitás: s t t = s s + s c + s f Fluxus: f +... R s = N f S = r s ( össz) = S ( ) + S ( 2) + S ( N ) S... t t Céltárgy atomok száma: N (több fajta reakció) 1 (több anyag) t atomsűrűség
7 Differenciális hatáskeresztmetszet R Annak a sebessége, amire Hatáskeresztmetszet: s = N f éppen kíváncsiak vagyunk. Részletekre is kíváncsiak lehetünk! Szögfüggés a + b c + d c a Három dimenzióban: Arra vagyunk kíváncsiak, hogy adott N és f mellett időegység alatt hány részecske lép ki a ( J, J + dj) szögintervallum által meghatározott dw térszögbe. a c
8 Kis geometriai kitérő: Ismert: szög (radiánban) = (ív a kör kerületén) /R Maximális szög = (2p R)/R = 2p Térszög = (felület a gömb felszínén) /R 2 Maximális térszög = (4p R 2 )/R 2 = 4p Térszög mértékegysége: szteradián J, J + dj közötti térszög: ( ) Felület = 2p ( R sinj) ( R dj) Térszög: ( RsinJ) ( R dj) d W = 2p = 2p sinj dj 2 R
9 ( J J + dj) A, közötti sáv térszöge tehát: (hengerszimmetrikus esetben) d W = 2p sinj dj Differenciális hatáskeresztmetszet: valamilyen paraméter szerint szétbontott hatáskeresztmetszet A térszög szerint szétbontott: Mértékegysége: barn/steradián ds = dw Természetesen az összes szögre integrálva p ds ò 2p sinj dj = s dw 0 f ( ) J visszakapjuk a teljes hatáskeresztmetszetet Időnként nem a térszög szerint, hanem a szög szerint bontjuk szét: ds ds = 2 p sinj, mint az könnyen belátható. dj dw A szórási szögtől függ
10 Rugalmas szórás modellje: kemény gömbön történő szórás Tömegközépponti rendszerben Az ábra alapján: a p 2 J = p - 2a tehát dj = -2 da Az ütközési paraméter: b = R sin a tehát db = R cosa da A (J,J + dj ) szögintervallumhoz (b, b db) ütközési paraméter intervallum tartozik. Ezért a hatásos keresztmetszet, amely ilyen szögintervallumba történő szóráshoz vezet: ds = -2p b db (mivel db<0) Ide behelyettesítve az előzőeket: ds = -2p ( R sin a ) ( R cosa da ) = -p 2R 2 sin 2a da p R Térjünk át a -ról J - ra: ds = sin (p - J ) dj 2 2 ds p R 2 d s R Ebből kapjuk: = sin J Illetve: = dj 2 dw 4 ( ) Vegyük észre, hogy nem függ J - tól! Izotróp szórás a tömegközépponti rendszerben
11 1.12. ábra. A 1 H(n,n) 1 H reakció hatáskeresztmetszete a neutronenergia függvényében
12 Neutronszórás törvényszerűségei A lassulás szempontjából a rugalmas szórás és kemény gömb modellje a meghatározó Maximális energiaveszteség teljes visszaszórásnál (!=180) Hidrogénnek teljes energiaátadás Nehéz magnál (A ) az energiaveszteség 0-hoz tart Tömegközépponti rendszerben izotróp Nehéz magnál (A ) a laboratóriumi rendszerben is izotróp (Ψ =!) Hidrogénnél (A=1) a laboratóriumi rendszerben csak előreszórás (Ψ =!/2)
13 Moderációs jellemzők Ütközés utáni minimális energia aránya! = # $ = )*+ # % &'( ),+ - Szórási szög átlagos cosinusa./ 0 = cos 3 = - 4), izotróp szórás:./ 0 = 0 Átlagos logaritmikus energiacsökkenés (lassítási erélyesség) 6 7 = ln : + ln : - = ln # % = 1 + > lnα # $ +*> Termalizációhoz szükséges ütközések száma ü A = BC # D*BC # E = + ln # D = + ln -GHI = +K,- BC # % * BC # $ F D # E F D -J &HI F D Makroszkopikus lassítóképesség M N = 6 7 Σ HP = 6 7 QR HP, keverékben: M N = ' 6 7,' Q ' R HP,' Moderálási arány (lassítási jóság) T = F DU VW, keverékben: T = Y F D,YZ Y [ VW,Y U X Z Y [ X,Y
14 1.7. táblázat. Moderációs jellemzõk értéke néhány anyagra Moderátor jellemző 1 H H 2 O D D 2 O Be C 238 U a 0-0,111-0,640 0,716 0,983 µ 0 0,667-0,333-0,074 0,055 0,003 x ,725 0,725 0,209 0,158 0,00838 Ütközések száma 18,2 18, , M I =x 0 S es 0,002 3,27 0, ,256 0,18 0,06 0,042 1/M I 500 0, ,91 5,53 16,7 - g ,16
15 Neutrontranszport alapfogalmai Neutronsűrűség!( $, &, Ω,t) +, - Neutronfluxus * Irányfüggő: Φ( $, &, Ω,t)=/!( $, &, Ω,t) Skalár (integrált, irányfüggetlen): Φ( $, &,t)= 34 Φ( $, &, Ω,t)5Ω Neutronáram $ * +, 0 1 dv Ω (E,E+dE) 6( $, &,t)= 34 ΩΦ( $, &, Ω,t)5Ω Netto átfolyás felületen:! 6!: a felület normálvektora
Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzék módosításának eljárásrendjéről szóló 133/2010. (IV. 22.) Korm.
Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzék módosításának eljárásrendjéről szóló 133/2010. (IV. 22.) Korm. rendelet alapján: Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,
ALACSONY HŐMÉRSÉKLETŰ PLAZMAFIZIKA
ALACSONY HŐMÉRSÉKLETŰ PLAZMAFIZIKA Dr. Donkó Zoltán / Dr. Derzsi Aranka MTA Wigner Fizikai Kutatóközpont Szilártestfizikai és Optikai Intézet Komplex Folyaékok Osztály MTA Csillebérc / KFKI onko.zoltan@wigner.mta.hu
Ó Ó É ü É ü ü
É Ó É Ú ü ű ú ú ü ü ü Ó Ó É ü É ü ü Ó ü ü ü É ü ü Ó É É ü ü ü ü ü ü ü ü ü ü ü ü ü Ó Ó ü ü ü ü ü ü ü É ü ü É ü ü ü ü ü ü Ó ü ü ü ü ü ü ü ü É Ó ü ü É Ó Ó ü ü ü ü ü É ü ü ü É ü ü ü ü ü Ó Ó ú ü ü ü ü ü ü Ó
ű ű ű Ö ű ű ű Ú ű ű ű Ö ű ű ű ű ű ű ű
ű Ö É ű É Ö ű ű ű ű ű ű ű ű ű Ö ű ű ű Ú ű ű ű Ö ű ű ű ű ű ű ű Ú Ú Ú Ü É É É É ű É Ú É ű É Ó Ö É É ű ű ű É ű Ö Ö ű Ö Ú ű ű ű Ú ű ű ű Ö ű ű ű É ű ű ű Ó Ü É É Ú Ú Ü Ü Ö Ó ű Ü Ü ű ű É Ó Ó ű ű Ü Ö Ó Ö Ü Ü ű
Ú Ú Ü Ü ű ű ű É Ú É ű
É Ó ű ű Ö Ú Ú Ü Ü ű ű ű É Ú É ű É ű ű ű Ü ű É ű Ű Ö ű ű ű Ú Ú É É Ó Ó Ú ű ű É Ú É Ü Ü Ú ű Ú Ó É Ü ű É ű ű ű Ö ű ű ű Ö Ö Ú ű Ü Ú Ö ű Ü ű Ü ű ű Ü Ö ű ű ű Ú Ü Ú Ó ű ű É É ű ű ű ű ű Ö ű ű ű ű ű ű ű Ö ű ű ű
Ó ú É ú É É É Ő ú ú ű Ó Ö É É ú Ü ú É ú
É Ó Ö É Ü ű ú Ü ÉÚ É ú ú ű ú Ó ú É ú É É É Ő ú ú ű Ó Ö É É ú Ü ú É ú Ó ú Ü Ü ú ű Ü Ö Ó ú ú ú ú É Ü ú ú Ü Ü Ó Ó É ú ú É É É É Ú Ü Ü ú Ü ú ú É Ő Ő ú É Ó Ó É Ő Ü Ó Ő ú Ó Ó É É ú Ü Ó Ó Ó É ú Ü Ú Ö Ü É ú Ó
Ó Ó ú ú ú ú ú É ú
É Ö É ű ú É Ó É ú ú ú Ó Ó ú ú ú ú ú É ú Ó Ó ú É ú É ú Ó Ö É Ó Ó ú É ú Ö Ó Ó ú ú É É É ú Ó Ó É ú ú ú ú ú ú ú ú ú ú É Ú É Ó Ó ú ú Ó Ó Ö Ö É É É ú É É ú ú É É Ó Ó É Ű ú É Ó Ó Ű Ú ú ú É Ú Ú É Ú Ó Ó Ó É É É
ű ő ű ű ű ö ő ú ö ő ő ő ő ő ő ő ű ő ő ő ő ü ü ő ü ü ő ú ü ő ő ü ü ü ő ú ü
Ö ü ö ő ú ö ü ű ö ö ö ö ő ő ö ő ü ö ö ő ö ö ü ú ö ü ő ő ö ú ő ü ü ü ű ű ű ő ű ű ű ö ő ú ö ő ő ő ő ő ő ő ű ő ő ő ő ü ü ő ü ü ő ú ü ő ő ü ü ü ő ú ü ő ü ü ő ő ü ü ő ő ú ő ú ő ü ü ő ü ő ú ü Ü ő ő ö ő ü ő ü
ALACSONY HŐMÉRSÉKLETŰ PLAZMAFIZIKA
ALACSONY HŐMÉRSÉKLETŰ PLAZMAFIZIKA Dr. Donkó Zoltán MTA Wigner Fizikai Kutatóközpont Szilártestfizikai és Optikai Intézet Komplex Folyaékok Osztály MTA Csillebérc / KFKI onko.zoltan@wigner.mta.hu zoltan.onko@gmail.com
Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2)
2. Gyakorlat 30B-14 Az Egyenlítőnél, a földfelszín közelében a mágneses fluxussűrűség iránya északi, nagysága kb. 50µ T,az elektromos térerősség iránya lefelé mutat, nagysága; kb. 100 N/C. Számítsuk ki,
ALACSONY HŐMÉRSÉKLETŰ PLAZMAFIZIKA
ALACSONY HŐMÉRSÉKLETŰ PLAZMAFIZIKA Dr. Donkó Zoltán MTA Wigner Fizikai Kutatóközpont Szilártestfizikai és Optikai Intézet Komplex Folyaékok Osztály MTA Csillebérc / KFKI onko.zoltan@wigner.mta.hu zoltan.onko@gmail.com
Compton-effektus. Zsigmond Anna. jegyzıkönyv. Fizika BSc III.
Compton-effektus jegyzıkönyv Zsigmond Anna Fizika BSc III. Mérés vezetıje: Csanád Máté Mérés dátuma: 010. április. Leadás dátuma: 010. május 5. Mérés célja A kvantumelmélet egyik bizonyítékának a Compton-effektusnak
Maghasadás (fisszió)
http://www.etsy.com Maghasadás (fisszió) 1939. Hahn, Strassmann, Meitner neutronbesugárzásos kísérletei U magon új reakciótípus (maghasadás) Azóta U, Th, Pu (7 izotópja) hasadási sajátságait vizsgálták
A sugárzás és az anyag kölcsönhatása. A béta-sugárzás és anyag kölcsönhatása
A sugárzás és az anyag kölcsönhatása A béta-sugárzás és anyag kölcsönhatása Cserenkov-sugárzás v>c/n, n törésmutató cos c nv Cserenkov-sugárzás Pl. vízre (n=1,337): 0,26 MeV c 8 m / s 2. 2* 10 A sugárzás
Atomenergetikai alapismeretek
Atomenergetikai alapismeretek 5/2. előadás: Atomreaktorok Prof. Dr. Aszódi Attila Egyetemi tanár, BME Nukleáris Technikai Intézet Budapest, 2019. március 5. Hasadás, láncreakció U-235: termikus neutronok
é ü ó ö é Ö é ü é é ó ö é ü ü é é ó ó ó é Á é é ü ó é ó ó é ö ö ö é é ü é ü é é ö ü ü é ó é é é é é é ö é é é é é é ö é ó ö ü é é é ü é é ó é ü ó ö é
Ó Ö é ü ó ö é é ü é é ó ö é ü ü é é ó é é é é é é ö é é é é é é é ó ö ü é é é ü ó ö é Ö é ü é é ó ö é ü ü é é ó ó ó é Á é é ü ó é ó ó é ö ö ö é é ü é ü é é ö ü ü é ó é é é é é é ö é é é é é é ö é ó ö ü
Sugárzások és anyag kölcsönhatása
Sugárzások és anyag kölcsönhatása Az anyaggal kölcsönhatásba lépő részecskék Töltött részecskék Semleges részecskék Nehéz Könnyű Nehéz Könnyű T D p - + n Radioaktív sugárzás + anyag energia- szóródás abszorpció
Ó é é Ó Ó ő ű Ó Ö ü Ó é Ó ő Ó Á Ö é Ö Ó Ó é Ó Ó Ó Ó ú Ó Ó Ó Ó ű Ö Ó Ó Ó é Ó Ó ö Ö Ó Ö Ö Ó Ó Ó é ö Ö é é Ü Ó Ö Ó é Ó é ö Ó Ú Ó ő Ö Ó é é Ö ú Ó Ö ö ű ő
É Ó Ű Á Ó É Ó Á É Ó Á ő ű Ó ú Ö ú é Ö Ó Ö ú Ó Ö ú Ó Ó Ó Ó ű é ű ű Ó Ó ú ű ű é é Ö ö Ö Ö Ó ű Ó Ö ü ű Ö Ó ő Ó ő Ó ú Ó ő Ó é Ó ű Ó Ó Ó Ó ú Ó Ó Ó Ó Ö Ó Ó ö ő ü é ü Ö é é é Á é Ó Ó ú ú ű é Ö é é é Ó é é Ó Ó
ó ő ő ó ő ö ő ő ó ó ó ö ő ó ó ó ö ő ó ő ő ö Ö ő ö ó ő ö ő ő ú ö ö ü ö ó ö ö ö ő ö ö Ö ú ü ó ü ő ő ő ő ó ő ü ó ü ö ő ö ó ő ö ő ö ü ö ü ő ö ö ó ö ő ő ö
ü ö ő ö ő ó ö ő ü ü ö ő ó ó ü ő ö ő ö ő ö ü ö ő ö ő ó ö ü ü ö ő ő ő ö ő ö ü ö ő ó ő ö ü ö ő ő ű ő ö ö ő ű ő ü ö Ő ó ö ö ő ü ó ü ú ű ú ő ó ó ó ő ö ő ő ö ó ö ö ő ő ö ö ó ú ő ő ö ó ö ó ö ü ó ő ő ö ó ő ő ó
Ú ű É ű ű Ü Ü ű ű Ú É ű ű Ü ű ű ű ű ű ű ű Ú ű ű
Ú ű ű ű ű ű ű ű ű Ú ű É ű ű Ü Ü ű ű Ú É ű ű Ü ű ű ű ű ű ű ű Ú ű ű É ű Ú Ú Ú Ú Ú ű Á Ú Ú Ú Ú ű Ú Ú ű É ű Ú Ú Ú Ú Ú Á ű Ó ű Ú É É Ú Ú ű É ű ű ű ű É ű Ő ű Ő ű ű ű ű ű É ű É Á ű ű Ü Á Ó ű ű ű Ú ű ű É ű ű Ú
Á Á ő ő Ö ő ő ö É ö ő ö ő ő ö ő ő ö ő ő ü ö
ű É É Á Á Á É Ó É É Á ö ő ő ö ő ő ő Ó ő ö ő ö ő ú ő ü ö ő ü ö Á É ű Á É É É Ö ö Á É É ő ő ö Á Á ő ő Ö ő ő ö É ö ő ö ő ő ö ő ő ö ő ő ü ö É É Á Ö ő ú ő ű Ö ü Ő É Ó É É Á Ó É Á É Ü É Á Ó É ő ő ö ö ő ö ö ö
Á Ö Ö Ö Ö ú ú Ö Ö Ó Ó ú ú Ü ú Ó Ö Ö Ü Ó Ö Ö Á Ó ú ú ú ű Ö Ö Ö Ö Á Ó Ö Ó ú ú Ö
Ó ú ú ú ú ű ű ű ú Á Ö ű Á Ö Ö Ö Ö ú ú Ö Ö Ó Ó ú ú Ü ú Ó Ö Ö Ü Ó Ö Ö Á Ó ú ú ú ű Ö Ö Ö Ö Á Ó Ö Ó ú ú Ö Ú ű ú É Á Ó Ó É Ó Ó ú ű ű ű ú Ö Ó Ö ú ú Ö ú Ü ú Ü É Ö Á Á Á Á ú Ó Ö ú ú ú Ü Ö ú ú ú ú ú ú Ö ú Ö Ó ű
Ó Ó ö ú ö ö ö ö ü ú ú ö ö ö ú ú ö ö ö ú ú ú ű ö ö ú ö ü ö ö ö ö ü ú Á ö ü Á ö ö ö ö ö ö
É Ó ö É Á ű Ü Ü ö Ú ö ö ö ö ö ö ö ú ö ö ö ö ö ú ú ú ú ú ú ü ú ú ö ö ű ö ü ú ö Ó Ó ö ú ö ö ö ö ü ú ú ö ö ö ú ú ö ö ö ú ú ú ű ö ö ú ö ü ö ö ö ö ü ú Á ö ü Á ö ö ö ö ö ö Á Ó ú ö Á ö Á ö ú ú ö ö ö ö ü ü Ü ú
ű Ú ű ű É Ú ű ű
ű ű ű ű Ú Á É Ú ű Ú ű ű É Ú ű ű ű Á ű ű ű ű ű Ü ű Á ű ű ű Á Á ű ű ű É ű ű ű Ú É ű ű ű ű ű ű ű ű Á É Á Ö Ü ű É ű ű Ö É Ü Ú ű Ó ű É Ó Ó Ó ű É Ü Ü ű ű Ú ű ű ű ű ű ű ű ű ű ű É ű ű Á Á ű Ú ű Ú ű ű Ó ű ű Ü Ü
Á Ó ű ű Á É ű ű ű ű Ú Ú
Ö ű ű Ö Ü ű ű ű ű ű Ó ű Ü ű Á Ó ű ű Á É ű ű ű ű Ú Ú ű ű Á Á Á É ű ű ű ű ű ű ű ű ű ű É ű Ö Ó Ú ű ű ű ű Ü Ó Ú ű É É Ó É É Ó É É É É Ó ű ű ű ű ű Ü ű Á ű ű ű ű ű Ü ű ű ű ű ű ű Á ű Ú Á Á Ö É Á Á Ö É Ü ű ű Ü
ű ű ű Ú Ú Á ű Ö ű ű Ú Ő É
Ü ű ű ű Ú Ú Á ű Ö ű ű Ú Ő É É ű Ö Ö Á É ű Ö Ö Á Ü Á ű ű Ó Ó Á Á É Ü É ű Ó Á Ó Á ű Ö ű ű É Ü Ö ű É Ö ű ű Ó ű ű Ú ű ű ű ű ű É ű É Ú Ö Á É ű ű Ó ű ű ű ű ű ű Ó ű Ü ű ű ű É ű ű Ü Ü ű ű Ő Á Á Á ű ű ű Ó Ó Ó ű
ü ü Ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü É ü ü
ü ü É ű ű É É ű ü ű ü ü ü Á ü ü ü ü ü ű É ü ű É ű ü ü ü Ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü É ü ü ü Á ü ü ü ü ü Ú ü ü ű É ü ü ű ü ü ű ü ü ü ü É ü ü ü ü ü ü ü ü É ű ü Á ü ü ü ü ü Á Ö É ü ü ű Ú ü ü ü ű
ű Ö ű Ú ű ű ű Á ű
ű ű Ó É É ű Ó ű Ü ű ű Ö ű Ú ű ű ű Á ű É ű Á ű ű ű ű ű ű ű ű ű ű ű Á ű ű Ö Ü Ö É ű ű Ü Ü ű É Á Ú É É ű ű ű Ö É ű É Ó É Á Á É ű ű Á ű ű ű Á É ű Ö Á ű ű ű Á ű Á É Ö Ó Ö ű ű ű ű ű ű ű Á É Á Á ű ű ű Á ű ű ű
ő ű É Ó Ü É É É É Ü Ö É É É ű É Ö É Ü É Ú Ó ő Ó
Ú Ü Ü Ü Ü Ü Ü Ú Ú Ú Ü É Ü Ü ő ű É Ó Ü É É É É Ü Ö É É É ű É Ö É Ü É Ú Ó ő Ó Ö ű Ú É É Ö Ö ű Ó Ö ű Ü Ü Ü Ú É É ő ő ő Ó Ó Ó Ű Ű Ü Ü ő Ü Ö Ó Ö Ó ő Ó ő ő ő ő ű ő ő ű ű É ő ő ő ő ő ő ő ő ű ő Ö Ö Ö ő Ü Ö ő ő
Ó Ó ó ö ó
É ó ö É Á ó ó ü ó Ü ó ö ú ű ö ö ö ü ó Ó Ó ó ö ó Ó Ó ö ö ö ü Ó Ó ö ö ü ö ó ó ü ü Ó Ó Ó Ó ó ö ó ö ó ö ó ö ü ö ö ü ö ó ü ö ü ö ö ö ü ü ö ü É ü ö ü ü ö ó ü ü ü ü Ó Ó ü ö ö ü ö ó ö ö ü ó ü ó ö ü ö ü ö ü ö ó
ú ö ö ö ö ö ö Á ö ö ö á á á ű Ü ű ö ö Á á Á
ú ú ö ö ö ö ö ö Á ö ö ö á á á ű Ü ű ö ö Á á Á Á ú á ú á Á ö á ö ö ö ú á á ö ö ö ö á ű Ü ú ö Ü ű ö ú ű á á á ú á ú ú á ö ö ú ö ú ú ö ö ú ö ö ö á ö ö ö á á ö ú ö á á Ú á ö ö ö Ü ú Á á ű ö Ü ö ú Á á ö á ö
ü ú ú ü ú ú ú ú
ú ú ú ü Ü ú ú ű ú ú ü ú ü ü ú ú ü ú ú ú ú ü ú Ö ü ü ü ú ü ú Ó ü ü ű ü Á Ü ü ű ü ű ü ű ű ü Ó ű ú ú ű ú ü ü ú ű ű ú ű ü ú ű ű ü ü ü ű ü ű ü ü ű ü ü ü ü ü ü ü ü ü ú ű ü ű Ó ü ü ü ú Á Ü ú ü ű ü Á Ü Ö Ú Á Á
ö ő ü ö ő ő ü ü ő ő ő ü ö ü ü ő ú ő ő ő ü ő ő ő ő ő ú ő ő ü ő ő ő ü ö ü ú ő ő ő ő ü ü ő ő ú
ő ű ű ő ö ö Á ö ő ü ö ő ő ü ü ő ő ő ü ö ü ü ő ú ő ő ő ü ő ő ő ő ő ú ő ő ü ő ő ő ü ö ü ú ő ő ő ő ü ü ő ő ú ő ö Á Ó ő ő ü ú ő ő ő ő Á ő ú ű ő ő ő ü ú ő ő ő ő ő ő ő ő ö ü ú ő ő ő ő ű ű ő ő ö ű ü ő ő ő ö ö
É Á Á Ö Á
É Á Á Ö Á Á É Á Ü ű Á É Ü ű Ú ű ű É É ű ű Á ű ű ű ű ű É ű ű ű Á É É É ű Á É É Á É Á É Ü Ü ű Á Á Á ű Á Á Á Á Á Á Á Á Ü ű Á ű Ü É É Á Á Á É ű ű ű ű ű ű ű ű ű ű ű ű ű Á Á É É ű É ű Ő ű É Ő Á É É ű ű Ú Á
ó Ó ú ó ó ó Á ó ó ó Á ó ó ó ó Á ó ú ó ó ó
É ó ú ó ú ó Á ó ó ú ó ó ó ú ó ó ó ó ú ó ó ó ó ó ó ú ó ó ú ó ó ó ó Ó ú ó ó ó Á ó ó ó Á ó ó ó ó Á ó ú ó ó ó Ö ó ó ó ó ó ó ó ó ó ó ó ó Ü ó ű ú ú ó ó ó ó ó ó ó É ó É ó É ó ó ó ó ó ó É ó ú ó ó É ó ó ó ó É ó
ú ü ú ü ú
ü Ö É ÓÍ Ó É Ó ú ű Ő ú ü ü ü ü ü ú ü ú ü ú ü ú ú ü ü ú ű ű ű ű ü ú ü ü ű ü ú ü ü ü ü ü ú ú ű ü ú ü ü ű ü ú ü ü ü ú ü ü ú ú ű ü ú ü ü ű ü ú ü ü ü ü ü ú ű ű ü ú ü Ű ú ű ü ú ü ü ü ü ü ú ű ű ü ú ü ü ű ü ú
ü É ü Ö ü ü ü Ü ü ü Í
ü É ü Ö ü ü ü Ü ü ü Í Ü É Ö ü Í Ü Ü ü É Ő Ö ü Ö É É Ő Ü ü ü ü Ö ű Ö ű Ö ú Ó É Ö ü ü ü ü É Ö ű ü ü ü É ü ű Ó Ü ü ü Ü ű ü Ó ű ü É É Ö ű ű Ö ű É Ö ű ű ü Ö ü ü ü ú Ü Ő ü Ö ü Í Ő ű É É É Ö ü ü ü ü Ü É ű Ú Ő
ö ű ü ü ö ü ö ö ü ö ö Í Ö ö ü ö Í ű ö ű ü ü ö ú ö ű ü ü ö ö ö ü ű ü ö ü ű ű ú ö ö ö ű ü ú ú
ö É Ő ü ü ű ö ű ű ö ű ö Í Ó Ö É É Ó É ú ü ü ú ö ű ü ü ö ü ö ö ü ö ö Í Ö ö ü ö Í ű ö ű ü ü ö ú ö ű ü ü ö ö ö ü ű ü ö ü ű ű ú ö ö ö ű ü ú ú ö ö ű ö ű ö ű ú ü ü ö ű ü ö ü ű ű ú ü ö ö ö ű ü ö ö ö ö ö ú ú ö
ö ö É ő ó ó ő ü ó ó Ü É É ö ö ó ű ü ó ó ö ű Í ö ó ö Í ő ü ü ö ö ő ö ó ö ó ó É ó ő ö ö ó Ö ü ő Í ű ó ő ü ő Ó Ö ű Í ó Ó ő ő ö ő ő ő ö
ö ó ó Ü É Ö Ö ó ó ü ü Ó ó ó ü ő ő ü ő ő ó ő ó ó ő ó ó ő ó ó Ó ü ő ó ó ó ő ó ű ő ö ü ö ü ü ő ó ű ű ő ö ö ó ó ó Ö É Ó ö ö É ő ó ó ő ü ó ó Ü É É ö ö ó ű ü ó ó ö ű Í ö ó ö Í ő ü ü ö ö ő ö ó ö ó ó É ó ő ö ö
É ó Í É
É Ó É É É Í ő É É ó Í É ó ú ú ó ö ű ő í ó ó í ü ű í Í ő ú í í ő ő ó ő ö ó ó ő ó ő ő ö ó ő ó ö ö ö ő ö ó ö ő ő í ó í í ő ó ú ó í ő ű ö ő Í ő ő ó ö ü ö ő ó ő ó ő ő ő ó ó ű ö í ő ö ö ö ő í ö ó ö ö ő í ü ú
ü ö í ü ö í ü ö ű í í í ö Ü í ü ü ö í í ü ö í ű í ö í í ú ö ö í í ü ű ö ü í í ü í ü í í ö ü í ö ö ü í ö ű ö í í ö ú ö í ö í ű ö ö ö í í í í ö ö
ú ö ü ű í ü ö í ü í É É É Ő í ü ö ü ü í ü É ö í í í ü ö ö ű ö ü ö í ü ö í ü ö ű í í í ö Ü í ü ü ö í í ü ö í ű í ö í í ú ö ö í í ü ű ö ü í í ü í ü í í ö ü í ö ö ü í ö ű ö í í ö ú ö í ö í ű ö ö ö í í í í
É É Í É É ö Í í í í ű ü ö í í Í
Í É Í É ö ü í í ö ö Í ö í í í í ű ü ö í Í É É Í É É ö Í í í í ű ü ö í í Í Ő Í Í ö ü í í ö Í ö Í í í í í í í í í í ű ü ö í í í ö Í ü í í ö ö Í ü ö ü É ú í ű ü ö í í Í É ö ú ü í Í í ö ö Í ö ö ö ü ü ú ű ü
ű ű ű ű ű ű Ú Ú ű ű ű Ö ű ű ű ű ű ű
Ü É ű ű ű ű ű ű ű ű Ú Ú ű ű ű Ö ű ű ű ű ű ű Ö Ü Ú ű Ü Ö É Ü Ü ű ű ű ű ű ű É É ű É Ó É Ü ű Ó É É É Ő űű ű Ö ű Ú ű ű ű ű ű ű ű ű ű ű ű ű Ö ű ű ű ű ű ű ű ű ű ű ű ű Ü É ű ű ű ű Ú É É ű ű Ü É Ü ű ű ű Ü ű ű
Í ü í í í ü ű ű í ü í ü ü ű ü í ü í ű ü ü ű Ö ü ű ü í í ü í í ű ü ű í í ű ü í ü í í ü ü í ü Ú í ü í í í ű ű í ű í í í ü í í í í í ü í í ü í í í í ü í í í ü í í ü í ü ü ü ü Ó ü í ü í ü ü ü í ű í í ü ű
í ö ó í ö í Í ó ú ó ö ű ó ű ö í ó ó ó ó ó Í ú í ó í í ó Í ö ö ú í ú ó ö Í ó ó Í í ó ó ö ö ö ö ö í ö ó ű í ó ó ö ú ó ó ö ö ó í ö ö ó ó ö ö í ö ó í ű ö
É ó É ó ö ö í ö ó ó ó ö ö ó ó ö ö ó ó ö ö ö í ó ö í ó ó ó ó ó ö ö í ö í ö í ű ű ö ú ö ö ú ö ö ö ö í ó ó ó ö ö í Í ó ö ö ö ö Í Ü í í ö ó í ö í Í ó ú ó ö ű ó ű ö í ó ó ó ó ó Í ú í ó í í ó Í ö ö ú í ú ó ö
http://www.nature.com 1) Magerő-sugár: a magközéppontból mért távolság, ameddig a magerők hatótávolsága terjed. Rutherford-szórásból határozható meg. R=1,4 x 10-13 A 1/3 cm Az atommag terének potenciálja
ű í ú í ú í ü ü í í í Ö í Í É í ú í í í ű ű í í Í í í É í í í
ú ű í ú í ú í ü ü í í í Ö í Í É í ú í í í ű ű í í Í í í É í í í ü ú ú ú ú ú í ú ü Ó ü ü ü ü Í Í í ü ü ü ü ü ü É í ü ü ú Í í ü í í í ü ü í í ú ü í ü í í í ú ú í ü ü ü ü í í í ű ü í í É É í í í í Ü í í ú
ö ü í ú í ö ö í ú ü í ü ö í ú ö ü í ö ü ö ö ö Í ö ö
ö ö ü ü ö ö ü ü ü ö Í ö ö í ü í ü ü Í í ö ü í ú í ö ö í ú ü í ü ö í ú ö ü í ö ü ö ö ö Í ö ö ö í ü ü ü ü ö ü ü ö ö ö ü Ó ö ö ü í ö ö Ó ö ö ö ö ü ö ö ü ü í ö ü ü ö ö É ü ü ü í ü ö Í ö ü í ö ü í ö ö ö í ü
ű ö ű ö í í ö É ö ü ö ú ü ű ü ü ű ö ö ü ü ü ö ü ü ű ü ü ű í ü ü ö Ö ü í ű ö Ö ü ű
ö ü ö Ö ü ü í ö ű ö ű ö í í ö É ö ü ö ú ü ű ü ü ű ö ö ü ü ü ö ü ü ű ü ü ű í ü ü ö Ö ü í ű ö Ö ü ű ü ö ü ö ö í ü ö ö ü í ö í ü ü ü ú ö ü ü ü ű í í ü ü ö Ö ü í ö ü ö Ö ü ö ö ű ö ö Ö ü ö ö Ö ü í í í Ü ö í
ő ü ó í í í ő ó Ó í
ő ü É Ö É Ü É í í í ó Ö ü ő ó ó ó ő Ö ő ü ő ü ó Ö ő ű Ó ő ó ű ő ü ő ő í í í ő í í í í í í ő ü ő ó ü í í ő ó Ö ó ú ő ő ő É í ü ó ő ő ő ü ó í í í ő ó Ó í Ö ő ü ő ó í í ó í ő ő ő ó ő ő ü ó í í ó Í í ő ó ő
azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra ábra
4. Gyakorlat 31B-9 A 31-15 ábrán látható, téglalap alakú vezetőhurok és a hosszúságú, egyenes vezető azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra. 31-15 ábra
A gamma-sugárzás kölcsönhatásai
Ref. [3] A gamma-sugárzás kölcsönhatásai Az anyaggal való kölcsönhatás kis valószínűségű hatótávolság nagy A sugárzás gyengülését 3 féle kölcsönhatás okozza. fotoeffektus Compton-szórás párkeltés A gamma-fotonok
Termodinamika (Hőtan)
Termodinamika (Hőtan) Termodinamika A hőtan nagyszámú részecskéből (pl. gázmolekulából) álló makroszkópikus rendszerekkel foglalkozik. A nagy számok miatt érdemes a mólt bevezetni, ami egy Avogadro-számnyi
SZTE Elméleti Fizikai Tanszék. Dr. Czirják Attila tud. munkatárs, c. egyetemi docens. egyetemi docens. Elméleti Fizika Szeminárium, december 17.
Időfüggő kvantumos szórási folyamatok Szabó Lóránt Zsolt SZTE Elméleti Fizikai Tanszék Témavezetők: Dr. Czirják Attila tud. munkatárs, c. egyetemi docens Dr. Földi Péter egyetemi docens Elméleti Fizika
1. Feladatok merev testek fizikájának tárgyköréből
1. Feladatok merev testek fizikájának tárgyköréből Forgatónyomaték, impulzusmomentum, impulzusmomentum tétel 1.1. Feladat: (HN 13B-7) Homogén tömör henger csúszás nélkül gördül le az α szög alatt hajló
RADIOKÉMIAI MÉRÉS Laboratóriumi neutronforrásban aktivált-anyagok felezési idejének mérése
RADIOKÉMIAI MÉRÉS Laboratóriumi neutronforrásban aktivált-anyagok felezési idejének mérése A radioaktív bomlás valószínűségét kifejező bomlási állandó (λ) helyett gyakran a felezési időt alkalmazzuk (t1/2).
ODE SOLVER-ek használata a MATLAB-ban
ODE SOLVER-ek használata a MATLAB-ban Mi az az ODE? ordinary differential equation Milyen ODE megoldók vannak a MATLAB-ban? ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb, stb. A részletes leírásuk
ú ú ú ű ú Ó ú ű Ö Ö ű ű ű ú ú ű ű ű ű ú ű Ö ú ú ű Ó ű ű
Ú ű ű ú ú ú ú ű ú Ó ú ű Ö Ö ű ű ű ú ú ű ű ű ű ú ű Ö ú ú ű Ó ű ű Ö Ó ú Ü Ü Ó Ő ű ú ú Ö Ö ú ű ú ú ú ű ű ű Ú ú ű ú ű Ö Ő ú ú ú Ü ú ű ű ű ű ű ű Ü ú ű Ú ú ű ú ű ú ú ű ú ú ű ű ú Ö ú ű Ó ú ú ú Ü ű ú ú ú ű Ü ű
ű ű ű Ú ű ű Ó ű Ó Ö
Ö Ú ű ű Ü ű ű Ú ű ű ű Ú ű ű Ó ű Ó Ö ű Ú Ü ű Ú ű ű ű Ú ű ű Ú Ú Ó Ü ű ű Ú Ú Ú Ú ű Ű ű Ó ű Ó Ó ű Ú Ó Ú Ü Ú Ó Ú Ú Ű ű Ö ű ű Ú Ö Ú ű Ö Ú Ö Ú ű ű Ó ű Ú ű ű ű Ö ű ű ű Ó ű ű Ú ű ű Ö ű Ú ű Ó ű Ü Ú Ó ű ű ű Ú Ú Ó
Ú ű Ö ű ű Ü Ú ű Ü ű ű ű ű ű Ö ű
Ü Ü ű ű ű Ü ű Ú ű Ú ű Ö ű ű Ü Ú ű Ü ű ű ű ű ű Ö ű ű ű ű ű ű ű Ö ű ű Ö ű ű Ú ű ű ű ű Ö Ú Ü ű ű ű ű Ö ű ű ű ű ű ű ű ű ű ű ű Ö ű ű ű ű ű ű Ö ű ű ű ű ű ű ű ű Ú ű Ü Ú Ú ű Ü ű ű Ö ű ű ű ű ű ű ű ű ű ű Ü ű ű Ű
ű ű Ó
ű ű ű Ó Ü Ü Ú Ö Ö ű Ó ű ű ű ű Ú Ú Ó ű Ó ű ű ű ű Ó ű Ú Ü Ü ű Ú ű ű Ó Ú Ö ű Ó Ü Ú Ó ű ű ű ű Ú Ó ű ű Ö Ú ű ű Ó ű Ó Ü Ö Ú Ö Ö ű ű Ü Ó Ó Ú Ó Ü Ó Ü Ő ű ű Ú ű ű ű ű ű Ó Ó ű ű ű ű Ú ű ű ű Ó Ú ű Ö ű Ó Ö Ú ű Ó Ú
Ó
Ó Ó Ú Ú Ü Ü Ü Ü Ű Ü ű Ü Ü Ö Ü Ü Ú Ü Ö Ő Ü Ú Ő Ö ű ű ű Ú Ú Ü Ü Ú Ú Ü ű Ü Ő ű Ö Ü Ü ű ű Ü Ü ű Ő ű Ú Ú Ö Ö Ő Ü ű Ü ű ű ű Ü ű Ő Ü Ú ű Ő Ó Ú Ö Ü Ú Ú ű Ü Ü Ü ű Ü ű ű ű Ú Ó ű Ü Ö Ú Ö Ö Ü Ú ű Ú ű Ü Ü Ü Ő ű Ú Ü
Ó Ó ü ú ú
ü Ü ű Ó Ó ü ú Ó Ó ü ú ú Ó Ó ü ú ú ü Ü ü Ó Ó ú ü ű ü Ó Ó ü ú Ü Ü ü ü Ű Ű ú Ó ü ú ú Ó Ó ú Ö Ó Ó ú Ó Ó ú ü ü ü ü ü Ü Ó Ó ü ü ü ü ü ü Ó Ó ü Ü ú ü Ó Ó Ó Ü ű Ü ü ű Ü Ő Ő ü Ő ú ú ú ü Ó Ó ú Ó Ó Ó ű Ő Ő Ő Ő Ü ú
f = n - F ELTE II. Fizikus 2005/2006 I. félév
ELTE II. Fizikus 2005/2006 I. félév KISÉRLETI FIZIKA Hıtan 2. (X. 25) Gibbs féle fázisszabály (0-dik fıtétel alkalmazása) Intenzív állapotothatározók száma közötti összefüggés: A szabad intenzív paraméterek
Energiatételek - Példák
9. Előadás Húzott rúd potenciális energiája: Hooke-modell: σ = Eε Geom. hetséges Geometriai egyenlet: + geom. peremfeltételek: u εx = ε = x u(0) = 0 ul () = 0 du dx Energiatételek Példák = k l 0 pudx l
A hőmérsékleti sugárzás
A hőmérsékleti sugárzás Alapfogalmak 1. A hőmérsékleti sugárzás Értelmezés (hőmérsékleti sugárzás): A testek hőmérsékletével kapcsolatos, a teljes elektromágneses spektrumra kiterjedő sugárzást hőmérsékleti
Fermi Dirac statisztika elemei
Fermi Dirac statisztika elemei A Fermi Dirac statisztika alapjai Nagy részecskeszámú rendszerek fizikai jellemzéséhez statisztikai leírást kell alkalmazni. (Pl. gázokra érvényes klasszikus statisztika
MUNKA- ÉS ENERGIATÉTELEK
MUNKA- ÉS ENERGIAÉELEK 1. előadás: Alapfogalmak; A virtuális elmozdulások tétele 2. előadás: Alapfogalmak; A virtuális erők tétele Elmozdulások számítása a virtuális erők tétele alapján 3. előadás: Az
É ú É ö ö ű ö ö ö ú ú ú ű ű ú ö ű ö ű ű ü ö ö ü ű ö ü ö ö ö ö ú ü ö ö ö ú ö ö ú ö ö ú ü ú ú ú ű ü ö ö ű ú ű ű ü ö ű ö ö ö ű ú ö ö ü ú ü ö ö ö ü ú ö ű
É É É Ó Á É ú É ö ö ű ö ö ö ú ú ú ű ű ú ö ű ö ű ű ü ö ö ü ű ö ü ö ö ö ö ú ü ö ö ö ú ö ö ú ö ö ú ü ú ú ú ű ü ö ö ű ú ű ű ü ö ű ö ö ö ű ú ö ö ü ú ü ö ö ö ü ú ö ű ü ű ö ö ú ö ú ö ö ö ö ö ü ú ü ö ö ö ö ö ü
É Ö Á Í Á Ó Ö ü
Ö ű Ö ő ü ő ő ő ű Ö Ö ü Á Á É Ö Á Í Á Ó Ö ü Ö ű ű Ö ű ű ú ű ű ú ú ő ő ü ű ű É Ö ú ű ő ű ű ú ő ü Ö ú ú ő ő ú ű ü ő ü ű ú ú ű Ü ő ő Ó ü É Ó Ö Ö ú ü ü ü ü Ű ú Ö Á ü É Ó ű Á Ö Á ű ü ú Ö ű ű ű ü ő ő ő Á ő ő
2, = 5221 K (7.2)
7. Gyakorlat 4A-7 Az emberi szem kb. 555 nm hullámhossznál a Iegnagyobb érzékenységű. Adjuk meg annak a fekete testnek a hőmérsékletét, amely sugárzásának a spektrális teljesitménye ezen a hullámhosszon
Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele
Rezgőmozgás A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele A rezgés fogalma Minden olyan változás, amely az időben valamilyen ismétlődést mutat rezgésnek nevezünk. A rezgések fajtái:
Gépészmérnöki alapszak, Mérnöki fizika ZH, október 10.. CHFMAX. Feladatok (maximum 3x6 pont=18 pont)
1. 2. 3. Mondat E1 E2 Gépészmérnöki alapszak, Mérnöki fizika ZH, 2017. október 10.. CHFMAX NÉV: Neptun kód: Aláírás: g=10 m/s 2 Előadó: Márkus / Varga Feladatok (maximum 3x6 pont=18 pont) 1) Az l hosszúságú