Atomok és molekulák elektronszerkezete

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Atomok és molekulák elektronszerkezete"

Átírás

1 Atomok és molekulák elektronszerkezete Szabad atomok és molekulák Schrödinger egyenlete Tekintsünk egy kvantummechanikai rendszert amely N n magból és N e elektronból áll. Koordinátáikat jelölje rendre R a, a = 1,..., N n és r i, i = 1,..., N e. Küls er k hiányában a rendszer nem-relativisztikus Hamilton operátora Ĥ = ˆT n + ˆT e + ˆV B, (1) ˆT e az elektron kinetikai energia: ˆT e = i=1 p 2 i 2m = 2 2m i=1 i (2) m az elektron tömeg, p i az i-edik elektron impulzus operátora. energia koordináta reprezentációs alakja. ˆT n a magok kinetia energia operátora Az utolsó kifejezést az elektron kinetikai ˆT n = a=1 p 2 a = 2 2m a 2 N a m a az a-adik mag tömege, p a az a-adik atommag impulzus operátora.. ˆV B a rendszer részecskéi közötti kölcsönhatás operátora e2 ˆV B = 4πε 0 i<j=1 1 r ij e2 4πε 0 a=1 i=1 a=1 Z a r ai + a m a, (3) e2 4πε 0 a<b=1 Z a Z b r ab (4)

2 Atomi egységek Az imént felírt Hamilton operátorban számos konstans szerepel. Az írásmód egyszer sítése miatt bevezetjük e az ú.n. atomi egységeket, amelyeket úgy deniálunk, hogy a Hamilton operátorban szerepl 2 4πε 0,, m konstansok mér száma 1 legyen. Ebben a mértékegység rendszerben a hosszúság egysége a bohr 1bohr = 2 me 2 = méter, (5) az energia egysége 1hartree = e2 a 2 = ev = J, (6) 0 ahol a 0 az ú.n. Bohr sugár (a 0 = m). A tömeg egysége az elektron tömege A Hamilton operátor atomi egységekben Ĥ = 1 2 i=1 1 atomi tömegegység = kg i 1 2 i=1 a m a + i<j=1 1 r ij a=1 i=1 Z a r ai + a<b=1 Z a Z b r ab (7)

3 Az atommagok és elektronok mozgásának szétválasztása Tudjuk, hogy a kvantummechanikai sokrészecske probléma - a klasszikus mechanikaihoz hasonlóan- néhány egyszer esett l eltekintve nem megoldható. Az atomi és molekuláris rendszerek kvantummechanikai leírása ezért közelít módszerek alkalmazását jelenti. Bonyolultabb rendszerek esetén azonban a közelít módszerek alkalmazása is komoly nehézségekbe ütközik. Az els széleskör en alkalmazott közelítés az atommagok és elektronok mozgásának szétválasztása. Ez a szétválasztás azon alapul, hogy a magok jóval lassabban mozognak a rájuk ható elektromágneses tér hatására mint az elektronok. Ennek az az oka, hogy a magok tömege három nagyságrenddel nagyobb mint az elektronoké (a proton tömege 1836-szorosa az elektron tömegének). A nagy tömegkülönbség azzal a következménnyel jár, hogy az elektronok nagyon gyorsan követik a magkonguráció változását. Az alábbiakban matematikai formába öntjük az iménti állításunkat. Bontsuk a teljes Hamilton operátort két részre Ĥ = Ĥe + ˆT n, ahol Ĥ e = ˆT e + ˆV B az ú.n. elektron Hamilton operátor. Célunk a teljes Hamilton operátor sajátérték problémájának ĤΦ (R, r) = EΦ (R, r) (8) közelít megoldása. R az összes mag, r az összes elektron koordinátáit jelöli. Oldjuk meg az elektron Hamilton operátor sajátérték problémáját egy tetsz leges, de rögzített magkongurációra Ĥ e Ψ λ (R, r) = E λ Ψ λ (R, r). Az így kapott állapotfüggvényben a magkoordináták paraméterként szerepelnek. A kapott állapotok bázist alkotnak a rögzített magok terében mozgó elektronok állapotterén, így a Φ (R, r) állapot a tetsz leges rögzített R magkonguráció esetében kifejthet ezen a bázison: Φ (R, r) = λ χ λ (R) Ψ λ (R, r). (9)

4 Feltéve, hogy ezt a sorfejtést minden R magkongurációra elvégezzük megkapjuk a magok mozgását leíró χ λ (R) függvényeket és így a teljes hullámfüggvényt is. A χ λ (R) meghatározásához helyettesítsük be a teljes hullámfüggvény iménti kifejtését (9) a teljes Hamilton operátor sajátérték egyenletébe (8) E λ χ λ (R) Ψ λ (R, r) = {Ĥe + ˆT } n χ λ (R) Ψ λ (R, r) = λ { ˆTn χ λ (R) Ψ λ (R, r) + χ λ (R) E λ Ψ λ (R, r)} = λ A mag kinetikai energia operátora, amint azt már láttuk ˆT n = a 2 a 2m a számoljuk ki a 2 a hatását a χ λ (R) Ψ λ (R, r) szorzatra 2 a (χψ) = a a (χψ) = a {( a χ) Ψ + χ ( a Ψ)} = ( a χ) Ψ + 2 ( a χ) ( a Ψ) + χ ( a Ψ) Az iménti számolást folytatva E χ λ (R) Ψ λ (R, r) = [ ] 1 (Ψ λ a χ λ + 2 ( a χ λ ) ( a Ψ λ ) + χ λ ( a Ψ λ )) + 2m λ λ a a E λ χ λ (R) Ψ λ (R, r) λ Szorozzuk meg az egyenlet mindkét oldalát Ψ κ (R, r)-rel és integráljunk az elektron koordinátákra

5 Az imént kapott magállapotok tartalmazzák a molekula tömegközéppontjának haladó mozgását valamit a molekula forgó mozgását is. A Born-Oppenheimer közelítés úgy is levezethet, hogy el bb a molekula haladó és forgó mozgását leválasztjuk megfelel a molekulához rögzített koordináta rendszerre való áttéréssel. Eχ κ = a 1 2m a a χ κ + E κ χ κ + λ 1 {2 Ψ κ a Ψ λ a + Ψ κ a Ψ λ } χ λ. 2m a a }{{} B κλ A kapcsos zárójellel jelölt tagokra bevezetjük a B κλ elnevezést, amivel az Eχ κ = ˆT n χ κ + E κ χ κ + λ B κλ χ λ κ = 1, 2,... egyenletrendszert kapjuk a magok állapotfüggvényére. Válasszuk külön a κ = λ tagot a szummából ( ) Eχ κ = ˆTn + E κ + B κκ χ κ + B κλ χ λ. A jobb oldal utolsó tagja összecsatolja a különböz magfüggvényekre vonatkozó egyenleteket. Ha ezt elhanyagoljuk akkor az egyenletrendszer nem lesz csatolt többé. Ez az ú.n. adiabatikus közelítés. A Born- Oppenheimer közelítésben a nem diagonalis elemek mellett a B diagonális elemeit is elhanyagoljuk. Ebben a közelítésben a mag állapotokra az ( ) Eχ κ (R) = ˆTn + E κ (R) χ κ (R) egyenletet kapjuk, amiben a magkoordináta függ elektron energia játsza a potenciális energia szerepét. A közelítés nem alkalmazható abban az esetben, ha a különböz elektronállapotok energia felületei ( E κ (R)) közel kerülnek vagy metszik egymást. A Born-Oppenheimer közelítést széleskör en alkalmazzák a molekula rezgések, kémiai reakciók és az elektromágneses sugárzás által kiváltott molekula átalakulások kvantummechanikai tárgyalásában. Megjegyzés λ,λ κ

6 Potenciális energia felület (PES) Potenciális energia felület- E(R 1,,R N ) C 5 H 12 E[kcal/mól] º 240º θ 2 (C 2 -C 3 -C 4 -C 5 ) 180º 120º 60º 60º 120º 180º 240º 300º 360º θ 1 (C 1 -C 2 -C 3 -C 4 )

7 Potenciális energia felület (PES) A potenciális energiát az atomok helye határozza meg E(R 1,,R N ) hiperfelület Stacionárius pontok Nyeregpont i, j : E R i = 0 2 E < 0 R i R j 2 E R R i j < 0 i, j :max = > 0 i, j :min Hessian R R

8 Átmeneti állapot, reakció út A B C A B C

9 Local maximum Global maximum

Fizikai mennyiségek, állapotok

Fizikai mennyiségek, állapotok Fizikai mennyiségek, állapotok Atomok és molekulák zikai mennyiségeihez rendelt operátorok A kvantummechanika mint matematikai modell alapvet épít elemei a rendszer leírására szolgáló zikai mennyiségekhez

Részletesebben

A kémiai kötés eredete; viriál tétel 1

A kémiai kötés eredete; viriál tétel 1 A kémiai kötés ereete; viriál tétel 1 Probléma felvetés Ha egy molekula atommagjai közötti távolság csökken, akkor a közöttük fellép elektrosztatikus taszításhoz tartozó energia n. Ugyanez igaz az elektronokra

Részletesebben

A spin. November 28, 2006

A spin. November 28, 2006 A spin November 28, 2006 1 A spin a kvantummechanikában Az elektronnak és sok más kvantummechanikai részecskének is van egy saját impulzusnyomatéka amely független a mozgásállapottól. (Úgy is mondhatjuk,

Részletesebben

January 16, ψ( r, t) ψ( r, t) = 1 (1) ( ψ ( r,

January 16, ψ( r, t) ψ( r, t) = 1 (1) ( ψ ( r, Közelítő módszerek January 16, 27 1 A variációs módszer A variációs módszer szintén egy analitikus közelítő módszer. Olyan esetekben alkalmazzuk mikor ismert az analitikus alak amelyben keressük a sajátfüggvényt,

Részletesebben

Kvantummechanika gyakorlat Beadandó feladatsor Határid : 4. heti gyakorlatok eleje

Kvantummechanika gyakorlat Beadandó feladatsor Határid : 4. heti gyakorlatok eleje Kvantummechanika gyakorlat 015 1. Beadandó feladatsor Határid : 4. heti gyakorlatok eleje 1. Mutassuk meg, hogy A és B tetsz leges operátorokra igaz, hogy e B A e B = A + [B, A] + 1![ B, [B, A] ] +....

Részletesebben

A H + 2. molekulaion1. molekulaion, ami két azonos atommagból (protonok) és egyetlen elektronból. A legegyszer bb molekula a H + 2 áll.

A H + 2. molekulaion1. molekulaion, ami két azonos atommagból (protonok) és egyetlen elektronból. A legegyszer bb molekula a H + 2 áll. W. Demtröder, Atoms Molecules and Photons és Cohen-Tannoudji C., Diu B., Laloe F. Quantum mechanics cím könyve alapján A H + molekulaion A legegyszer bb molekula a H + áll. molekulaion, ami két azonos

Részletesebben

Bevezet fejezetek a molekulák. elektronszerkezetének elméleti leírásába. Jegyzet. Bogár Ferenc

Bevezet fejezetek a molekulák. elektronszerkezetének elméleti leírásába. Jegyzet. Bogár Ferenc Bevezet fejezetek a molekulák elektronszerkezetének elméleti leírásába Jegyzet Bogár Ferenc E-mail: bogar@sol.cc.u-szeged.hu Honlap: http://ovrisc.mdche.szote.u-szeged.hu/~bogar Cím: MTA-SZTE Supramolekuláris

Részletesebben

A s r ségfunkcionál elmélet (Density Functional Theory)

A s r ségfunkcionál elmélet (Density Functional Theory) A s r ségfunkcionál elmélet (Density Functional Theory) Tekintsünk egy szabad, N elektronos molekulát N m maggal. A Hamilton operátor rögzített magok esetében ^H = ^T + ^V + ^W ; ahol ^T a kinetikai energia,

Részletesebben

2015/16/1 Kvantummechanika B 2.ZH

2015/16/1 Kvantummechanika B 2.ZH 2015/16/1 Kvantummechanika B 2.ZH 2015. december 10. Információk 0. A ZH ideje minimum 90 perc, maximum 180 perc. 1. Az összesen elérhet pontszám 270 pont. 2. A jeles érdemjegy eléréséhez nem szükséges

Részletesebben

Kvantummechanikai alapok I.

Kvantummechanikai alapok I. Kvantummechanikai alapok I. Dr. Berta Miklós bertam@sze.hu 2017. szeptember 21. 1 / 41 Állapotfüggvény. Dinamikai egyenlet. Ψ(r, t) 2 / 41 Állapotfüggvény. Dinamikai egyenlet. Ψ(r, t) Ψ(r, t)-csak a hely

Részletesebben

Bevezet fejezetek a molekulák. elektronszerkezetének elméleti leírásába. Jegyzet. Bogár Ferenc

Bevezet fejezetek a molekulák. elektronszerkezetének elméleti leírásába. Jegyzet. Bogár Ferenc Bevezet fejezetek a molekulák elektronszerkezetének elméleti leírásába Jegyzet Bogár Ferenc -mail: bogar@sol.cc.u-szeged.hu Honlap: http://ovrisc.mdche.szote.u-szeged.hu/~bogar Cím: MTA-SZT Supramolekuláris

Részletesebben

Kémiai reakciók mechanizmusa számítógépes szimulációval

Kémiai reakciók mechanizmusa számítógépes szimulációval Kémiai reakciók mechanizmusa számítógépes szimulációval Stirling András stirling@chemres.hu Elméleti Kémiai Osztály Budapest Stirling A. (MTA Kémiai Kutatóközpont) Reakciómechanizmus szimulációból 2007.

Részletesebben

Idegen atomok hatása a grafén vezet képességére

Idegen atomok hatása a grafén vezet képességére hatása a grafén vezet képességére Eötvös Loránd Tudományegyetem, Komplex Rendszerek Fizikája Tanszék Mahe Tisk'11 Vázlat 1 Kisérleti eredmények Kémiai szennyez k hatása a Fermi-energiára A vezet képesség

Részletesebben

Adalékok molekulák rezgési-forgási színképének számításához

Adalékok molekulák rezgési-forgási színképének számításához Fábri Csaba Adalékok molekulák rezgési-forgási színképének számításához Témavezető Dr. Császár Attila egyetemi tanár Eötvös Loránd Tudományegyetem Kémiai Intézet Molekulaspektroszkópiai Laboratórium 009.05.04.

Részletesebben

Kvantummechanika. - dióhéjban - Kasza Gábor július 5. - Berze TÖK

Kvantummechanika. - dióhéjban - Kasza Gábor július 5. - Berze TÖK Kvantummechanika - dióhéjban - Kasza Gábor 2016. július 5. - Berze TÖK 1 / 27 Mire fogunk választ kapni az előadásból? Miért KVANTUMmechanika? Miért részecske? Miért hullám? Mit mond a Schrödinger-egyenlet?

Részletesebben

Sajátértékek és sajátvektorok. mf1n1a06- mf1n2a06 Csabai István

Sajátértékek és sajátvektorok. mf1n1a06- mf1n2a06 Csabai István Sajátértékek és sajátvektorok A fizika numerikus módszerei I. mf1n1a06- mf1n2a06 Csabai István Lineáris transzformáció Vektorok lineáris transzformációja: általános esetben az x vektor iránya és nagysága

Részletesebben

AZ ELEKTRON MÁGNESES MOMENTUMA. H mágneses erœtérben az m mágneses dipólmomentummal jellemzett testre M = m H forgatónyomaték hat.

AZ ELEKTRON MÁGNESES MOMENTUMA. H mágneses erœtérben az m mágneses dipólmomentummal jellemzett testre M = m H forgatónyomaték hat. AZ ELEKTRON MÁGNESES MOMENTUMA Mágneses dipólmomentum: m H mágneses erœtérben az m mágneses dipólmomentummal jellemzett testre M = m H forgatónyomaték hat. M = m H sinϕ (Elektromos töltés, q: monopólus

Részletesebben

Degenerált állapotok és nemadiabatikus folyamatok molekuláris rendszerekben

Degenerált állapotok és nemadiabatikus folyamatok molekuláris rendszerekben MTA doktori értekezés Degenerált állapotok és nemadiabatikus folyamatok molekuláris rendszerekben Halász Gábor Debreceni Egyetem, Informatikai Kar Debrecen, 2012 Tartalomjegyzék 1. Bevezetés 3 2. A Born

Részletesebben

Kvantumos jelenségek lézertérben

Kvantumos jelenségek lézertérben Kvantumos jelenségek lézertérben Atomfizika Benedict Mihály SZTE Elméleti Fizikai Tanszék Az előadást támogatta a TÁMOP-4.2.1/B-09/1/KONV-2010-0005 sz. Kutatóegyetemi Kiválósági Központ létrehozása a Szegedi

Részletesebben

Kvantum kontrol frekvencia csörpölt lézer indukált kónikus keresztez désekkel

Kvantum kontrol frekvencia csörpölt lézer indukált kónikus keresztez désekkel Kvantum kontrol frekvencia csörpölt lézer indukált kónikus keresztez désekkel Vibók Ágnes ELI-ALPS, ELI-HU Non-Prot Ltd. University of Debrecen Department of Theoretical Physics, Áttekintés 1 Kónikus keresztez

Részletesebben

A testek részecskéinek szerkezete

A testek részecskéinek szerkezete A testek részecskéinek szerkezete Minden test részecskékből, atomokból vagy több atomból álló molekulákból épül fel. Az atomok is összetettek: elektronok, protonok és neutronok találhatók bennük. Az elektronok

Részletesebben

Tárgymutató. dinamika, 5 dinamikai rendszer, 4 végtelen sok állapotú, dinamikai törvény, 5 dinamikai törvények, 12 divergencia,

Tárgymutató. dinamika, 5 dinamikai rendszer, 4 végtelen sok állapotú, dinamikai törvény, 5 dinamikai törvények, 12 divergencia, Tárgymutató állapottér, 3 10, 107 általánosított impulzusok, 143 147 általánosított koordináták, 143 147 áramlás, 194 197 Arisztotelész mozgástörvényei, 71 77 bázisvektorok, 30 centrifugális erő, 142 ciklikus

Részletesebben

ω mennyiségek nem túl gyorsan változnak

ω mennyiségek nem túl gyorsan változnak Licenszvizsga példakérdések Fizika szak KVANTUMMECHANIKA Egy részecskére felírt Schrödinger egyenlet szétválasztható a három koordinátatengely irányában levő egydimenziós egyenletre ha a potenciális energiára

Részletesebben

Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek

Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek Lineáris algebra 2 Filip Ferdinánd filipferdinand@bgkuni-obudahu sivabankihu/jegyzetek 2015 december 7 Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 1 / 37 Az el adás vázlata Determináns Determináns

Részletesebben

az Aharonov-Bohm effektus a vektorpotenciál problémája E = - 1/c A/ t - φ és B = x A csak egy mértéktranszformáció erejéig meghatározott nincs fizikai

az Aharonov-Bohm effektus a vektorpotenciál problémája E = - 1/c A/ t - φ és B = x A csak egy mértéktranszformáció erejéig meghatározott nincs fizikai az Aharonov-Bohm effektus a vektorpotenciál problémája E = - 1/c A/ t - φ és B = x A csak egy mértéktranszformáció erejéig meghatározott nincs fizikai jelentése? a kvantummechanikában ih m» a hullámfüggvény

Részletesebben

Szilárdtestek el e ek e tr t o r n o s n zer e k r ez e et e e t

Szilárdtestek el e ek e tr t o r n o s n zer e k r ez e et e e t Szilárdtestek elektronszerkezete Kvantummechanikai leírás Ismétlés: Schrödinger egyenlet, hullámfüggvény, hidrogén-atom, spin, Pauli-elv, periódusos rendszer 2 Szilárdtestek egyelektron-modellje a magok

Részletesebben

Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet

Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet Utolsó módosítás: 2016. május 4. 1 Előzmények Az atomok színképe (1) A fehér fény komponensekre bontható: http://en.wikipedia.org/wiki/spectrum

Részletesebben

összeadjuk 0-t kapunk. Képletben:

összeadjuk 0-t kapunk. Képletben: 814 A ferde kifejtés tétele Ha egy determináns valamely sorának elemeit egy másik sor elemeihez tartozó adjungáltakkal szorozzuk meg és a szorzatokat összeadjuk 0-t kapunk Képletben: n a ij A kj = 0, ha

Részletesebben

Komplex számok. Komplex számok és alakjaik, számolás komplex számokkal.

Komplex számok. Komplex számok és alakjaik, számolás komplex számokkal. Komplex számok Komplex számok és alakjaik, számolás komplex számokkal. 1. Komplex számok A komplex számokra a valós számok kiterjesztéseként van szükség. Ugyanis már középiskolában el kerülnek olyan másodfokú

Részletesebben

0,424 0,576. f) P (X 2 = 3) g) P (X 3 = 1) h) P (X 4 = 1 vagy 2 X 2 = 2) i) P (X 7 = 3, X 4 = 1, X 2 = 2 X 0 = 2) j) P (X 7 = 3, X 4 = 1, X 2 = 2)

0,424 0,576. f) P (X 2 = 3) g) P (X 3 = 1) h) P (X 4 = 1 vagy 2 X 2 = 2) i) P (X 7 = 3, X 4 = 1, X 2 = 2 X 0 = 2) j) P (X 7 = 3, X 4 = 1, X 2 = 2) Legyen adott a P átmenetvalószín ség mátrix és a ϕ 0 kezdeti eloszlás Kérdés, hogy miként lehetne meghatározni az egyes állapotokban való tartózkodás valószín ségét az n-edik lépés múlva Deniáljuk az n-lépéses

Részletesebben

Fizika M1, BME, gépészmérnök szak, szi félév (v6)

Fizika M1, BME, gépészmérnök szak, szi félév (v6) Fizika M, BME, gépészmérnök szak, 7. szi félév (v6 Pályi András Department of Physics, Budapest University of Technology and Economics, Hungary (Dated: 7. október. Ebben a fájlban az el adás menetrendjét

Részletesebben

kv2n1p18 Kvantumkémia

kv2n1p18 Kvantumkémia Kiegészítő fejezetek a fizikai kémiához kv2n1p18 Kvantumkémia Szalay Péter Kémiai Intézet Eötvös Loránd Tudományegyetem szalay@chem.elte.hu Ajánlott irodalom Fizikai Kémia (4): Elméleti Kémia (emelt szint)

Részletesebben

SÍKBELI KERINGŐMOZGÁS SÍKBELI KERINGŐMOZGÁS

SÍKBELI KERINGŐMOZGÁS SÍKBELI KERINGŐMOZGÁS SÍKBELI KERINGŐMOZGÁS Időtő függeten Schrödinger-egyenet két dimenziós körmozgásra: h V E 8π m x y R V x ha x y R ha x y R Poárkoordináták: SÍKBELI KERINGŐMOZGÁS x y rcos r sin r x x r x r y y r y r x

Részletesebben

Bevezetés a modern fizika fejezeteibe. 4. (b) Kvantummechanika. Utolsó módosítás: 2013. november 9. Dr. Márkus Ferenc BME Fizika Tanszék

Bevezetés a modern fizika fejezeteibe. 4. (b) Kvantummechanika. Utolsó módosítás: 2013. november 9. Dr. Márkus Ferenc BME Fizika Tanszék Bevezetés a modern fizika fejezeteibe 4. (b) Kvantummechanika Utolsó módosítás: 2013. november 9. 1 A legkisebb hatás elve (1) A legkisebb hatás elve (Hamilton-elv): S: a hatás L: Lagrange-függvény 2 A

Részletesebben

Az egydimenziós harmonikus oszcillátor

Az egydimenziós harmonikus oszcillátor Az egydimenziós harmonikus oszcillátor tárgyalása az általános formalizmus keretében November 7, 006 Példaképpen itt megmutatjuk, hogyan lehet a kvantumos egydimenziós harmonikus oszcillátort tárgyalni

Részletesebben

Atomfizika. A hidrogén lámpa színképei. Elektronok H atom. Fényképlemez. emisszió H 2. gáz

Atomfizika. A hidrogén lámpa színképei. Elektronok H atom. Fényképlemez. emisszió H 2. gáz Atomfizika A hidrogén lámpa színképei - Elektronok H atom emisszió Fényképlemez V + H 2 gáz Az atom és kvantumfizika fejlődésének fontos szakasza volt a hidrogén lámpa színképeinek leírása, és a vonalas

Részletesebben

13. Molekulamodellezés

13. Molekulamodellezés 13. Molekulamodellezés Koltai János és Zólyomi Viktor 2013. április Tartalomjegyzék 1. Bevezetés 2 2. Sokelektronos rendszerek leírása 2 2.1. A Schrödinger-egyenlet sokelektronos rendszerekre.............

Részletesebben

Bell-kísérlet. Máté Mihály, Fizikus MSc I. ELTE. Eötvös Loránd Tudományegyetem. Modern zikai kísérletek szemináriuma, 2016.

Bell-kísérlet. Máté Mihály, Fizikus MSc I. ELTE. Eötvös Loránd Tudományegyetem. Modern zikai kísérletek szemináriuma, 2016. Bell-kísérlet Máté Mihály, Fizikus MSc I. ELTE Eötvös Loránd Tudományegyetem Modern zikai kísérletek szemináriuma, 2016. Máté Mihály (ELTE) Bell-kísérlet 1 / 15 Tartalom 1 Elmélet Összefonódás EPR Bell

Részletesebben

1 A kvantummechanika posztulátumai

1 A kvantummechanika posztulátumai A kvantummechanika posztulátumai October 29, 2006 A kvantummechanika posztulátumai Célunk felépíteni a kvantummechanikát posztulátumok segítségével úgy ahogy az elemi hullámmechanika során eljártunk. Arra

Részletesebben

Fénypont a falon Feladat

Fénypont a falon Feladat Fénypont a falon 3. Dolgozat - sorozatunk. és. részében két speiális eset vizsgálatát részleteztük. Itt az általánosabb síkbeli esettel foglalkozunk, főbb vonalaiban. Ehhez tekintsük az. ábrát is! 3. Feladat.

Részletesebben

a Bohr-féle atommodell (1913) Niels Hendrik David Bohr ( )

a Bohr-féle atommodell (1913) Niels Hendrik David Bohr ( ) a Bohr-féle atommodell (1913) Niels Hendrik David Bohr (1885-1962) atomok gerjesztése és ionizációja elektronnal való bombázással (1913-1914) James Franck (1882-1964) Gustav Ludwig Hertz (1887-1975) Nobel-díj

Részletesebben

Vektorterek. =a gyakorlatokon megoldásra ajánlott

Vektorterek. =a gyakorlatokon megoldásra ajánlott Vektorterek =a gyakorlatokon megoldásra ajánlott 40. Alteret alkotnak-e a valós R 5 vektortérben a megadott részhalmazok? Ha igen, akkor hány dimenziósak? (a) L = { (x 1, x 2, x 3, x 4, x 5 ) x 1 = x 5,

Részletesebben

Modern fizika laboratórium

Modern fizika laboratórium Modern fizika laboratórium 11. Az I 2 molekula disszociációs energiája Készítette: Hagymási Imre A mérés dátuma: 2007. október 3. A beadás dátuma: 2007. október xx. 1. Bevezetés Ebben a mérésben egy kétatomos

Részletesebben

Bevezetés a modern fizika fejezeteibe. 4. (e) Kvantummechanika. Utolsó módosítás: december 3. Dr. Márkus Ferenc BME Fizika Tanszék

Bevezetés a modern fizika fejezeteibe. 4. (e) Kvantummechanika. Utolsó módosítás: december 3. Dr. Márkus Ferenc BME Fizika Tanszék Bevezetés a modern fizika fejezeteibe 4. (e) Kvantummechanika Utolsó módosítás: 2014. december 3. 1 A Klein-Gordon-egyenlet (1) A relativisztikus dinamikából a tömegnövekedésre és impulzusra vonatkozó

Részletesebben

Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját!

Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját! Taylor-polinomok 205. április.. Alapfeladatok. Feladat: Írjuk fel az fx) = e 2x függvény másodfokú Maclaurinpolinomját! Megoldás: A feladatot kétféle úton is megoldjuk. Az els megoldásban induljunk el

Részletesebben

Molekuláris dinamika I. 10. előadás

Molekuláris dinamika I. 10. előadás Molekuláris dinamika I. 10. előadás Miről is szól a MD? nagy részecskeszámú rendszerek ismerjük a törvényeket mikroszkópikus szinten minden részecske mozgását szimuláljuk? Hogyan tudjuk megérteni a folyadékok,

Részletesebben

Bevezetés a játékelméletbe Kétszemélyes zérusösszegű mátrixjáték, optimális stratégia

Bevezetés a játékelméletbe Kétszemélyes zérusösszegű mátrixjáték, optimális stratégia Bevezetés a játékelméletbe Kétszemélyes zérusösszegű mátrixjáték, optimális stratégia Készítette: Dr. Ábrahám István A játékelmélet a 2. század közepén alakult ki. (Neumann J., O. Morgenstern). Gyakran

Részletesebben

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb

Részletesebben

Lássuk be, hogy nem lehet a három pontot úgy elhelyezni, hogy egy inerciarendszerben

Lássuk be, hogy nem lehet a három pontot úgy elhelyezni, hogy egy inerciarendszerben Feladat: A háromtest probléma speciális megoldásai Arra vagyunk kiváncsiak, hogy a bolygó mozgásnak milyen egyszerű egyensúlyi megoldásai vannak három bolygó esetén. Az így felmerülő három-test probléma

Részletesebben

Lin.Alg.Zh.1 feladatok

Lin.Alg.Zh.1 feladatok Lin.Alg.Zh. feladatok 0.. d vektorok Adott három vektor ā (0 b ( c (0 az R Euklideszi vektortérben egy ortonormált bázisban.. Mennyi az ā b skalárszorzat? ā b 0 + + 8. Mennyi az n ā b vektoriális szorzat?

Részletesebben

Infobionika ROBOTIKA. X. Előadás. Robot manipulátorok II. Direkt és inverz kinematika. Készült a HEFOP P /1.0 projekt keretében

Infobionika ROBOTIKA. X. Előadás. Robot manipulátorok II. Direkt és inverz kinematika. Készült a HEFOP P /1.0 projekt keretében Infobionika ROBOTIKA X. Előadás Robot manipulátorok II. Direkt és inverz kinematika Készült a HEFOP-3.3.1-P.-2004-06-0018/1.0 projekt keretében Tartalom Direkt kinematikai probléma Denavit-Hartenberg konvenció

Részletesebben

Kémiai anyagszerkezettan

Kémiai anyagszerkezettan Kémiai anyagszerkezettan Előadó: Kubinyi Miklós tel: 21-37 kubinyi@mail.bme.hu Grofcsik András tel: 14-84 agrofcsik@mail.bme.hu Tananyag az intraneten (tavalyi): http://oktatas.ch.bme.hu/oktatas/ konyvek/fizkem/kasz/

Részletesebben

MBNK12: Permutációk (el adásvázlat, április 11.) Maróti Miklós

MBNK12: Permutációk (el adásvázlat, április 11.) Maróti Miklós MBNK12: Permutációk el adásvázlat 2016 április 11 Maróti Miklós 1 Deníció Az A halmaz permutációin a π : A A bijektív leképezéseket értjünk Tetsz leges n pozitív egészre az {1 n} halmaz összes permutációinak

Részletesebben

Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008.

Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008. Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008. Kiss István,Vértes Attila: Magkémia (Akadémiai Kiadó) Nagy Lajos György,

Részletesebben

Magfizika tesztek. 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem

Magfizika tesztek. 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem 2. Mit nevezünk az atom tömegszámának? a) a protonok számát b) a neutronok számát c) a protonok és neutronok

Részletesebben

Császár Attila. Molekularezgések. kvantummechanikája

Császár Attila. Molekularezgések. kvantummechanikája 1 Császár Attila Molekularezgések kvantummechanikája Jegyzet(kezdemény) Budapest, 2011 2 A félév során feldolgozandó témák: 1. A tömegközéppont mozgásának leválasztása 2. Az időfüggetlen rovibronikus Schrödinger-egyenlet

Részletesebben

Fizikaverseny, Döntő, Elméleti forduló 2013. február 8.

Fizikaverseny, Döntő, Elméleti forduló 2013. február 8. Fizikaverseny, Döntő, Elméleti forduló 2013. február 8. 1. feladat: Az elszökő hélium Több helyen hallhattuk, olvashattuk az alábbit: A hélium kis móltömege miatt elszökik a Föld gravitációs teréből. Ennek

Részletesebben

Parciális dierenciálegyenletek

Parciális dierenciálegyenletek Parciális dierenciálegyenletek 2009. május 25. A félév lezárásaként néhány alap-deníciót és alap-példát szeretnék adni a Parciális Dierenciálegynletek (PDE) témaköréb l. Épp csak egy kis izelít t. Az alapfeladatok

Részletesebben

Kifejtendő kérdések június 13. Gyakorló feladatok

Kifejtendő kérdések június 13. Gyakorló feladatok Kifejtendő kérdések 2016. június 13. Gyakorló feladatok 1. Adott egy egyenletes térfogati töltéssel rendelkező, R sugarú gömb, melynek felületén a potenciál U 0. Az elektromos potenciál definíciója (1p)

Részletesebben

dinamikai tulajdonságai

dinamikai tulajdonságai Szilárdtest rácsok statikus és dinamikai tulajdonságai Szilárdtestek osztályozása kötéstípusok szerint Kötések eredete: elektronszerkezet k t ionok (atomtörzsek) tö Coulomb- elektronok kölcsönhatás lokalizáltak

Részletesebben

Az elektromágneses hullámok

Az elektromágneses hullámok 203. október Az elektromágneses hullámok PTE ÁOK Biofizikai Intézet Kutatók fizikusok, kémikusok, asztronómusok Sir Isaac Newton Sir William Herschel Johann Wilhelm Ritter Joseph von Fraunhofer Robert

Részletesebben

Fizikai kémia (4): Elméleti kémia (kv1c1lm1/1) Elméleti Kémia I. (kv1c1lm1/1, kv31n1lm1/1) Vázlat

Fizikai kémia (4): Elméleti kémia (kv1c1lm1/1) Elméleti Kémia I. (kv1c1lm1/1, kv31n1lm1/1) Vázlat Fizikai kémia (4): Elméleti kémia (kv1c1lm1/1) Elméleti Kémia I. (kv1c1lm1/1, kv31n1lm1/1) Vázlat Szalay Péter Eötvös Loránd Tudományegyetem, Kémiai Intézet 2013. május 17. 1 Elméleti Kémia (kv1c1lm1/1)

Részletesebben

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN ELTE TáTK Közgazdaságtudományi Tanszék Gazdaságmatematika középhaladó szinten LINEÁRIS PROGRAMOZÁS Készítette: Gábor Szakmai felel s: Gábor Vázlat 1 2 3 4 A lineáris

Részletesebben

Végeselem analízis. 1. el adás

Végeselem analízis. 1. el adás Végeselem analízis 1. el adás Pere Balázs Széchenyi István Egyetem, Alkalmazott Mechanika Tanszék 2016. szeptember 7. Mi az a VégesElem Analízis (VEA)? Parciális dierenciálegyenletek (egyenletrendszerek)

Részletesebben

MOLEKULÁRIS TULAJDONSÁGOK

MOLEKULÁRIS TULAJDONSÁGOK 7 MOLKULÁIS TULAJDONSÁGOK Az elektronszerkezet számítások fókuszában többnyire az energiának és a hullámfüggvénynek egy adott geometriában történ kiszámítása áll Bár a gyakorlati kémiában a relatív energiák

Részletesebben

http://www.flickr.com Az atommag állapotait kvantummechanikai állapotfüggvénnyel írjuk le. A mag paritását ezen fv. paritása adja meg. Paritás: egy állapot tértükrözéssel szemben mutatott viselkedését

Részletesebben

Matematika 10 Másodfokú egyenletek. matematika és fizika szakos középiskolai tanár. > o < 2015. szeptember 27.

Matematika 10 Másodfokú egyenletek. matematika és fizika szakos középiskolai tanár. > o < 2015. szeptember 27. Matematika 10 Másodfokú egyenletek Juhász László matematika és fizika szakos középiskolai tanár > o < 2015. szeptember 27. copyright: c Juhász László Ennek a könyvnek a használatát szerzői jog védi. A

Részletesebben

Kirchhoff 2. törvénye (huroktörvény) szerint az áramkörben levő elektromotoros erők. E i = U j (3.1)

Kirchhoff 2. törvénye (huroktörvény) szerint az áramkörben levő elektromotoros erők. E i = U j (3.1) 3. Gyakorlat 29A-34 Egy C kapacitású kondenzátort R ellenálláson keresztül sütünk ki. Mennyi idő alatt csökken a kondenzátor töltése a kezdeti érték 1/e 2 ed részére? Kirchhoff 2. törvénye (huroktörvény)

Részletesebben

Fermi Dirac statisztika elemei

Fermi Dirac statisztika elemei Fermi Dirac statisztika elemei A Fermi Dirac statisztika alapjai Nagy részecskeszámú rendszerek fizikai jellemzéséhez statisztikai leírást kell alkalmazni. (Pl. gázokra érvényes klasszikus statisztika

Részletesebben

1.1. Vektorok és operátorok mátrix formában

1.1. Vektorok és operátorok mátrix formában 1. Reprezentáció elmélet 1.1. Vektorok és operátorok mátrix formában A vektorok és az operátorok mátrixok formájában is felírhatók. A végtelen dimenziós ket vektoroknak végtelen sok sort tartalmazó oszlopmátrix

Részletesebben

A térképen ábrázolt vonal: - sík felület egyenese? - sík felület görbéje? - görbült felület egyenese ( geodetikus )? - görbült felület görbéje?

A térképen ábrázolt vonal: - sík felület egyenese? - sík felület görbéje? - görbült felület egyenese ( geodetikus )? - görbült felület görbéje? Előzetes megjegyzés: 1. Az időt nyugodtan mérhetjük méterben. ct [s ] = t [m ] A film kétórás volt. = A film 2.16 milliárd kilométernyi ideig tartott. 2. A tömeget is nyugodtan mérhetjük méterben! GM [kg]

Részletesebben

A térképen ábrázolt vonal: - sík felület egyenese? - sík felület görbéje? - görbült felület egyenese ( geodetikus )? - görbült felület görbéje?

A térképen ábrázolt vonal: - sík felület egyenese? - sík felület görbéje? - görbült felület egyenese ( geodetikus )? - görbült felület görbéje? Előzetes megjegyzés: 1. Az időt nyugodtan mérhetjük méterben. ct [s ] = t [m ] A film kétórás volt. = A film 2.16 milliárd kilométernyi ideig tartott. 2. A tömeget is nyugodtan mérhetjük méterben! GM [kg]

Részletesebben

A kvantummechanika kísérleti előzményei A részecske hullám kettősségről

A kvantummechanika kísérleti előzményei A részecske hullám kettősségről A kvantummechanika kísérleti előzményei A részecske hullám kettősségről Utolsó módosítás: 2016. május 4. 1 Előzmények Franck-Hertz-kísérlet (1) A Franck-Hertz-kísérlet vázlatos elrendezése: http://hyperphysics.phy-astr.gsu.edu/hbase/frhz.html

Részletesebben

2. tétel - Gyorsítók és nyalábok (x target, ütköz nyalábok, e, p, nyalábok).

2. tétel - Gyorsítók és nyalábok (x target, ütköz nyalábok, e, p, nyalábok). 2. tétel - Gyorsítók és nyalábok (x target, ütköz nyalábok, e, p, nyalábok). Gyorsítók Cockcroft-Walton generátor (1928) Kondenzátorokból és diódákból épített gyorsító, amit sokáig használtak el gyorsítóként.

Részletesebben

Két 1/2-es spinből álló rendszer teljes spinje (spinek összeadása)

Két 1/2-es spinből álló rendszer teljes spinje (spinek összeadása) Két /-es spinből álló rendszer teljes spinje spinek összeadása Két darab / spinű részecskéből álló rendszert írunk le. Ezek lehetnek elektronok, vagy protonok, vagy akármilyen elemi vagy nem elemi részecskék.

Részletesebben

Permutációk véges halmazon (el adásvázlat, február 12.)

Permutációk véges halmazon (el adásvázlat, február 12.) Permutációk véges halmazon el adásvázlat 2008 február 12 Maróti Miklós Ennek az el adásnak a megértéséhez a következ fogalmakat kell tudni: ismétlés nélküli variáció leképezés indulási és érkezési halmaz

Részletesebben

A Relativisztikus kvantummechanika alapjai

A Relativisztikus kvantummechanika alapjai A Relativisztikus kvantummechanika alapjai January 25, 2005 A kvantummechanika Schrödinger egyenletének a felírása után azonnal kiderül, hogy ez az egyenlet nem relativisztikusan kovariáns. (Aránylag könnyen

Részletesebben

Molekuláris dinamika. 10. előadás

Molekuláris dinamika. 10. előadás Molekuláris dinamika 10. előadás Mirőlis szól a MD? nagy részecskeszámú rendszerek ismerjük a törvényeket mikroszkópikus szinten? Hogyan tudjuk megérteni a folyadékok, gázok, szilárdtestek makroszkópikus

Részletesebben

Fizikai kémia 2. Előzmények. A Lewis-féle kötéselmélet A VB- és az MO-elmélet, a H 2+ molekulaion

Fizikai kémia 2. Előzmények. A Lewis-féle kötéselmélet A VB- és az MO-elmélet, a H 2+ molekulaion 06.07.5. Fizikai kémia. 4. A VB- és az -elmélet, a H + molekulaion Dr. Berkesi ttó ZTE Fizikai Kémiai és Anyagtudományi Tanszéke 05 Előzmények Az atomok szerkezetének kvantummehanikai leírása 90-30-as

Részletesebben

Atommodellek. Az atom szerkezete. Atommodellek. Atommodellek. Atommodellek, A Rutherford-kísérlet. Atommodellek

Atommodellek. Az atom szerkezete. Atommodellek. Atommodellek. Atommodellek, A Rutherford-kísérlet. Atommodellek Démokritosz: a világot homogén szubsztanciájú oszthatatlan részecskék, atomok és a közöttük lévı őr alkotja. Az atom szerkezete Egy atommodellt akkor fogadunk el érvényesnek, ha megmagyarázza a tapasztalati

Részletesebben

2, = 5221 K (7.2)

2, = 5221 K (7.2) 7. Gyakorlat 4A-7 Az emberi szem kb. 555 nm hullámhossznál a Iegnagyobb érzékenységű. Adjuk meg annak a fekete testnek a hőmérsékletét, amely sugárzásának a spektrális teljesitménye ezen a hullámhosszon

Részletesebben

Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK február 13.

Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK február 13. Fizika Nyitray Gergely (PhD) PTE PMMIK 017. február 13. A lejtő mint kényszer A lejtő egy ún. egyszerű gép. A következő problémában először a lejtőt rögzítjük, és egy m tömegű test súrlódás nélkül lecsúszik

Részletesebben

Fizikai kémia (4): Elméleti kémia (kv1c1lm1/1) Elméleti Kémia I. (kv1c1lm1/1, kv31n1lm1/1) Vázlat

Fizikai kémia (4): Elméleti kémia (kv1c1lm1/1) Elméleti Kémia I. (kv1c1lm1/1, kv31n1lm1/1) Vázlat Fizikai kémia (4): Elméleti kémia (kv1c1lm1/1) Elméleti Kémia I. (kv1c1lm1/1, kv31n1lm1/1) Vázlat Szalay Péter Eötvös Loránd Tudományegyetem, Kémiai Intézet 2018. május 22. 1 Elméleti Kémia (kv1c1lm1/1)

Részletesebben

BIOMATEMATIKA ELŐADÁS

BIOMATEMATIKA ELŐADÁS BIOMATEMATIKA ELŐADÁS 6. Differenciálegyenletekről röviden Debreceni Egyetem, 2015 Dr. Bérczes Attila, Bertók Csanád A diasor tartalma 1 Bevezetés 2 Elsőrendű differenciálegyenletek Definíciók Kezdetiérték-probléma

Részletesebben

Összeállította: dr. Leitold Adrien egyetemi docens

Összeállította: dr. Leitold Adrien egyetemi docens Az R 3 tér geometriája Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok Vektor: irányított szakasz Jel.: a, a, a, AB, Jellemzői: irány, hosszúság, (abszolút érték) jel.: a Speciális

Részletesebben

Gépészmérnöki alapszak, Mérnöki fizika ZH, október 10.. CHFMAX. Feladatok (maximum 3x6 pont=18 pont)

Gépészmérnöki alapszak, Mérnöki fizika ZH, október 10.. CHFMAX. Feladatok (maximum 3x6 pont=18 pont) 1. 2. 3. Mondat E1 E2 Gépészmérnöki alapszak, Mérnöki fizika ZH, 2017. október 10.. CHFMAX NÉV: Neptun kód: Aláírás: g=10 m/s 2 Előadó: Márkus / Varga Feladatok (maximum 3x6 pont=18 pont) 1) Az l hosszúságú

Részletesebben

Az R forgató mátrix [ 1 ] - beli képleteinek levezetése: I. rész

Az R forgató mátrix [ 1 ] - beli képleteinek levezetése: I. rész Az R forgató mátri [ ] - beli képleteinek levezetése: I rész Az [ ] forrás kötetében a ( 49 ), ( 50 ) képletek nyilván mint közismertek nem lettek levezetve Minthogy az ottani további számítások miatt

Részletesebben

Alkalmazott spektroszkópia

Alkalmazott spektroszkópia Alkalmazott spektroszkópia 009 Bányai István MR és a fémionok: koordinációs kémiai alkalmazások Bányai István Debreceni Egyetem TEK Kolloid- és Környezetkémiai Tanszék A mágnesség A mágneses erő: F pp

Részletesebben

Lin.Alg.Zh.1 feladatok

Lin.Alg.Zh.1 feladatok LinAlgZh1 feladatok 01 3d vektorok Adott három vektor ā = (0 2 4) b = (1 1 4) c = (0 2 4) az R 3 Euklideszi vektortérben egy ortonormált bázisban 1 Mennyi az ā b skalárszorzat? 2 Mennyi az n = ā b vektoriális

Részletesebben

SCHRÖDINGER-EGYENLET SCHRÖDINGER-EGYENLET

SCHRÖDINGER-EGYENLET SCHRÖDINGER-EGYENLET SCHRÖDINGER-EGYENLET A Scrödinger-egyenlet a kvantummecanika mozgásegyenlet, Newton II. törvényével analóg. Nem vezetető le korábbi elvekből, de intuitívan bevezetető. Egy atározott energiával és impulzussal

Részletesebben

Bázistranszformáció és alkalmazásai 2.

Bázistranszformáció és alkalmazásai 2. Bázistranszformáció és alkalmazásai 2. Lineáris algebra gyakorlat Összeállította: Bogya Norbert Tartalomjegyzék 1 Mátrix rangja 2 Mátrix inverze 3 Mátrixegyenlet Mátrix rangja Tartalom 1 Mátrix rangja

Részletesebben

L'Hospital-szabály. 2015. március 15. ln(x 2) x 2. ln(x 2) = ln(3 2) = ln 1 = 0. A nevez határértéke: lim. (x 2 9) = 3 2 9 = 0.

L'Hospital-szabály. 2015. március 15. ln(x 2) x 2. ln(x 2) = ln(3 2) = ln 1 = 0. A nevez határértéke: lim. (x 2 9) = 3 2 9 = 0. L'Hospital-szabály 25. március 5.. Alapfeladatok ln 2. Feladat: Határozzuk meg a határértéket! 3 2 9 Megoldás: Amint a korábbi határértékes feladatokban, els ként most is a határérték típusát kell megvizsgálnunk.

Részletesebben

Magszerkezet modellek. Folyadékcsepp modell

Magszerkezet modellek. Folyadékcsepp modell Magszerkezet modellek Folyadékcsepp modell Az atommag összetevői (emlékeztető) atommag Z proton + (A-Z) neutron (nukleonok) szorosan kötve Állapot leírása: kvantummechanika + kölcsönhatások Nem relativisztikus

Részletesebben

A Maxwellegyenletek. Elektromágneses térjellemz k: E( r, t) és H( r, t) térer sségek, D( r, t) elektromos eltolás és B( r, t) mágneses indukció.

A Maxwellegyenletek. Elektromágneses térjellemz k: E( r, t) és H( r, t) térer sségek, D( r, t) elektromos eltolás és B( r, t) mágneses indukció. A Maxwellegyenletek Elektromágneses térjellemz k: E( r, t) és H( r, t) térer sségek, D( r, t) elektromos eltolás és B( r, t) mágneses indukció. Milyen általános, a konkrét szituációtól (pl. közeg anyagi

Részletesebben

Pontszerű test, pontrendszer és merev test egyensúlya és mozgása (Vázlat)

Pontszerű test, pontrendszer és merev test egyensúlya és mozgása (Vázlat) Pontszerű test, pontrendszer és merev test egyensúlya és mozgása (Vázlat) I. Pontszerű test 1. Pontszerű test modellje. Pontszerű test egyensúlya 3. Pontszerű test mozgása a) Egyenes vonalú egyenletes

Részletesebben

Optimalizálás alapfeladata Legmeredekebb lejtő Lagrange függvény Log-barrier módszer Büntetőfüggvény módszer 2017/

Optimalizálás alapfeladata Legmeredekebb lejtő Lagrange függvény Log-barrier módszer Büntetőfüggvény módszer 2017/ Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 9. Előadás Az optimalizálás alapfeladata Keressük f függvény maximumát ahol f : R n R és

Részletesebben

Vektorok, mátrixok, lineáris egyenletrendszerek

Vektorok, mátrixok, lineáris egyenletrendszerek a Matematika mérnököknek I. című tárgyhoz Vektorok, mátrixok, lineáris egyenletrendszerek Vektorok A rendezett valós számpárokat kétdimenziós valós vektoroknak nevezzük. Jelölésükre latin kisbetűket használunk.

Részletesebben

3. Előadás. Megyesi László: Lineáris algebra, oldal. 3. előadás Lineáris egyenletrendszerek

3. Előadás. Megyesi László: Lineáris algebra, oldal. 3. előadás Lineáris egyenletrendszerek 3. Előadás Megyesi László: Lineáris algebra, 47. 50. oldal. Gondolkodnivalók Determinánsok 1. Gondolkodnivaló Determinánselméleti tételek segítségével határozzuk meg a következő n n-es determinánst: 1

Részletesebben

Műszeres analitika II. (TKBE0532)

Műszeres analitika II. (TKBE0532) Műszeres analitika II. (TKBE0532) 4. előadás Spektroszkópia alapjai Dr. Andrási Melinda Debreceni Egyetem Természettudományi és Technológiai Kar Szervetlen és Analitikai Kémiai Tanszék A fény elektromágneses

Részletesebben

Analitikus térgeometria

Analitikus térgeometria Analitikus térgeometria Wettl Ferenc el adása alapján 2015.09.21. Wettl Ferenc el adása alapján Analitikus térgeometria 2015.09.21. 1 / 23 Tartalom 1 Egyenes és sík egyenlete Egyenes Sík 2 Alakzatok közös

Részletesebben