Fénypont a falon Feladat
|
|
- Fruzsina Nemesné
- 6 évvel ezelőtt
- Látták:
Átírás
1 Fénypont a falon 3. Dolgozat - sorozatunk. és. részében két speiális eset vizsgálatát részleteztük. Itt az általánosabb síkbeli esettel foglalkozunk, főbb vonalaiban. Ehhez tekintsük az. ábrát is! 3. Feladat. ábra Ezen azt látjuk, hogy az O pont körül r sugarú körpályán konst. szögsebességgel keringő F fényforrást a lézereruzát az OF karhoz szög alatt rögzítettük, mely - nek fénysugara az képsíkot a falat a pontban döfi. eressük a fénypont helyzetét és sebességét leíró függvényeket. Először felírjuk a pont helyzetét leíró helykoordináta kifejezését, a φ szög - koordinátával. z. ábra szerint: r os + ( ) tg 90 ( + ), ( ) vagy
2 r os + tg + ( ) ( ) φ szög - koordinátára kirótt feltétel:. ( 3 ) φ és φ határszögek meghatározásához úgy készülünk fel, hogy felírjuk a φ( ) kifejezést. Ismét az. ábra szerint írható, hogy: λ + µ +, ( 4 ) innen: λ + µ. ( 5 ) Megint az. ábráról leolvassuk, hogy tg λ λ artg, λ artg 90 artg, tg ( 90 λ ) 90 λ artg λ artg 90 artg. ( 6 ) Továbbá: sin µ µ arsin, + + µ arsin. + ( 7 ) Most ( 5 ), ( 6 ) és ( 7 ) - tel: π artg + arsin, +
3 3 vagy π ( ) arsin artg +. + ( 8 ) Mivel ( a), ( b), így ( 8 ) és ( 9 ) - el: a π arsin artg +, a + b π arsin + artg +. b + ( 9 ) ( 0 ) szögkoordináta kifejezése a t idővel, a szögsebesség állandósága miatt: ( t) t + ( ) a teljes mozgás időtartama T, ezalatt megteszi az távolságot, azaz: + T T, tehát a fénypont falon való mozgásának időtartama: T. ( ) Most ( 0 ) és ( ) - vel: T b π a π arsin + artg + arsin artg + b + a + b a π π arsin arsin + artg artg + + b + a + b a arsin arsin + artg + artg, b + a +
4 4 b a T arsin arsin + artg + artg. b + a + ( 3 ) Majd a fénypont sebességének átlagos nagysága: v átlag a + b, ( 4 ) T így ( 3 ) és ( 4 ) szerint: ( a + b) vátlag b a arsin arsin + artg + artg b + a +. ( 5 ) Speiális esetek: S.: 0 ( 6 ) most ( 3 ) és ( 6 ) - tal: b a T artg + artg ( 7 ) most felhasználva, hogy ( 6 ) - hoz hasonlóan: a π artg artg, ( 8 ) a ( 7 ) és ( 8 ) - al kapjuk, hogy: b π π b T artg + artg + artg artg, a a ( 9 ) megegyezésben az. rész ( 3 ) képletével. S.: π / ( 0 ) most ( 3 ) és ( 0 ) - szal:
5 5 r r b a T arsin arsin + artg + artg, b + a + ( ) megegyezésben a. rész ( 0 ) képletének kissé átalakított eredményével ui.: r b r a arsin + artg arsin artg π b + a T + r r b a arsin arsin + artg + artg T. b + a + Megjegyzések: M. Általában írhatjuk, hogy. r > ( ) M. további speializáiókat, a pillanatnyi sebesség képleteinek felírását, valamint az összehasonlító számpélda kidolgozását is az érdeklődő Olvasóra bízzuk. Ez a munka az eddigiek alapján különösebb nehézség nélkül elvégezhető. M3. Látjuk, hogy a feladat megoldásának a kulsa: az. ábra. Itt adja magát a kérdés: hogyan találhatjuk ki, hogy szögek mely kombináiója vezet majd eredményre? z első válasz: az intuíió működésével. Ez némi tehetséget és sok gyakorlást kíván. második válasz: egy trigonometriai egyenlet megoldásával, majd annak visszafej - tésével. Most ezt vesszük át. közvetlen feladat: a ( ) kifejezés invertálása, vagyis a ( 8 ) összefüggés előállítása. iindulunk ( ) - ből: r os + ( a ) tg + ( ) rendezve ezt az egyenletet: r os tg + tovább alakítva: ( ) ( ) ( ) r os tg + majd ezt kifejtve: tg + tg ( r os ) tg tg átrendezve:
6 ( r ) ( + ) ( r ) ( ) os tg tg sin tg tg a zárójeleket felbontva és rendezve: r os tg + r os tg tg tg, ( ) ( ) ( ) 6 tg r os tg + tg r os tg tg tg + tg tg, tg + tg r os tg tg tg + tg tg, tg + tg r os tg tg tg + tg tg, sin sin sin r r + tg os tg tg + tg, os os os sin + tg os r os tg os sin tg + tg soportosítva a tagokat: ( ) ( ) r ( ) sin + tg + os tg tg os + sin ( ) ( ) + tg sin + tg os r tg végigosztva a jobb oldallal: + tg tg sin + os r tg r tg egyszerűsítve: + sin + os r tg r r r tg új jelöléseket bevezetve: +, r tg r, r r tg majd ( b ) és ( ) - vel: sin + os ( d ) ezt a trigonometriai egyenletet is a segédszöges módszerrel oldjuk meg ld.:[ ]! ( d ) - ből kiemeléssel: + sin os osztással: sin os ( e ) a segédszög bevezetésével: ( b ) ( )
7 7 os ϑ, sin ϑ, ( f ) + + majd ( f ) - ből: sin ϑ tg ϑ ( g ) osϑ most ( e ) és ( f ) - fel: osϑ sin + sin ϑ os ( h ) + felhasználva, hogy osϑ sin + sin ϑ os sin + ϑ, ( i ) a ( h ) és ( i ) egyenletekkel: sin ( + ϑ ) + áttérve az inverz kapsolatra: + ϑ arsin + innen: arsin ϑ + most ( g ) - ből: ( ) ( j ) ( k ) ( l ) ϑ artg, ( m ) így ( l ) és ( m ) - mel: arsin artg + most ( ) - ből: r tg r r r tg r tg r tg r r + r r r tg r tg r tg r r r tg r ( n ) tg r tg + tg + + +, + tg r r tg r sin r
8 8 + +, sin r innen: + + majd ezzel: + + ezután ( ) - ből: tg r r tg tg tg tg tg r tg r tg, ( o ) tg tgλ + tg tgλ tg ( λ ), tg ( ), λ ( p ) ahol bevezettük a tgλ ( q ) új jelölést most az ( n ) - ben szereplő második tag: artg artg tg ( λ ) λ ( r ) ámde ( q ) - ból: λ artg, ( s ) így az ( n ), ( o ) és ( r ) képletekből: arsin artg + arsin + artg, +
9 9 ( ) arsin + artg + felhasználva még, hogy ( 6 ) szerint π artg artg, ( u ) a ( t ) és ( u ) képletekkel kapjuk, hogy π ( ) arsin + artg + π arsin artg +, + π ( ) arsin artg +. + ( t ) ( v ) Látjuk, hogy ~ ( v ) megegyezik ( 8 ) - al ~ 0 esetén a ( v ) képlet első, Visszatérve az előzőekhez: ha bevezetjük a µ arsin + jelölést is, akkor az ( s ), ( t ) és ( w ) képletek alapján: π esetén pedig a harmadik tagja teljesen eltűnik. ( w ) µ + λ, ( ) vagy ebből λ + µ +, ( y ) megegyezésben a ( 4 ) képlettel. Látjuk, hogy a számítás valóban segíthet a geometriai alaphelyzet tisztázásában is. Irodalom: [ ] Obádovis J. Gyula: Matematika 5. kiadás, Solar iadó, udapest, 998., 430. o. Sződliget, 03. deember 7. Összeállította: Galgózi Gyula mérnöktanár
w u R. x 2 x w w u 2 u y y l ; x d y r ; x 2 x d d y r ; l 2 r 2 2 x w 2 x d w 2 u 2 d 2 2 u y ; x w u y l ; l r 2 x w 2 x d R d 2 u y ;
A négysuklós mehanizmus alapfeladata másképpen Előző dolgozatunkban melynek íme: A négysuklós mehanizmus alapfeladatáról egy általunk legegyszerűbbnek gondolt megoldási módot ismertettünk. Ott megemlítet
RészletesebbenFiók ferde betolása. A hűtőszekrényünk ajtajának és kihúzott fiókjának érintkezése ihlette az alábbi feladatot. Ehhez tekintsük az 1. ábrát!
1 Fiók ferde betolása A hűtőszekrényünk ajtajának és kihúzott fiókjának érintkezése ihlette az alábbi feladatot. Ehhez tekintsük az 1. ábrát! 1. ábra Itt azt látjuk, hogy egy a x b méretű kis kék téglalapot
RészletesebbenForogj! Az [ 1 ] munkában találtunk egy feladatot, ami beindította a HD - készítési folyamatokat. Eredményei alább olvashatók. 1.
1 Forogj! Az [ 1 ] munkában találtunk egy feladatot, ami beindította a HD - készítési folyamatokat. Eredményei alább olvashatók. 1. Feladat Egy G gépkocsi állandó v 0 nagyságú sebességgel egyenes úton
RészletesebbenEgy mozgástani feladat
1 Egy mozgástani feladat Előző dolgozatunk melynek jele és címe: ED ~ Ismét az ellipszis egyenleteiről folytatásának tekinthető ez az írás. Leválasztottuk róla, mert bár szorosan kapcsolódnak, más a céljuk.
RészletesebbenEgy sík és a koordinátasíkok metszésvonalainak meghatározása
1 Egy sík és a koordinátasíkok metszésvonalainak meghatározása Ehhez tekintsük az 1. ábrát! 1. ábra Itt az ( u, v, w ) tengelymetszeteivel adott S síkot látjuk, az Oxyz térbeli derékszögű koordináta -
RészletesebbenEllipszis átszelése. 1. ábra
1 Ellipszis átszelése Adott egy a és b féltengely - adatokkal bíró ellipszis, melyet a befoglaló téglalapjának bal alsó sarkában csuklósan rögzítettnek képzelünk. Az ellipszist e C csukló körül forgatva
RészletesebbenEgy általánosabb súrlódásos alapfeladat
Egy általánosabb súrlódásos alapfeladat Az előző dolgozatunkban címe: Egy súrlódásos alapfeladat, jele: ( E D ) tárgyalt probléma általánosítása az alábbi, melynek forrása [ 1 ]. Tekintsük az 1. ábrát!
RészletesebbenEgy újabb térmértani feladat. Az [ 1 ] könyvben az interneten találtuk az alábbi érdekes feladatot is 1. ábra.
1 Egy újabb térmértani feladat Az [ 1 ] könyvben az interneten találtuk az alábbi érdekes feladatot is 1. ábra. Úgy látjuk, érdekes és tanulságos lesz végigvenni. 2 A feladat Egy szabályos n - szög alapú
RészletesebbenEllipszis vezérgörbéjű ferde kúp felszínének meghatározásához
1 Ellipszis vezérgörbéjű ferde kúp felszínének meghatározásához Előző dolgozatunkkal melynek címe: A ferde körkúp palástfelszínének meghatározásához már mintegy megágyaztunk a jelen írásnak. Több mindent
RészletesebbenÉrdekes geometriai számítások 10.
1 Érdekes geometriai számítások 10. Találtunk az interneten egy könyvrészletet [ 1 ], ahol egy a triéder - geometriában fontos összefüggést egyszerű módon vezetnek le. Ennek eredményét összevetjük más
RészletesebbenEgy forgáskúp metszéséről. Egy forgáskúpot az 1. ábra szerint helyeztünk el egy ( OXYZ ) derékszögű koordináta - rendszerben.
Egy forgáskúp metszéséről Egy forgáskúpot az 1. ábra szerint helyeztünk el egy ( OXYZ ) derékszögű koordináta - rendszerben. Az O csúcsú, O tengelyű, γ félnyílásszögű kúpot az ( XY ) sík itt két alkotóban
RészletesebbenA kerekes kútról. A kerekes kút régi víznyerő szerkezet; egy gyakori változata látható az 1. ábrán.
1 A kerekes kútról A kerekes kút régi víznyerő szerkezet; egy gyakori változata látható az 1. ábrán. 1. ábra forrása: http://keptar.oszk.hu/015800/015877/1264608300_nagykep.jpg Az iskolában tanultunk alapeleméről
RészletesebbenSíkbeli csuklós rúdnégyszög egyensúlya
Síkbeli csuklós rúdnégyszög egyensúlya Két korábbi dolgozatunkban melyek címe és azonosítója: [KD ]: Egy érdekes feladat, [KD ]: Egy másik érdekes feladat azt vizsgáltuk, hogy egy csuklós rúdnégyszög milyen
RészletesebbenEgy kinematikai feladathoz
1 Egy kinematikai feladathoz Az [ 1 ] példatárból való az alábbi feladat. Egy bütyök v 0 állandó nagyságú sebességgel halad jobbról balra. Kontúrjának egyenlete a hozzá kötött, vele együtt haladó O 1 xy
RészletesebbenA bifiláris felfüggesztésű rúd mozgásáról
1 A bifiláris felfüggesztésű rúd mozgásáról A végein fonállal felfüggesztett egyenes rúd részleges erőtani vizsgálatát mutattuk be egy korábbi dolgozatunkban, melynek címe: Forgatónyomaték mérése - I.
RészletesebbenÉrdekes geometriai számítások Téma: A kardáncsukló kinematikai alapegyenletének levezetése gömbháromszögtani alapon
Érdekes geometriai számítások 7. Folytatjuk a sorozatot. 7. Téma: A kardáncsukló kinematikai alapegyenletének levezetése gömbháromszögtani alapon Korábbi dolgozatainkban már többféle módon is bemutattuk
RészletesebbenVonatablakon át. A szabadvezeték alakjának leírása. 1. ábra
1 Vonatablakon át Sokat utazom vonaton, és gyakran elnézem a vonatablakon át a légvezeték(ek) táncát. Már régóta gondolom, hogy le kellene írni ezt a látszólagos mozgást. Most erről lesz szó. Ehhez tekintsük
RészletesebbenHenger és kúp metsződő tengelyekkel
Henger és kúp metsződő tengelyekkel Ebben a dolgozatban egy forgáshenger és egy forgáskúp áthatását tanulmányozzuk abban az egyszerűbb esetben, amikor a két test tengelye egyazon síkban fekszik, vagyis
RészletesebbenAz egyenes ellipszishenger ferde síkmetszeteiről
1 Az egyenes ellipszishenger ferde síkmetszeteiről Vegyünk egy a és b féltengelyekkel bíró ellipszist a vezérgörbét, majd az ellipszis O centrumában állítsunk merőlegest az ellipszis síkjára. Ez a merőleges
RészletesebbenNéhány véges trigonometriai összegről. Határozzuk meg az alábbi véges összegek értékét!, ( 1 ) ( 2 )
1 Néhány véges trigonometriai összegről A Fizika számos területén találkozhatunk véges számú tagból álló trigonometriai össze - gekkel, melyek a számítások során állnak elő. Ezek értékét kinézhetjük matematikai
RészletesebbenVégein függesztett rúd egyensúlyi helyzete. Az interneten találtuk az [ 1 ] munkát, benne az alábbi érdekes feladatot 1. ábra. Most erről lesz szó.
1 Végein függesztett rúd egyensúlyi helyzete Az interneten találtuk az [ 1 ] munkát, benne az alábbi érdekes feladatot 1. ábra. Most erről lesz szó. A feladat Ehhez tekintsük a 2. ábrát is! 1. ábra forrása:
RészletesebbenA szabályos sokszögek közelítő szerkesztéséhez
1 A szabályos sokszögek közelítő szerkesztéséhez A síkmértani szerkesztések között van egy kedvencünk: a szabályos n - szög közelítő szerkesztése. Azért vívta ki nálunk ezt az előkelő helyet, mert nagyon
RészletesebbenEgy érdekes statikai - geometriai feladat
1 Egy érdekes statikai - geometriai feladat Előző dolgozatunkban melynek címe: Egy érdekes geometriai feladat egy olyan feladatot oldottunk meg, ami az itteni előtanulmányának is tekinthető. Az ottani
RészletesebbenEgy sajátos ábrázolási feladatról
1 Egy sajátos ábrázolási feladatról Régen volt, ha volt egyáltalán. Én bizony nem emlékszem a ferde gerincvonalú túleme - lés ~ átmeneti megoldásra 1. ábra az ( erdészeti ) útépítésben. 1. ábra forrása:
RészletesebbenEgy kinematikai feladat
1 Egy kinematikai feladat Valami geometriai dologról ötlött eszembe az alábbi feladat 1. ábra. 1. ábra Adott az a és b egyenes, melyek α szöget zárnak be egymással. A b egyenesre ráfektetünk egy d hosszúságú
RészletesebbenA hordófelület síkmetszeteiről
1 A hordófelület síkmetszeteiről Előző dolgozatunkban melynek címe: Ismét egy érdekes mechanizmusról azon hiányérzetünknek adtunk hangot, hogy a hordószerű test görbe felülete nem kapott nevet. Itt elneveztük
RészletesebbenAz R forgató mátrix [ 1 ] - beli képleteinek levezetése: I. rész
Az R forgató mátri [ ] - beli képleteinek levezetése: I rész Az [ ] forrás kötetében a ( 49 ), ( 50 ) képletek nyilván mint közismertek nem lettek levezetve Minthogy az ottani további számítások miatt
Részletesebbent, u v. u v t A kúpra írt csavarvonalról I. rész
A kúpra írt csavarvonalról I. rész Sokféle kúpra írt csavarvonal létezik. Ezek közül először a legegyszerűbbel foglalko - zunk. Ezt azért tesszük mert meglepő az a tény hogy eddig még szinte sehol nem
RészletesebbenEgy érdekes nyeregtetőről
Egy érdekes nyeregtetőről Adott egy nyeregtető, az 1 ábra szerinti adatokkal 1 ábra Végezzük el vetületi ábrázolását, az alábbi számszerű adatokkal: a = 10,00 m; b = 6,00 m; c = 3,00 m; α = 45 ; M 1:100!
RészletesebbenA loxodrómáról. Előző írásunkban melynek címe: A Gudermann - függvényről szó esett a Mercator - vetületről,illetve az ezen alapuló térképről 1. ábra.
1 A loxodrómáról Előző írásunkban melynek címe: A Gudermann - függvényről szó esett a Mercator - vetületről,illetve az ezen alapuló térképről 1. ábra. 1. ábra forrása: [ 1 ] Ezen a térképen a szélességi
RészletesebbenFelső végükön egymásra támaszkodó szarugerendák egyensúlya
1 Felső végükön egymásra támaszkodó szarugerendák egyensúlya Az [ 1 ] példatárban találtunk egy érdekes feladatot, melynek egy változatát vizsgáljuk meg itt. A feladat Ehhez tekintsük az 1. ábrát! 1. ábra
RészletesebbenFa rudak forgatása II.
Fa rudak forgatása II. Dolgozatunk I. részében egy speciális esetre oldottuk meg a kitűzött feladatokat. Most egy általánosabb elrendezés vizsgálatát végezzük el. A számítás a korábbi úton halad, ügyelve
RészletesebbenRugalmas láncgörbe alapvető összefüggések és tudnivalók I. rész
Rugalmas láncgörbe alapvető összefüggések és tudnivalók I rész evezetés rugalmas láncgörbe magyar nyelvű szakirodalma nem túl gazdag Egy viszonylag rövid ismertetés található [ 1 ] - ben közönséges ( azaz
RészletesebbenA kör és ellipszis csavarmozgása során keletkező felületekről
1 A kör és ellipszis csavarmozgása során keletkező felületekről Előző dolgozatunkban melynek címe: Megint a két csavarfelületről levezettük a cím - beli körös felület - család paraméteres egyenletrendszerét,
RészletesebbenA Kepler - problémáról. Megint az interneten találtunk egy szép animációt 1. ábra, amin elgondolkoztunk: Ezt hogyan oldanánk meg? Most erről lesz szó.
1 A Kepler - problémáról Megint az interneten találtunk egy szép animációt 1. ábra, amin elgondolkoztunk: Ezt hogyan oldanánk meg? Most erről lesz szó. 1. ábra forrása: https://hu.wikipedia.org/wiki/kepler-probl%c3%a9ma
RészletesebbenA csavarvonal axonometrikus képéről
A avarvonal axonometrikus képéről Miután egyre jobban megy a Graph ingyenes függvény - ábrázoló szoftver használata, kipróbáltuk, hogy tudunk - e vele avarvonalat ábrázolni, axonometrikusan. A válasz:
RészletesebbenIsmét a fahengeres keresztmetszetű gerenda témájáról. 1. ábra forrása: [ 1 ]
1 Ismét a fahengeres keresztmetszetű gerenda témájáról Az 1. ábrával már korábban is találkozhatott az Olvasó. 1. ábra forrása: [ 1 ] Ezen azt láthatjuk, hogy bizonyos esetekben a fűrészelt fagerenda a
RészletesebbenEgy kötélstatikai alapfeladat megoldása másként
1 Egy kötélstatikai alapfeladat megoldása másként Most megint egyik kedvenc témánkat vesszük elő. Bízunk benne, hogy az itt előforduló ismétlések szükségesek, ámde nem feleslegesek. A más módon való megoldás
RészletesebbenEllipszis perspektivikus képe 2. rész
1 Ellipszis perspektivikus képe 2. rész Dolgozatunk 1. részében nem mentünk tovább a matematikai kifejtésben. Ezzel mintegy felhagytunk a belső összefüggések feltárásával. A jelen 2. részben megkíséreljük
RészletesebbenA visszacsapó kilincs működéséről
1 A visszacsapó kilincs működéséről A faipari forgácsoló gépek egy részén a munkadarab visszasodródása ellen visszacsapó kilincset / kilincssort alkalmaznak. Ilyen gépek például a felülről vágó körfűrészek
RészletesebbenSzökőkút - feladat. 1. ábra. A fotók forrása:
Szökőkút - feladat Nemrégen Gyulán jártunk, ahol sok szép szökőkutat láttunk. Az egyik különösen megtetszett, ezért elhatároztam, hogy megpróbálom elemi módon leírni a ízsugarak, illete az általuk leírt
RészletesebbenEgy újabb látószög - feladat
1 Egy újabb látószög - feladat A feladat Adott az O középpontú, R sugarú körön az α szöggel jellemzett P pont. Határozzuk meg, hogy mekkora ϑ szög alatt látszik a P pontból a vízszintes átmérő - egyenes
RészletesebbenA kötélsúrlódás képletének egy általánosításáról
1 A kötélsúrlódás képletének egy általánosításáról Sok korábbi dolgozatunkban foglalkoztunk kötélstatikai feladatokkal. Ez a mostani azon - ban még nem került szóba. A feladat: az egyenes körhengerre feltekert,
RészletesebbenA felcsapódó kavicsról. Az interneten találtuk az alábbi, a hajítás témakörébe tartozó érdekes feladatot 1. ábra.
1 A felcsapódó kavicsról Az interneten találtuk az alábbi, a hajítás témakörébe tartozó érdekes feladatot 1. ábra. 1. ábra forrása: [ 1 ] Ez azért is érdekes, mert autóvezetés közben már többször is eszünkbe
RészletesebbenVontatás III. A feladat
Vontatás III Ebben a részben ázoljuk a ontatási feladat egy lehetséges numerikus megoldási módját Ezt az I részben ismertetett alapegyenletre építjük fel Itt az egy ontatott kerékpár esetét izsgáljuk feladat
RészletesebbenKét körhenger általánosabban ( Alkalmazzuk a vektoralgebrát! ) 1. ábra
Két körhenger általánosabban ( Alkalmazzuk a vektoralgebrát! ) Egy korábbi dolgozatunkban címe: Két egyenes körhenger a merőlegesen metsződő tengelyű körhengerek áthatási feladatával foglalkoztunk. Most
RészletesebbenEgy másik érdekes feladat. A feladat
Egy másik érdekes feladat Az előző dolgozatban melynek címe: Egy érdekes feladat az itteninek egy speciális esetét vizsgáltuk. Az általánosabb feladat az alábbi [ 1 ]. A feladat Adott: az ABCD zárt négyszög
RészletesebbenEgy geometriai szélsőérték - feladat
1 Egy geometriai szélsőérték - feladat A feladat: Szerkesztendő egy olyan legnagyobb területű háromszög, melynek egyik csúcsa az a és b féltengelyeivel adott ellipszis tetszőlegesen felvett pontja. Keresendő
RészletesebbenAszimmetrikus nyeregtető ~ feladat 2.
1 Aszimmetrikus nyeregtető ~ feladat 2. Ehhez tekintsük az 1. ábrát is! Itt az A és B pontok egy nyeregtető oromfali ereszpontjai, a P pont pedig a taréj pontja. Az ereszek egymástól való távolságának
RészletesebbenFüggőleges koncentrált erőkkel csuklóin terhelt csuklós rúdlánc számításához
1 Függőleges koncentrált erőkkel csuklóin terhelt csuklós rúdlánc számításához Az interneten való nézelődés során találkoztunk az [ 1 ] művel, melyben egy érdekes és fontos feladat pontos(abb) megoldásához
RészletesebbenA gúla ~ projekthez 2. rész
1 A gúla ~ projekthez 2. rész Dolgozatunk 1. részében egy speciális esetre a négyzet alapú egyenes gúla esetére írtuk fel és alkalmaztuk képleteinket. Most a tetszőleges oldalszámú szabályos sokszög alakú
RészletesebbenA lengőfűrészelésről
A lengőfűrészelésről Az [ 1 ] tankönyvben ezt írják a lengőfűrészről, működéséről, használatáról: A lengőfűrész árkolásra, csaprések készítésére alkalmazott, 150 00 mm átmérőjű, 3 4 mm vastag, sűrű fogazású
RészletesebbenKocka perspektivikus ábrázolása. Bevezetés
1 Kocka perspektivikus ábrázolása Bevezetés Előző három dolgozatunkban ~ melyek címe: 1. Sínpár perspektivikus ábrázolása, 2. Sínpár perspektivikus ábrázolása másként, 3. Sínpár perspektivikus ábrázolása
RészletesebbenTovábbi adalékok a merőleges axonometriához
1 További adalékok a merőleges axonometriához Egy szép összefoglaló munkát [ 1 ] találtunk az interneten, melynek előző dolgoza - tunkhoz csatlakozó részeit itt dolgozzuk fel. Előző dolgozatunk címe: Kiegészítés
Részletesebben1. gyakorlat. Egyenletes és egyenletesen változó mozgás. 1. példa
1. gyakorlat Egyenletes és egyenletesen változó mozgás egyenletes mozgás egyenletesen változó mozgás gyorsulás a = 0 a(t) = a = állandó sebesség v(t) = v = állandó v(t) = v(0) + a t pályakoordináta s(t)
RészletesebbenA főtengelyproblémához
1 A főtengelyproblémához Korábbi, az ellipszis perspektivikus ábrázolásával foglalkozó dolgozatainkban előkerült a másodrendű görbék kanonikus alakra hozása, majd ebben a főtengelyrendszert előállító elforgatási
RészletesebbenAz eltérő hajlású szarufák és a taréjszelemen kapcsolatáról 1. rész. Eltérő keresztmetszet - magasságú szarufák esete
1 Az eltérő hajlású szarufák és a taréjszelemen kapcsolatáról 1. rész Eltérő keresztmetszet - magasságú szarufák esete Az alábbi ábrát találtuk az interneten 1. ábra 1. ábra forrás( ok ): http://www.sema-soft.com/de/forum/files/firstpfettenverschiebung_432.jpg
RészletesebbenAz éjszakai rovarok repüléséről
Erről ezt olvashatjuk [ ] - ben: Az éjszakai rovarok repüléséről Az a kijelentés, miszerint a repülés pályája logaritmikus spirális, a következőképpen igazolható [ 2 ].. ábra Az állandó v nagyságú sebességgel
RészletesebbenA tűzfalakkal lezárt nyeregtető feladatához
1 A tűzfalakkal lezárt nyeregtető feladatához Bevezetés Ehhez először tekintsük az 1. ábrát! 1 Itt azt szemlélhetjük, hogy hogyan lehet el - kerülni egy épület tűzfalának eláztatását. A felső ábrarészen
RészletesebbenKosárra dobás I. Egy érdekes feladattal találkoztunk [ 1 ] - ben, ahol ezt szerkesztéssel oldották meg. Most itt számítással oldjuk meg ugyanezt.
osárra dobás I. Egy érdekes feladattal találkoztunk [ 1 ] - ben, ahol ezt szerkesztéssel oldották meg. Most itt számítással oldjuk meg ugyanezt. A feladat Az 1. ábrán [ 1 ] egy tornaterem hosszmetszetét
RészletesebbenAz elliptikus hengerre írt csavarvonalról
1 Az elliptikus hengerre írt csavarvonalról Erről viszonylag ritkán olvashatunk, ezért most erről lesz szó. Az [ 1 ] munkában találtuk az alábbi részt 1. ábra. 1. ábra Itt a ( c ) feladat és annak megoldása
RészletesebbenEgy nyíllövéses feladat
1 Egy nyíllövéses feladat Az [ 1 ] munkában találtuk az alábbi feladatot 1. ábra. 1. ábra forrása: [ 1 / 1 ] Igencsak tanulságos, ezért részletesen bemutatjuk a megoldását. A feladat Egy sportíjjal nyilat
RészletesebbenKét naszád legkisebb távolsága. Az [ 1 ] gyűjteményben találtuk az alábbi feladatot és egy megoldását: 1. ábra.
1 Két naszád legkisebb távolsága Az [ 1 ] gyűjteményben találtuk az alábbi feladatot és egy megoldását: 1. ábra. 1. ábra A feladat Az A és B, egymástól l távolságra lévő kikötőből egyidejűleg indul két
RészletesebbenLövés csúzlival. Egy csúzli k merevségű gumival készült. Adjuk meg az ebből kilőtt m tömegű lövedék sebességét, ha a csúzlit L - re húztuk ki!
1 Lövés csúzlival Az [ 1 ] munkában találtuk az alábbi feladatot 1. ábra. A feladat Egy csúzli k merevségű gumival készült. Adjuk meg az ebből kilőtt m tömegű lövedék sebességét, ha a csúzlit L - re húztuk
RészletesebbenA kettősbelű fatörzs keresztmetszeti rajzolatáról
1 A kettősbelű fatörzs keresztmetszeti rajzolatáról Az idők során már többször eszünkbe jutott, hogy foglalkozni kellene a címbeli témával. Különösen akkor, amikor olyan függvényábrákat találtunk, melyek
RészletesebbenÖsszefüggések egy csonkolt hasábra
Összefüggések egy sonkolt hasábra Az idők során ár többször készítettünk hasonló dolgozatokat. Ne baj: az isétlés sose árt. Most tekintsük az. ábrát!. ábra Eszerint úgy is képzelhetjük hogy egy téglalap
RészletesebbenA fő - másodrendű nyomatékok meghatározása feltételes szélsőérték - feladatként
A fő - másodrendű nomatékok meghatározása feltételes szélsőérték - feladatként A Keresztmetszeti jellemzők című mappa első lakója eg ritkábban látható levezetést mutat be amel talán segít helesen elrendezni
RészletesebbenA 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató
Oktatási Hivatal 04/0 tanévi Országos Középiskolai Tanulmányi Verseny első forduló MTEMTIK I KTEGÓRI (SZKKÖZÉPISKOL) Javítási-értékelési útmutató Határozza meg a tízes számrendszerbeli x = abba és y =
RészletesebbenKerék gördüléséről. A feladat
1 Kerék gördüléséről Nemrégen egy órán szóba került a címbeli téma, középiskolások előtt. Úgy látszott, nem nagyon értik, miről van szó. Persze, lehet, hogy még nem tartottak ott, vagy csak aludtak a fizika
RészletesebbenEgy szép és jó ábra csodákra képes. Az alábbi 1. ábrát [ 1 ] - ben találtuk; talán már máskor is hivatkoztunk rá.
Egy szép és jó ábr csodákr képes Az lábbi. ábrát [ ] - ben tláltuk; tlán már máskor is hivtkoztunk rá.. ábr Az különlegessége, hogy vlki nem volt rest megcsinál(tt)ni, még h sok is volt vele munk. Ennek
RészletesebbenChasles tételéről. Előkészítés
1 Chasles tételéről A minap megint találtunk valami érdekeset az interneten. Az [ 1 ] tankönyvet, illetve an - nak fejezetenként felrakott egyetemi internetes változatát. Utóbbi 20. fejezetében volt az,
RészletesebbenEgy érdekes statikai feladat. Az interneten találtuk az [ 1 ] művet, benne az alábbi feladattal.
1 Egy érdekes statikai feladat Az interneten találtuk az [ 1 ] művet, benne az alábbi feladattal. A feladat A szabályos n - szög alakú, A, B, C, csúcsú lap az A csúcsán egy sima függőleges fal - hoz támaszkodik,
RészletesebbenKerekes kút 4.: A zuhanó vödör fékezéséről. A feladat. A megoldás
1 Kerekes kút 4.: A zuhanó vödör fékezéséről Egy korábbi dolgozatunkban melynek címe: Kerekes kút 2.: A zuhanó vödör mozgásáról nem volt szó fékezésről. Itt most egy egyszerű fékezési modellt vizsgálunk
RészletesebbenAz elforgatott ellipszisbe írható legnagyobb területű téglalapról
1 Az elforgatott ellipszisbe írható legnagyobb területű téglalapról Előző dolgozatunkban melynek címe: Az ellipszisbe írható legnagyobb területű négyszögről már beharangoztuk, hogy találtunk valami érdekeset
RészletesebbenOptika gyakorlat 2. Geometriai optika: planparalel lemez, prizma, hullámvezető
Optika gyakorlat. Geometriai optika: planparalel lemez, prizma, hullámvezető. példa: Fényterjedés planparalel lemezen keresztül A plánparalel lemezen történő fényterjedés hatására a fénysugár újta távolsággal
RészletesebbenEgy általános helyzetű lekerekített sarkú téglalap paraméteres egyenletrendszere. Az egyenletek felírása
1 Egy általános helyzetű lekerekített sarkú téglalap paraméteres egyenletrendszere Az egyenletek felírása Korábbi dolgozataink már mintegy előkészítették a mostanit; ezek: ~ KD - 1: Általános helyzetű
RészletesebbenKúp és kúp metsződő tengelyekkel
Kúp és kúp metsződő tengelyekkel Előző dolgozatainkban [ ED ], [ ED ], [ ED 3 ], [ED 4 ] már láttuk, hogyan lehet meghatározni a két legegyszerűbb forgástest a henger és a kúp áthatási görbéinek egyenleteit.
RészletesebbenEgy kérdés: merre folyik le az esővíz az úttestről? Ezt a kérdést az után tettük fel magunknak, hogy megláttuk az 1. ábrát.
1 Egy kérdés: merre folyik le az esővíz az úttestről? Ezt a kérdést az után tettük fel magunknak, hogy megláttuk az 1. ábrát. 1. ábra forrása: [ 1 ] Ezen egy út tengelyvonalának egy pontjában tüntették
RészletesebbenEgy variátor - feladat. Az [ 1 ] feladatgyűjteményben találtuk az alábbi feladatot. Most ezt dolgozzuk fel. Ehhez tekintsük az 1. ábrát!
1 Egy variátor - feladat Az [ 1 ] feladatgyűjteményben találtuk az alábbi feladatot. Most ezt dolgozzuk fel. Ehhez tekintsük az 1. ábrát! A feladat 1. ábra forrás: [ 1 ] Egy súrlódó variátor ( fokozatmentes
RészletesebbenA merőleges axonometria néhány régi - új összefüggéséről
1 A merőleges axonometria néhány régi - új összefüggéséről Most néhány régebben már megbeszélt összefüggés újabb igazolását adjuk meg, illetve más, eddig még nem látott képlet - alakokat állítunk elő.
RészletesebbenEgy felszínszámítási feladat a tompaélű fagerendák témaköréből
1 Egy felszínszámítási feladat a tompaélű fagerendák témaköréből Előző dolgozatunkban melynek címe: Ismét a fahengeres keresztmetszetű gerenda témájáról már sok min - dent előkészítettünk az itteni címbeli
RészletesebbenA rektellipszis csavarmozgása során keletkező felületről
1 A rektellipszis csavarmozgása során keletkező felületről Előző dolgozatunkban melynek címe: A kör és ellipszis csavarmozgása során keletkező felületekről felírtuk az általánosabb helyzetű ellipszis mint
RészletesebbenTömegpontok mozgása egyenes mentén, hajítások
2. gyakorlat 1. Feladatok a kinematika tárgyköréből Tömegpontok mozgása egyenes mentén, hajítások 1.1. Feladat: Mekkora az átlagsebessége annak pontnak, amely mozgásának első szakaszában v 1 sebességgel
RészletesebbenEgy háromlábú állvány feladata. 1. ábra forrása:
1 Egy háromlábú állvány feladata Az interneten találtuk az alábbi versenyfeladatot 1. ábra Az egyforma hosszúságú CA, CB és CD rudak a C pontban gömbcsuklóval kapcsolódnak, az A, B, D végükön sima vízszintes
RészletesebbenEgy gyakorlati szélsőérték - feladat. 1. ábra forrása: [ 1 ]
1 Egy gyakorlati szélsőérték - feladat Az [ 1 ] munkában találtuk az alábbi feladatot. 1. ábra forrása: [ 1 ] Magyarul: Három egyforma széles deszkából egy (eresz - )csatornát szegezünk össze. Az oldalfal
RészletesebbenA konfokális és a nem - konfokális ellipszis - seregekről és ortogonális trajektóriáikról
1 A konfokális és a nem - konfokális ellipszis - seregekről és ortogonális trajektóriáikról Előző dolgozatunk melynek címe: Ha az évgyűrűk ellipszis alakúak lennének készítése során böngész - gettük az
RészletesebbenKerekes kút 2.: A zuhanó vödör mozgásáról
1 Kerekes kút 2.: A zuhanó vödör mozgásáról Előző dolgozatunkban melynek címe: A kerekes kútról a végén azt írtuk, hogy Az elengedett vödör a saját súlya hatására erősen felgyorsulhatott. Ezt személyes
RészletesebbenPoncelet egy tételéről
1 Poncelet egy tételéről Már régebben találkoztunk az [ 1 ] műben egy problémával, mostanában pedig a [ 2 ] műben a megoldásával. A probléma lényege: határozzuk meg a egyenletben szereplő α, β együtthatókat,
RészletesebbenA közönséges csavarvonal érintőjének képeiről
A közönséges csavarvonal érintőjének képeiről Már régóta rajzoljuk a táblára a közönséges csavarvonal vetületeinek és síkba teríté - sének ábráit, a Gépészeti alapismeretek tantárgy óráin. Úgy tűnik, itt
RészletesebbenRönk mozgatása rámpán kötelekkel
Rönk mozgatása rámpán kötelekkel Az interneten találtuk az alábbi feladatot. ábra..3. Тяжелое бревно втягивают вверх по наклонной плоскости с помощью двух параллельных канатов, закрепленных, как указано
RészletesebbenKeresztezett pálcák II.
Keresztezett pálcák II Dolgozatunk I részéen a merőleges tengelyű pálcák esetét vizsgáltuk Most nézzük meg azt az esetet amikor a pálcák tengelyei nem merőlegesen keresztezik egymást Ehhez tekintsük az
RészletesebbenA térbeli mozgás leírásához
A térbeli mozgás leírásához Az idők során már többször foglalkoztunk a címbeli témával; az előzmények vagyis a korábbi dolgozatok: ~ KD : Az R forgató mátrix I Az R forgató mátrix II ~ KD : A véges forgatás
RészletesebbenRugalmas megtámasztású merev test támaszreakcióinak meghatározása I. rész
Rugalas egtáasztású erev test táaszreakióinak eghatározása I. rész Bevezetés A következő, több dolgozatban beutatott vizsgálataink tárgya a statikai / szilárdságtani szakirodalo egyik kedvene. Ugyanis
RészletesebbenEllipszissel kapcsolatos képletekről
1 Ellipszissel kapcsolatos képletekről Előző dolgozatunkban melynek címe: A Lenz - vektorról viszonylag sokat kellett ellipszissel kapcsolatos képletekkel dolgozni. Ennek során is adódott pár észrevételünk,
RészletesebbenA ferde szabadforgácsolásról, ill. a csúszóforgácsolásról ismét
A ferde szabadforgácsolásról, ill. a csúszóforgácsolásról ismét A szabadforgácsolást [ 1 ] az alábbiak szerint definiálja, ill. jellemzi. Ha a forgácsolószerszám élének minden pontjában a forgácsolási
RészletesebbenA síkbeli Statika egyensúlyi egyenleteiről
1 A síkbeli Statika egyensúlyi egyenleteiről Statikai tanulmányaink egyik mérföldköve az egyensúlyi egyenletek belátása és sikeres alkalmazása. Most egy erre vonatkozó lehetséges tanulási / tanítási útvonalat
RészletesebbenEgy újabb cérnás feladat
1 Egy újabb cérnás feladat Az interneten találkoztunk az [ 1 ] dolgozattal, amely csak rész - információkat adott. Ez azonban elég is volt ahhoz, hogy elkezdjünk gondolkodni róla. Erről lesz most szó.
RészletesebbenA Maxwell - kerékről. Maxwell - ingának is nevezik azt a szerkezetet, melyről most lesz szó. Ehhez tekintsük az 1. ábrát is!
1 A Maxwell - kerékről Maxwell - ingának is nevezik azt a szerkezetet, melyről most lesz szó. Ehhez tekintsük az 1. ábrát is! 1. ábra forrása: [ 1 ] Itt azt láthatjuk, hogy egy r sugarú kis hengerre felerősítettek
RészletesebbenKiegészítés a merőleges axonometriához
1 Kiegészítés a merőleges axonometriához Időnként találunk egy szép és könnyebben érthető levezetést, magyarázó ábrát, amit érdemesnek gondolunk a megosztásra. Most is ez történt, az [ 1 ] és [ 3 ] művek
RészletesebbenEhhez tekintsük a 2. ábrát is! A födém és a fal síkját tekintsük egy - egy koordinátasíknak, így a létra tömegközéppontjának koordinátái: ( 2 )
1 A lecsúszó létra mozgásáról Egy korábbi létrás dolgozatunkban melynek címe: Létra - feladat foglalkoztunk a csak önsúlyával terhelt, függőleges falnak támasztott, vízszintes födémen álló létra egyensúlyá
Részletesebben