Egy felszínszámítási feladat a tompaélű fagerendák témaköréből

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Egy felszínszámítási feladat a tompaélű fagerendák témaköréből"

Átírás

1 1 Egy felszínszámítási feladat a tompaélű fagerendák témaköréből Előző dolgozatunkban melynek címe: Ismét a fahengeres keresztmetszetű gerenda témájáról már sok min - dent előkészítettünk az itteni címbeli feladat megoldásához, így az ottaniakat ismétlés nélkül vesszük át. Először tekintsük az 1. ábrát! A feladat: 1. ábra Az S 1 S 2 körív, valamint az S 1 S 3 és S 2 S 3 hiperbolaívek által határolt felületdarab A felszí - nének a meghatározása. A megoldás: A felületelem kifejezése: ( 1 ) A csonkakúp hossza mentén változó sugara az előző dolgozat ( E2 ) és ( E3 ) képletével:

2 2 ( 2 ) A szöghatárok képletei az előző dolgozat 2. ábrája és az itteni 1. ábra szerint, valamint az előző dolgozat ( E10 ) képletével: innen: így: ámde: ( 3 ) Hasonlóan: ámde: így: innen: ( 4 ) Most ( 1 ), ( 2 ), ( 3 ), ( 4 ) - gyel is: ( 5 ) Úgy látjuk, hogy ( 5 ) zárt alakban ki is számítható. Meglehet, a végképlet bonyolult. De ha nem is az, akkor is könnyen eltéveszthető a hosszadalmas átalakítások során. Ezért a numerikus integrálás tűnik az egyszerűbb megoldási módnak. A felmerülő nehézségek áthidalhatók lehetnek az alábbi közelítő számítással. Az 1. ábrán berajzoltuk az S 1 S 2 S 3 háromszöget is. Közelítő számításunk alapja: A továbbiakhoz tekintsük a 2. ábrát is! ( 6 )

3 3 2. ábra Eszerint: ( 7 ) Most Pitagorász tételével:. ( 8 ) Majd szinusz szögfüggvénnyel: ( 9 ) Ezután ( 8 ) és ( 9 ) - cel: ( 10 ) Most megint Pitagorász tételével: ( 11 ) majd ( 10 ) és ( 11 ) szerint: ( 12 ) Ezután ( 7 ), ( 8 ) és ( 12 ) - vel: tehát:

4 4 ( 13 ) Most ( 6 ) és ( 13 ) - mal: ( 14 ) ahol az előző dolgozat szerint: ( E9 ) ( E8 ) ( E7 ) SZÁMPÉLDA Az előző dolgozatbeli adatokkal dolgozunk. Az ( 5 ) integrált numerikusan határozzuk meg, a Graph szoftver szolgáltatásával 3. ábra. 3. ábra

5 5 Eszerint: Majd a ( 13 ) képlettel dolgozva: ( a ) ( b ) A kétféle eredmény százalékos eltérése: ( c ) Ez elég nagy érték, ha az 5 % - ot meghaladó eltérést már nagynak vesszük. Az eredmény jellege, vagyis hogy, hihető az 1. ábra szemlélete alapján Annál is inkább az, ha vetünk egy pillantást a 4. ábrára. 4. ábra Itt a kék görbe az ( 5 ) képlet integrálandó függvénye, a bordó egyenes pedig az S 1 S 2 S 3 háromszög területének integrálással való meghatározásához felírható lineáris függvény képe. Ennek képlete: ezzel:

6 6 egyezésben ( 7 ) - tel. Jól látható, hogy a példabeli adatokkal az egyenes túlnyomórészt a görbe fölött halad, így a görbe alatti területekre valóban várható, hogy teljesül a reláció. A bordó egyenes alatti terület nagysága a Graph szerint: ( b1 ) ami csak elhanyagolható mértékben tér el a ( b ) eredménytől. Miután már tudjuk, hogy mi a számpélda helyes eredménye, lássunk neki az ( 5 ) határozott integrál zárt alakú képlete felírásának! A részleteket az FI. Függelékben közöljük. A számítás végeredménye ( F37 ): ( 15 ) Behelyettesítve az adatokat ezt kapjuk: ami gyakorlatilag pontosan megegyezik az ( a ) eredménnyel. ( d ) A ( 15 ) képlet egy kényelmes értelmezését ld. az FII., a német szabványok erre vonatko - zó rendelkezéseit pedig ld. az FIII. Függelékben! Megjegyzések: M1. A ( 3 ) és ( 4 ) képletekben szereplő x*( z ) és y*( z ) kifejezések az 1. ábrán kékkel kihúzott hiperbolák egyenletei. M2. A ( 13 ) képlet így is írható: ( 13 / 1 )

7 7 Ez emlékeztet a térbeli Pitagorász - tételre. Más szavakkal [ 1 ] : egy háromszög területének a négyzete a koordinátasíkokon levő merőleges vetületei területének a négyzetösszegével egyenlő. M3. Az S S 1 S 2 S 3 derékszögű tetraéder térfogata [ 1 ] : ( 16 ) Ezt tekinthetjük az épélűség térfogati hiányának is, ha eltekintünk a pontos integrál - képletek használatától. M4. Eredményeinket áttekintve láthatjuk, hogy feladatunk bemenő alapadatai: d 0, D, B, H, L. Ezek megadása után képleteink közvetlenül alkalmazhatóak. M5. A pontos képletek kifejezés természetesen csak az alkalmazott modell érvényességi körén belül értelmes. Miután a fatest alakjára tett feltevés miszerint egyenes csonkakúp - nak tekintjük azt szintén csak közelítés, valóban kevés érvünk maradna a bonyolult kife - jezések erőltetése mellett. Ehhez képest meglepően sok ilyen pontos képlet található a szakkönyvekben, melyek legtöbbször nem magyar nyelvűek. M6. Furcsa, de ezzel a témával sem találkoztunk még a szakirodalomban. Ez megint csak a tájékozatlanságunk bizonyítéka lehet FI. Függelék Meghatározandó az ( F1 ) határozott integrál zárt alakú képlete! Az jelöléssel ( F1 ) - et átírva: ( F2 ) ( F3 )

8 8 Ezt kettéválasztva: ahol: ( F4 ) ( F5 ) ( F6 ) Most átalakítjuk ( F5 ) - öt: ( F7 ) új változót vezetünk be: ( F8 ) majd ( F7 ) és ( F8 ) - cal: ( F9 ) az új integrálási határok ( F2 ) és ( F8 ) - ból: ( F10 ) ( F11 ) Továbbá az inverz függvény deriválási szabálya szerint: ( F12 ) valamint ( F2 ) és ( F8 ) - cal is: tehát:

9 9 ( F13 ) majd ( F12 ) és ( F13 ) - mal: ( F14 ) Ezután ( F9 ) és ( F14 ) - gyel: ( F15 ) Teljesen hasonló módon: ( F16 ) ahol: ( F17 ) ( F18 ) Most ( F4 ), ( F15 ) és ( F16 ) szerint:, tehát: ( F19 ) Az ( F19 ) - ben szereplő integrálok primitív függvényei [ 2 ] : ( F20) ( F21 ) Majd ( F19 ), ( F20 ) és ( F21 ) szerint: ( F22 ) Részletezve:

10 10 ( F23 ) és hasonlóan: ( F24 ) Most ( F22 ), ( F23 ) és ( F24 ) - gyel: tehát: ( F25 ) Behelyettesítve a határokat ( 25 ) - be ( F10 ), ( F11 ), ( F17 ), ( F18 ) - ból: ( F26 ) Átalakítva: Tovább alakítva:

11 11 ( F27 ) Figyelembe véve, hogy ( F28 / 1 ) ( F28 / 2 ) innen: ( F29 ) ( F30 ) Most ( F27 ), ( F28 ), ( F29 ) és ( F30 ) - cal: ( F31 ) Elvégezve a beszorzást: Tovább rendezve: ( F32 ) ( F33 ) figyelembe véve, hogy 0, ( F34 )

12 12 így ( F33 ) és ( F34 ) szerint: Kiemeléssel: ( F35 ) ( F36 ) Most ( 2 ) és ( F36 ) - tal: ( F37 ) ( F37 ) a keresett felszín - nagyság pontos, zárt alakú képlete. Látjuk, hogy ez a számítás valóban sok helyen eltéveszthető, menet közben. Ha nem sikerülne zárt alakú képletet ki - hozni, vagy ha az nagyon bonyolult, akkor marad a numerikus integrálás. Persze, ha van rá mód. Nekünk a Graph ingyenes szoftver segíti az ilyen típusú munkánkat is, már évek óta. Az ( F37 ) képlet talán még nem nagyon bonyolult, zsebszámológéppel is használható. Megjegyezzük, hogy a megoldás alapját képező ( F20 ) és ( F21 ) határozatlan integrálok vélhetőleg azért nincsenek benne a gyakran használt integráltáblázatokban, mert parciális integrálással nyerhetők, a táblázatokban szereplő primitív függvények felhasználásával. Az 5. ábrán mutatjuk meg az interneten is megtalálható műből vett formulákat. 5. ábra forrása: [ 2 ] FII. Függelék Átírjuk az ( F37 ) képletet, melyhez tekintsük a 6. ábrát is! Ez alapján: ( F38 ) ( F39 )

13 13 továbbá: ( F40 ) majd: ( F41 ) 6. ábra Ezután: ( F42 ) majd ( F40 ), ( F41 ) és ( F42 ) - vel: ( F43 ) Most ( F43 ) - mal is: ( F44 ) Majd az ( F37 ), ( F38 ), ( F39 ) és ( F44 ) képletekkel: ( F45 ) Ezután:

14 14 ( F46 ) ( F47 ) most ( F45 ), ( F46 ), ( F47 ) - tel: tehát: ( F48 ) Ha az ívhossz csak keveset tér el a húrhossztól, akkor írhatjuk, hogy ( F49 ) majd ( F48 ) és ( F49 ) - cel: ( F50 ) Az ( F50 ) - ben szereplő adatok viszonylag könnyen lemérhetők, így A jó közelítő értéke egyszerűen meghatározható. FIII. Függelék A szélezetlenség német szabvány szerinti megítélését a 7. ábrán tanulmányozhatjuk. Eszerint képezik a mi jelöléseinkkel a arányszámokat, melyek értékétől függ, hogy a fűrészárut milyen minőségi osztályba sorolják. Például az S10 osztályba sorolás feltétele, hogy legyen ; ez [ 3 ] szerint átlagos teherbírású besorolást jelent. A K b, illeteve K h értékek közül a kedvezőtlenebb K a mértékadó. Érdekes, hogy a mondott szabvány is az ( F50 ) képletben szereplő viszonyszámokat tekinti mértékadónak a fűrészáru / építőfa teherbírás szerinti osztályokba sorolásánál. Ez vélhető - leg azzal függ össze, hogy az ép élű keresztmetszethez képest mennyivel kisebb a fahen - geres keresztmetszetű gerenda keresztmetszeti területe, vagyis mennyivel gyengébb az. A gyengítés mértéke pedig összefügg a fentebb számított A értékkel.

15 15 7. ábra forrása: uterungen_zur_din_4074_1.pdf

16 16 A 7. ábra kapcsán megemlítjük, hogy a fahengeresség gyakran aszimmetrikus megjele - nésű; eredményeink ekkor is alkalmazhatóak, értelemszerűen. Irodalomjegyzék: [ 1 ] Reiman István: A geometria és határterületei Gondolat, Budapest, [ 2 ] A. P. Prudnyikov ~ Ju. A. Brücskov ~ O. I. Maricsev: Integralü i rjadü Moszkva, Nauka, [ 3 ] Batran ~ Blaesi ~ Frey ~ Hühn ~ Köhler ~ Kraus ~ Rothacher ~ Sonntag: Építőipari technológiák B+V Lap - és Könyvkiadó Kft., Budapest, Sződliget, Összeállította: Galgóczi Gyula mérnöktanár

Ismét a fahengeres keresztmetszetű gerenda témájáról. 1. ábra forrása: [ 1 ]

Ismét a fahengeres keresztmetszetű gerenda témájáról. 1. ábra forrása: [ 1 ] 1 Ismét a fahengeres keresztmetszetű gerenda témájáról Az 1. ábrával már korábban is találkozhatott az Olvasó. 1. ábra forrása: [ 1 ] Ezen azt láthatjuk, hogy bizonyos esetekben a fűrészelt fagerenda a

Részletesebben

Ellipszis átszelése. 1. ábra

Ellipszis átszelése. 1. ábra 1 Ellipszis átszelése Adott egy a és b féltengely - adatokkal bíró ellipszis, melyet a befoglaló téglalapjának bal alsó sarkában csuklósan rögzítettnek képzelünk. Az ellipszist e C csukló körül forgatva

Részletesebben

Szabályos fahengeres keresztmetszet geometriai jellemzőinek meghatározása számítással

Szabályos fahengeres keresztmetszet geometriai jellemzőinek meghatározása számítással Szabályos fahengeres keresztmetszet geometriai jellemzőinek meghatározása számítással Előző dolgozatunkban jele: ( E ), címe: Szimmetrikusan szélezett körkeresztmetszet geometriai jellemzőinek meghatározása

Részletesebben

Végein függesztett rúd egyensúlyi helyzete. Az interneten találtuk az [ 1 ] munkát, benne az alábbi érdekes feladatot 1. ábra. Most erről lesz szó.

Végein függesztett rúd egyensúlyi helyzete. Az interneten találtuk az [ 1 ] munkát, benne az alábbi érdekes feladatot 1. ábra. Most erről lesz szó. 1 Végein függesztett rúd egyensúlyi helyzete Az interneten találtuk az [ 1 ] munkát, benne az alábbi érdekes feladatot 1. ábra. Most erről lesz szó. A feladat Ehhez tekintsük a 2. ábrát is! 1. ábra forrása:

Részletesebben

Az elforgatott ellipszisbe írható legnagyobb területű téglalapról

Az elforgatott ellipszisbe írható legnagyobb területű téglalapról 1 Az elforgatott ellipszisbe írható legnagyobb területű téglalapról Előző dolgozatunkban melynek címe: Az ellipszisbe írható legnagyobb területű négyszögről már beharangoztuk, hogy találtunk valami érdekeset

Részletesebben

Az elliptikus hengerre írt csavarvonalról

Az elliptikus hengerre írt csavarvonalról 1 Az elliptikus hengerre írt csavarvonalról Erről viszonylag ritkán olvashatunk, ezért most erről lesz szó. Az [ 1 ] munkában találtuk az alábbi részt 1. ábra. 1. ábra Itt a ( c ) feladat és annak megoldása

Részletesebben

Az egyenes ellipszishenger ferde síkmetszeteiről

Az egyenes ellipszishenger ferde síkmetszeteiről 1 Az egyenes ellipszishenger ferde síkmetszeteiről Vegyünk egy a és b féltengelyekkel bíró ellipszist a vezérgörbét, majd az ellipszis O centrumában állítsunk merőlegest az ellipszis síkjára. Ez a merőleges

Részletesebben

Egy kérdés: merre folyik le az esővíz az úttestről? Ezt a kérdést az után tettük fel magunknak, hogy megláttuk az 1. ábrát.

Egy kérdés: merre folyik le az esővíz az úttestről? Ezt a kérdést az után tettük fel magunknak, hogy megláttuk az 1. ábrát. 1 Egy kérdés: merre folyik le az esővíz az úttestről? Ezt a kérdést az után tettük fel magunknak, hogy megláttuk az 1. ábrát. 1. ábra forrása: [ 1 ] Ezen egy út tengelyvonalának egy pontjában tüntették

Részletesebben

Egy újabb térmértani feladat. Az [ 1 ] könyvben az interneten találtuk az alábbi érdekes feladatot is 1. ábra.

Egy újabb térmértani feladat. Az [ 1 ] könyvben az interneten találtuk az alábbi érdekes feladatot is 1. ábra. 1 Egy újabb térmértani feladat Az [ 1 ] könyvben az interneten találtuk az alábbi érdekes feladatot is 1. ábra. Úgy látjuk, érdekes és tanulságos lesz végigvenni. 2 A feladat Egy szabályos n - szög alapú

Részletesebben

Néhány véges trigonometriai összegről. Határozzuk meg az alábbi véges összegek értékét!, ( 1 ) ( 2 )

Néhány véges trigonometriai összegről. Határozzuk meg az alábbi véges összegek értékét!, ( 1 ) ( 2 ) 1 Néhány véges trigonometriai összegről A Fizika számos területén találkozhatunk véges számú tagból álló trigonometriai össze - gekkel, melyek a számítások során állnak elő. Ezek értékét kinézhetjük matematikai

Részletesebben

A gúla ~ projekthez 2. rész

A gúla ~ projekthez 2. rész 1 A gúla ~ projekthez 2. rész Dolgozatunk 1. részében egy speciális esetre a négyzet alapú egyenes gúla esetére írtuk fel és alkalmaztuk képleteinket. Most a tetszőleges oldalszámú szabályos sokszög alakú

Részletesebben

Fiók ferde betolása. A hűtőszekrényünk ajtajának és kihúzott fiókjának érintkezése ihlette az alábbi feladatot. Ehhez tekintsük az 1. ábrát!

Fiók ferde betolása. A hűtőszekrényünk ajtajának és kihúzott fiókjának érintkezése ihlette az alábbi feladatot. Ehhez tekintsük az 1. ábrát! 1 Fiók ferde betolása A hűtőszekrényünk ajtajának és kihúzott fiókjának érintkezése ihlette az alábbi feladatot. Ehhez tekintsük az 1. ábrát! 1. ábra Itt azt látjuk, hogy egy a x b méretű kis kék téglalapot

Részletesebben

Egy sík és a koordinátasíkok metszésvonalainak meghatározása

Egy sík és a koordinátasíkok metszésvonalainak meghatározása 1 Egy sík és a koordinátasíkok metszésvonalainak meghatározása Ehhez tekintsük az 1. ábrát! 1. ábra Itt az ( u, v, w ) tengelymetszeteivel adott S síkot látjuk, az Oxyz térbeli derékszögű koordináta -

Részletesebben

Egy kötélstatikai alapfeladat megoldása másként

Egy kötélstatikai alapfeladat megoldása másként 1 Egy kötélstatikai alapfeladat megoldása másként Most megint egyik kedvenc témánkat vesszük elő. Bízunk benne, hogy az itt előforduló ismétlések szükségesek, ámde nem feleslegesek. A más módon való megoldás

Részletesebben

Egy gyakorlati szélsőérték - feladat. 1. ábra forrása: [ 1 ]

Egy gyakorlati szélsőérték - feladat. 1. ábra forrása: [ 1 ] 1 Egy gyakorlati szélsőérték - feladat Az [ 1 ] munkában találtuk az alábbi feladatot. 1. ábra forrása: [ 1 ] Magyarul: Három egyforma széles deszkából egy (eresz - )csatornát szegezünk össze. Az oldalfal

Részletesebben

Egy érdekes statikai feladat. Az interneten találtuk az [ 1 ] művet, benne az alábbi feladattal.

Egy érdekes statikai feladat. Az interneten találtuk az [ 1 ] művet, benne az alábbi feladattal. 1 Egy érdekes statikai feladat Az interneten találtuk az [ 1 ] művet, benne az alábbi feladattal. A feladat A szabályos n - szög alakú, A, B, C, csúcsú lap az A csúcsán egy sima függőleges fal - hoz támaszkodik,

Részletesebben

Rugalmas láncgörbe alapvető összefüggések és tudnivalók I. rész

Rugalmas láncgörbe alapvető összefüggések és tudnivalók I. rész Rugalmas láncgörbe alapvető összefüggések és tudnivalók I rész evezetés rugalmas láncgörbe magyar nyelvű szakirodalma nem túl gazdag Egy viszonylag rövid ismertetés található [ 1 ] - ben közönséges ( azaz

Részletesebben

Poncelet egy tételéről

Poncelet egy tételéről 1 Poncelet egy tételéről Már régebben találkoztunk az [ 1 ] műben egy problémával, mostanában pedig a [ 2 ] műben a megoldásával. A probléma lényege: határozzuk meg a egyenletben szereplő α, β együtthatókat,

Részletesebben

Ellipszis vezérgörbéjű ferde kúp felszínének meghatározásához

Ellipszis vezérgörbéjű ferde kúp felszínének meghatározásához 1 Ellipszis vezérgörbéjű ferde kúp felszínének meghatározásához Előző dolgozatunkkal melynek címe: A ferde körkúp palástfelszínének meghatározásához már mintegy megágyaztunk a jelen írásnak. Több mindent

Részletesebben

Egy mozgástani feladat

Egy mozgástani feladat 1 Egy mozgástani feladat Előző dolgozatunk melynek jele és címe: ED ~ Ismét az ellipszis egyenleteiről folytatásának tekinthető ez az írás. Leválasztottuk róla, mert bár szorosan kapcsolódnak, más a céljuk.

Részletesebben

Egy érdekes statikai - geometriai feladat

Egy érdekes statikai - geometriai feladat 1 Egy érdekes statikai - geometriai feladat Előző dolgozatunkban melynek címe: Egy érdekes geometriai feladat egy olyan feladatot oldottunk meg, ami az itteni előtanulmányának is tekinthető. Az ottani

Részletesebben

Egy forgáskúp metszéséről. Egy forgáskúpot az 1. ábra szerint helyeztünk el egy ( OXYZ ) derékszögű koordináta - rendszerben.

Egy forgáskúp metszéséről. Egy forgáskúpot az 1. ábra szerint helyeztünk el egy ( OXYZ ) derékszögű koordináta - rendszerben. Egy forgáskúp metszéséről Egy forgáskúpot az 1. ábra szerint helyeztünk el egy ( OXYZ ) derékszögű koordináta - rendszerben. Az O csúcsú, O tengelyű, γ félnyílásszögű kúpot az ( XY ) sík itt két alkotóban

Részletesebben

A főtengelyproblémához

A főtengelyproblémához 1 A főtengelyproblémához Korábbi, az ellipszis perspektivikus ábrázolásával foglalkozó dolgozatainkban előkerült a másodrendű görbék kanonikus alakra hozása, majd ebben a főtengelyrendszert előállító elforgatási

Részletesebben

A merőleges axonometria néhány régi - új összefüggéséről

A merőleges axonometria néhány régi - új összefüggéséről 1 A merőleges axonometria néhány régi - új összefüggéséről Most néhány régebben már megbeszélt összefüggés újabb igazolását adjuk meg, illetve más, eddig még nem látott képlet - alakokat állítunk elő.

Részletesebben

Lövés csúzlival. Egy csúzli k merevségű gumival készült. Adjuk meg az ebből kilőtt m tömegű lövedék sebességét, ha a csúzlit L - re húztuk ki!

Lövés csúzlival. Egy csúzli k merevségű gumival készült. Adjuk meg az ebből kilőtt m tömegű lövedék sebességét, ha a csúzlit L - re húztuk ki! 1 Lövés csúzlival Az [ 1 ] munkában találtuk az alábbi feladatot 1. ábra. A feladat Egy csúzli k merevségű gumival készült. Adjuk meg az ebből kilőtt m tömegű lövedék sebességét, ha a csúzlit L - re húztuk

Részletesebben

Függőleges koncentrált erőkkel csuklóin terhelt csuklós rúdlánc számításához

Függőleges koncentrált erőkkel csuklóin terhelt csuklós rúdlánc számításához 1 Függőleges koncentrált erőkkel csuklóin terhelt csuklós rúdlánc számításához Az interneten való nézelődés során találkoztunk az [ 1 ] művel, melyben egy érdekes és fontos feladat pontos(abb) megoldásához

Részletesebben

A szabályos sokszögek közelítő szerkesztéséhez

A szabályos sokszögek közelítő szerkesztéséhez 1 A szabályos sokszögek közelítő szerkesztéséhez A síkmértani szerkesztések között van egy kedvencünk: a szabályos n - szög közelítő szerkesztése. Azért vívta ki nálunk ezt az előkelő helyet, mert nagyon

Részletesebben

Érdekes geometriai számítások 10.

Érdekes geometriai számítások 10. 1 Érdekes geometriai számítások 10. Találtunk az interneten egy könyvrészletet [ 1 ], ahol egy a triéder - geometriában fontos összefüggést egyszerű módon vezetnek le. Ennek eredményét összevetjük más

Részletesebben

Egy ismerős fizika - feladatról. Az interneten találtuk az [ 1 ] könyvet, benne egy ismerős fizika - feladattal 1. ábra.

Egy ismerős fizika - feladatról. Az interneten találtuk az [ 1 ] könyvet, benne egy ismerős fizika - feladattal 1. ábra. 1 Egy ismerős fizika - feladatról Az interneten találtuk az [ 1 ] könyvet, benne egy ismerős fizika - feladattal 1. ábra. 1. ábra forrása: [ 1 ] A feladat szerint beleejtünk egy kútba / aknába egy követ,

Részletesebben

Forogj! Az [ 1 ] munkában találtunk egy feladatot, ami beindította a HD - készítési folyamatokat. Eredményei alább olvashatók. 1.

Forogj! Az [ 1 ] munkában találtunk egy feladatot, ami beindította a HD - készítési folyamatokat. Eredményei alább olvashatók. 1. 1 Forogj! Az [ 1 ] munkában találtunk egy feladatot, ami beindította a HD - készítési folyamatokat. Eredményei alább olvashatók. 1. Feladat Egy G gépkocsi állandó v 0 nagyságú sebességgel egyenes úton

Részletesebben

Henger és kúp metsződő tengelyekkel

Henger és kúp metsződő tengelyekkel Henger és kúp metsződő tengelyekkel Ebben a dolgozatban egy forgáshenger és egy forgáskúp áthatását tanulmányozzuk abban az egyszerűbb esetben, amikor a két test tengelye egyazon síkban fekszik, vagyis

Részletesebben

w u R. x 2 x w w u 2 u y y l ; x d y r ; x 2 x d d y r ; l 2 r 2 2 x w 2 x d w 2 u 2 d 2 2 u y ; x w u y l ; l r 2 x w 2 x d R d 2 u y ;

w u R. x 2 x w w u 2 u y y l ; x d y r ; x 2 x d d y r ; l 2 r 2 2 x w 2 x d w 2 u 2 d 2 2 u y ; x w u y l ; l r 2 x w 2 x d R d 2 u y ; A négysuklós mehanizmus alapfeladata másképpen Előző dolgozatunkban melynek íme: A négysuklós mehanizmus alapfeladatáról egy általunk legegyszerűbbnek gondolt megoldási módot ismertettünk. Ott megemlítet

Részletesebben

Két naszád legkisebb távolsága. Az [ 1 ] gyűjteményben találtuk az alábbi feladatot és egy megoldását: 1. ábra.

Két naszád legkisebb távolsága. Az [ 1 ] gyűjteményben találtuk az alábbi feladatot és egy megoldását: 1. ábra. 1 Két naszád legkisebb távolsága Az [ 1 ] gyűjteményben találtuk az alábbi feladatot és egy megoldását: 1. ábra. 1. ábra A feladat Az A és B, egymástól l távolságra lévő kikötőből egyidejűleg indul két

Részletesebben

Az ötszög keresztmetszetű élszarufa keresztmetszeti jellemzőiről

Az ötszög keresztmetszetű élszarufa keresztmetszeti jellemzőiről 1 Az ötszög keresztmetszetű élszarufa keresztmetszeti jellemzőiről Bevezetés A kontytetők és az összetett alaprajzú tetők akár nyeregtetők szerkezeti elemei között megtaláljuk az él - és a vápaszarufákat

Részletesebben

Egy kinematikai feladathoz

Egy kinematikai feladathoz 1 Egy kinematikai feladathoz Az [ 1 ] példatárból való az alábbi feladat. Egy bütyök v 0 állandó nagyságú sebességgel halad jobbról balra. Kontúrjának egyenlete a hozzá kötött, vele együtt haladó O 1 xy

Részletesebben

Két körhenger általánosabban ( Alkalmazzuk a vektoralgebrát! ) 1. ábra

Két körhenger általánosabban ( Alkalmazzuk a vektoralgebrát! ) 1. ábra Két körhenger általánosabban ( Alkalmazzuk a vektoralgebrát! ) Egy korábbi dolgozatunkban címe: Két egyenes körhenger a merőlegesen metsződő tengelyű körhengerek áthatási feladatával foglalkoztunk. Most

Részletesebben

Az eltérő hajlású szarufák és a taréjszelemen kapcsolatáról 1. rész. Eltérő keresztmetszet - magasságú szarufák esete

Az eltérő hajlású szarufák és a taréjszelemen kapcsolatáról 1. rész. Eltérő keresztmetszet - magasságú szarufák esete 1 Az eltérő hajlású szarufák és a taréjszelemen kapcsolatáról 1. rész Eltérő keresztmetszet - magasságú szarufák esete Az alábbi ábrát találtuk az interneten 1. ábra 1. ábra forrás( ok ): http://www.sema-soft.com/de/forum/files/firstpfettenverschiebung_432.jpg

Részletesebben

Fa rudak forgatása II.

Fa rudak forgatása II. Fa rudak forgatása II. Dolgozatunk I. részében egy speciális esetre oldottuk meg a kitűzött feladatokat. Most egy általánosabb elrendezés vizsgálatát végezzük el. A számítás a korábbi úton halad, ügyelve

Részletesebben

A hordófelület síkmetszeteiről

A hordófelület síkmetszeteiről 1 A hordófelület síkmetszeteiről Előző dolgozatunkban melynek címe: Ismét egy érdekes mechanizmusról azon hiányérzetünknek adtunk hangot, hogy a hordószerű test görbe felülete nem kapott nevet. Itt elneveztük

Részletesebben

Keresztezett pálcák II.

Keresztezett pálcák II. Keresztezett pálcák II Dolgozatunk I részéen a merőleges tengelyű pálcák esetét vizsgáltuk Most nézzük meg azt az esetet amikor a pálcák tengelyei nem merőlegesen keresztezik egymást Ehhez tekintsük az

Részletesebben

A magától becsukódó ajtó működéséről

A magától becsukódó ajtó működéséről 1 A magától becsukódó ajtó működéséről Az [ 1 ] műben találtunk egy érdekes feladatot, amit most mi is feldolgozunk. Az 1. ábrán látható az eredeti feladat másolata. A feladat kitűzése 1. ábra forrása:

Részletesebben

Felső végükön egymásra támaszkodó szarugerendák egyensúlya

Felső végükön egymásra támaszkodó szarugerendák egyensúlya 1 Felső végükön egymásra támaszkodó szarugerendák egyensúlya Az [ 1 ] példatárban találtunk egy érdekes feladatot, melynek egy változatát vizsgáljuk meg itt. A feladat Ehhez tekintsük az 1. ábrát! 1. ábra

Részletesebben

A kettősbelű fatörzs keresztmetszeti rajzolatáról

A kettősbelű fatörzs keresztmetszeti rajzolatáról 1 A kettősbelű fatörzs keresztmetszeti rajzolatáról Az idők során már többször eszünkbe jutott, hogy foglalkozni kellene a címbeli témával. Különösen akkor, amikor olyan függvényábrákat találtunk, melyek

Részletesebben

Az R forgató mátrix [ 1 ] - beli képleteinek levezetése: I. rész

Az R forgató mátrix [ 1 ] - beli képleteinek levezetése: I. rész Az R forgató mátri [ ] - beli képleteinek levezetése: I rész Az [ ] forrás kötetében a ( 49 ), ( 50 ) képletek nyilván mint közismertek nem lettek levezetve Minthogy az ottani további számítások miatt

Részletesebben

Aszimmetrikus nyeregtető ~ feladat 2.

Aszimmetrikus nyeregtető ~ feladat 2. 1 Aszimmetrikus nyeregtető ~ feladat 2. Ehhez tekintsük az 1. ábrát is! Itt az A és B pontok egy nyeregtető oromfali ereszpontjai, a P pont pedig a taréj pontja. Az ereszek egymástól való távolságának

Részletesebben

A csavarvonal axonometrikus képéről

A csavarvonal axonometrikus képéről A avarvonal axonometrikus képéről Miután egyre jobban megy a Graph ingyenes függvény - ábrázoló szoftver használata, kipróbáltuk, hogy tudunk - e vele avarvonalat ábrázolni, axonometrikusan. A válasz:

Részletesebben

Fénypont a falon Feladat

Fénypont a falon Feladat Fénypont a falon 3. Dolgozat - sorozatunk. és. részében két speiális eset vizsgálatát részleteztük. Itt az általánosabb síkbeli esettel foglalkozunk, főbb vonalaiban. Ehhez tekintsük az. ábrát is! 3. Feladat.

Részletesebben

Egy kinematikai feladat

Egy kinematikai feladat 1 Egy kinematikai feladat Valami geometriai dologról ötlött eszembe az alábbi feladat 1. ábra. 1. ábra Adott az a és b egyenes, melyek α szöget zárnak be egymással. A b egyenesre ráfektetünk egy d hosszúságú

Részletesebben

Profilmetsződésekről, avagy tórusz és körhenger áthatásáról

Profilmetsződésekről, avagy tórusz és körhenger áthatásáról 1 Profilmetsződésekről, avagy tórusz és körhenger áthatásáról Megesik, hogy nem értjük, amit olvasunk. Ez történt az [ 1 ] szakmai segédkönyv eseté - ben is. Ennek oka lehet ismereteink hiánya, a pontatlan

Részletesebben

A gúla ~ projekthez 1. rész

A gúla ~ projekthez 1. rész 1 A gúla ~ projekthez 1. rész Megint találtunk az interneten valami érdekeset: az [ 1 ], [ 2 ], [ 3 ] anyagokat. Úgy véljük, hogy az alábbi téma / témakör kiválóan alkalmas lehet projekt - módszerrel történő

Részletesebben

A Cassini - görbékről

A Cassini - görbékről A Cassini - görbékről Giovanni Domenico Cassini, a 17-18 században élt olasz származású francia csillagász neve egyebek mellett a róla elnevezett görbékről is ismert lehet; ilyeneket mutat az 1 ábra is

Részletesebben

Teletöltött álló hordó abroncs - feszültségeiről

Teletöltött álló hordó abroncs - feszültségeiről 1 Teletöltött álló hordó abroncs - feszültségeiről Korábban már többször nekifutottunk a fa hordók szilárdsági problémáinak, ám még messze nem válaszoltunk meg minden kérdést e témakörben. Az [ 1 ] munkában

Részletesebben

A tűzfalakkal lezárt nyeregtető feladatához

A tűzfalakkal lezárt nyeregtető feladatához 1 A tűzfalakkal lezárt nyeregtető feladatához Bevezetés Ehhez először tekintsük az 1. ábrát! 1 Itt azt szemlélhetjük, hogy hogyan lehet el - kerülni egy épület tűzfalának eláztatását. A felső ábrarészen

Részletesebben

Csúcsívek rajzolása. Kezdjük egy általános csúcsív rajzolásával! Ehhez tekintsük az 1. ábrát!

Csúcsívek rajzolása. Kezdjük egy általános csúcsív rajzolásával! Ehhez tekintsük az 1. ábrát! 1 Csúcsívek rajzolása Előző dolgozatunk kapcsán melynek címe: Íves nyeregtető főbb számítási képleteiről találkoztunk a csúcsívvel, mint az építészetben igen gyakran előforduló vonalidommal. Most egy másik

Részletesebben

További adalékok a merőleges axonometriához

További adalékok a merőleges axonometriához 1 További adalékok a merőleges axonometriához Egy szép összefoglaló munkát [ 1 ] találtunk az interneten, melynek előző dolgoza - tunkhoz csatlakozó részeit itt dolgozzuk fel. Előző dolgozatunk címe: Kiegészítés

Részletesebben

Ellipszis perspektivikus képe 2. rész

Ellipszis perspektivikus képe 2. rész 1 Ellipszis perspektivikus képe 2. rész Dolgozatunk 1. részében nem mentünk tovább a matematikai kifejtésben. Ezzel mintegy felhagytunk a belső összefüggések feltárásával. A jelen 2. részben megkíséreljük

Részletesebben

A konfokális és a nem - konfokális ellipszis - seregekről és ortogonális trajektóriáikról

A konfokális és a nem - konfokális ellipszis - seregekről és ortogonális trajektóriáikról 1 A konfokális és a nem - konfokális ellipszis - seregekről és ortogonális trajektóriáikról Előző dolgozatunk melynek címe: Ha az évgyűrűk ellipszis alakúak lennének készítése során böngész - gettük az

Részletesebben

Egy általánosabb súrlódásos alapfeladat

Egy általánosabb súrlódásos alapfeladat Egy általánosabb súrlódásos alapfeladat Az előző dolgozatunkban címe: Egy súrlódásos alapfeladat, jele: ( E D ) tárgyalt probléma általánosítása az alábbi, melynek forrása [ 1 ]. Tekintsük az 1. ábrát!

Részletesebben

Egy érdekes nyeregtetőről

Egy érdekes nyeregtetőről Egy érdekes nyeregtetőről Adott egy nyeregtető, az 1 ábra szerinti adatokkal 1 ábra Végezzük el vetületi ábrázolását, az alábbi számszerű adatokkal: a = 10,00 m; b = 6,00 m; c = 3,00 m; α = 45 ; M 1:100!

Részletesebben

A rektellipszis csavarmozgása során keletkező felületről

A rektellipszis csavarmozgása során keletkező felületről 1 A rektellipszis csavarmozgása során keletkező felületről Előző dolgozatunkban melynek címe: A kör és ellipszis csavarmozgása során keletkező felületekről felírtuk az általánosabb helyzetű ellipszis mint

Részletesebben

Egy geometriai szélsőérték - feladat

Egy geometriai szélsőérték - feladat 1 Egy geometriai szélsőérték - feladat A feladat: Szerkesztendő egy olyan legnagyobb területű háromszög, melynek egyik csúcsa az a és b féltengelyeivel adott ellipszis tetszőlegesen felvett pontja. Keresendő

Részletesebben

A loxodrómáról. Előző írásunkban melynek címe: A Gudermann - függvényről szó esett a Mercator - vetületről,illetve az ezen alapuló térképről 1. ábra.

A loxodrómáról. Előző írásunkban melynek címe: A Gudermann - függvényről szó esett a Mercator - vetületről,illetve az ezen alapuló térképről 1. ábra. 1 A loxodrómáról Előző írásunkban melynek címe: A Gudermann - függvényről szó esett a Mercator - vetületről,illetve az ezen alapuló térképről 1. ábra. 1. ábra forrása: [ 1 ] Ezen a térképen a szélességi

Részletesebben

Egy kétszeresen aszimmetrikus kontytető főbb geometriai adatainak meghatározásáról

Egy kétszeresen aszimmetrikus kontytető főbb geometriai adatainak meghatározásáról 1 Egy kétszeresen aszimmetrikus kontytető főbb geometriai adatainak meghatározásáról Korábban már több egyszerűbb tető - alak geometriáját leírtuk. Most egy kicsit nehezebb feladat megoldását tűzzük ki

Részletesebben

Egy háromlábú állvány feladata. 1. ábra forrása:

Egy háromlábú állvány feladata. 1. ábra forrása: 1 Egy háromlábú állvány feladata Az interneten találtuk az alábbi versenyfeladatot 1. ábra Az egyforma hosszúságú CA, CB és CD rudak a C pontban gömbcsuklóval kapcsolódnak, az A, B, D végükön sima vízszintes

Részletesebben

Egy újabb látószög - feladat

Egy újabb látószög - feladat 1 Egy újabb látószög - feladat A feladat Adott az O középpontú, R sugarú körön az α szöggel jellemzett P pont. Határozzuk meg, hogy mekkora ϑ szög alatt látszik a P pontból a vízszintes átmérő - egyenes

Részletesebben

A fák növekedésének egy modelljéről

A fák növekedésének egy modelljéről 1 A fák növekedésének egy modelljéről Az interneten nézelődve találtunk rá az [ 1 ] munkára, ahol a fák növekedésének azt a modelljét ismertették, melyet először [ 2 ] - ben írtak le. Úgy tűnik, ez az

Részletesebben

Egy másik érdekes feladat. A feladat

Egy másik érdekes feladat. A feladat Egy másik érdekes feladat Az előző dolgozatban melynek címe: Egy érdekes feladat az itteninek egy speciális esetét vizsgáltuk. Az általánosabb feladat az alábbi [ 1 ]. A feladat Adott: az ABCD zárt négyszög

Részletesebben

A középponti és a kerületi szögek összefüggéséről szaktanároknak

A középponti és a kerületi szögek összefüggéséről szaktanároknak A középponti és a kerületi szögek összefüggéséről szaktanároknak Középiskolai tanulmányaink fontos része volt az elemi síkgeometriai tananyag. Ennek egyik nevezetes tétele így szól [ 1 ] : Az ugyanazon

Részletesebben

A ferde tartó megoszló terheléseiről

A ferde tartó megoszló terheléseiről A ferde tartó megoszló terheléseiről Úgy vettem észre az idők során, hogy nem nagyon magyarázták agyon azt a kérdést, amivel itt fogunk foglalkozni. Biztos azt mondják majd megint, hogy De hisz ezt mindenki

Részletesebben

A kötélsúrlódás képletének egy általánosításáról

A kötélsúrlódás képletének egy általánosításáról 1 A kötélsúrlódás képletének egy általánosításáról Sok korábbi dolgozatunkban foglalkoztunk kötélstatikai feladatokkal. Ez a mostani azon - ban még nem került szóba. A feladat: az egyenes körhengerre feltekert,

Részletesebben

t, u v. u v t A kúpra írt csavarvonalról I. rész

t, u v. u v t A kúpra írt csavarvonalról I. rész A kúpra írt csavarvonalról I. rész Sokféle kúpra írt csavarvonal létezik. Ezek közül először a legegyszerűbbel foglalko - zunk. Ezt azért tesszük mert meglepő az a tény hogy eddig még szinte sehol nem

Részletesebben

Érdekes geometriai számítások Téma: A kardáncsukló kinematikai alapegyenletének levezetése gömbháromszögtani alapon

Érdekes geometriai számítások Téma: A kardáncsukló kinematikai alapegyenletének levezetése gömbháromszögtani alapon Érdekes geometriai számítások 7. Folytatjuk a sorozatot. 7. Téma: A kardáncsukló kinematikai alapegyenletének levezetése gömbháromszögtani alapon Korábbi dolgozatainkban már többféle módon is bemutattuk

Részletesebben

Az éjszakai rovarok repüléséről

Az éjszakai rovarok repüléséről Erről ezt olvashatjuk [ ] - ben: Az éjszakai rovarok repüléséről Az a kijelentés, miszerint a repülés pályája logaritmikus spirális, a következőképpen igazolható [ 2 ].. ábra Az állandó v nagyságú sebességgel

Részletesebben

A Kepler - problémáról. Megint az interneten találtunk egy szép animációt 1. ábra, amin elgondolkoztunk: Ezt hogyan oldanánk meg? Most erről lesz szó.

A Kepler - problémáról. Megint az interneten találtunk egy szép animációt 1. ábra, amin elgondolkoztunk: Ezt hogyan oldanánk meg? Most erről lesz szó. 1 A Kepler - problémáról Megint az interneten találtunk egy szép animációt 1. ábra, amin elgondolkoztunk: Ezt hogyan oldanánk meg? Most erről lesz szó. 1. ábra forrása: https://hu.wikipedia.org/wiki/kepler-probl%c3%a9ma

Részletesebben

Kiegészítés a három erő egyensúlyához

Kiegészítés a három erő egyensúlyához 1 Kiegészítés a három erő egyensúlyához Egy régebbi dolgozatunkban melynek jele és címe : RD: Három erő egyensúlya ~ kéttámaszú tartó már sok mindent elmondtunk a címbeli témáról. Ez ugyanis egy megkerülhetetlen

Részletesebben

Egy általános helyzetű lekerekített sarkú téglalap paraméteres egyenletrendszere. Az egyenletek felírása

Egy általános helyzetű lekerekített sarkú téglalap paraméteres egyenletrendszere. Az egyenletek felírása 1 Egy általános helyzetű lekerekített sarkú téglalap paraméteres egyenletrendszere Az egyenletek felírása Korábbi dolgozataink már mintegy előkészítették a mostanit; ezek: ~ KD - 1: Általános helyzetű

Részletesebben

Vonatablakon át. A szabadvezeték alakjának leírása. 1. ábra

Vonatablakon át. A szabadvezeték alakjának leírása. 1. ábra 1 Vonatablakon át Sokat utazom vonaton, és gyakran elnézem a vonatablakon át a légvezeték(ek) táncát. Már régóta gondolom, hogy le kellene írni ezt a látszólagos mozgást. Most erről lesz szó. Ehhez tekintsük

Részletesebben

Befordulás sarkon bútorral

Befordulás sarkon bútorral Befordulás sarkon bútorral Bizonyára volt már olyan élményed, hogy bútort kellett cipelned, és nem voltál biztos benne, hogy be tudjátok - e vinni a szobába. Erről jutott eszembe az alábbi feladat. Adott

Részletesebben

Egy nyíllövéses feladat

Egy nyíllövéses feladat 1 Egy nyíllövéses feladat Az [ 1 ] munkában találtuk az alábbi feladatot 1. ábra. 1. ábra forrása: [ 1 / 1 ] Igencsak tanulságos, ezért részletesen bemutatjuk a megoldását. A feladat Egy sportíjjal nyilat

Részletesebben

Síkbeli csuklós rúdnégyszög egyensúlya

Síkbeli csuklós rúdnégyszög egyensúlya Síkbeli csuklós rúdnégyszög egyensúlya Két korábbi dolgozatunkban melyek címe és azonosítója: [KD ]: Egy érdekes feladat, [KD ]: Egy másik érdekes feladat azt vizsgáltuk, hogy egy csuklós rúdnégyszög milyen

Részletesebben

Ellipszissel kapcsolatos képletekről

Ellipszissel kapcsolatos képletekről 1 Ellipszissel kapcsolatos képletekről Előző dolgozatunkban melynek címe: A Lenz - vektorról viszonylag sokat kellett ellipszissel kapcsolatos képletekkel dolgozni. Ennek során is adódott pár észrevételünk,

Részletesebben

Vontatás III. A feladat

Vontatás III. A feladat Vontatás III Ebben a részben ázoljuk a ontatási feladat egy lehetséges numerikus megoldási módját Ezt az I részben ismertetett alapegyenletre építjük fel Itt az egy ontatott kerékpár esetét izsgáljuk feladat

Részletesebben

Egy érdekes mechanikai feladat

Egy érdekes mechanikai feladat 1 Egy érdekes mechanikai feladat 1. ábra forrása: [ 1 ] A feladat Az 1. ábra szerinti rudazat A csomópontján átvezettek egy kötelet, melynek alsó végén egy m tömegű golyó lóg. A rudak egyező nyúlási merevsége

Részletesebben

1. ábra forrása: [ 1 ]

1. ábra forrása: [ 1 ] Merev test emelése négy kötéllel Előző dolgozatunkban melynek címe: Lépcső beemelése már foglalkoztunk a témával. Akkor elmondtuk, hogy a négyköteles teheremelés feladata statikailag egyszeresen hatá -

Részletesebben

A térbeli mozgás leírásához

A térbeli mozgás leírásához A térbeli mozgás leírásához Az idők során már többször foglalkoztunk a címbeli témával; az előzmények vagyis a korábbi dolgozatok: ~ KD : Az R forgató mátrix I Az R forgató mátrix II ~ KD : A véges forgatás

Részletesebben

Rönk kiemelése a vízből

Rönk kiemelése a vízből 1 Rönk kiemelése a vízből Az interneten találtuk az [ 1 ] művet, benne az alábbi feladatot 1. ábra. A feladat 1. ábra forrása: [ 1 ] Egy daru kötél segítségével lassan emeli ki a vízből a benne úszó gerendát

Részletesebben

A Lenz - vektorról. Ha jól emlékszem, először [ 1 ] - ben találkoztam a címbeli fogalommal 1. ábra.

A Lenz - vektorról. Ha jól emlékszem, először [ 1 ] - ben találkoztam a címbeli fogalommal 1. ábra. 1 A Lenz - vektorról Ha jól emlékszem, először [ 1 ] - ben találkoztam a címbeli fogalommal 1. ábra. 1. ábra forrása: [ 1 ] Ez nem régen történt. Meglepett, hogy eddig ez kimaradt. Annál is inkább, mert

Részletesebben

Kecskerágás már megint

Kecskerágás már megint 1 Kecskerágás már megint Az interneten találtuk az újabb kecskerágós feladatot 1. ábra. 1. ábra forrása: [ 1 ] A feladat ( kicsit megváltoztatva az eredeti szöveget ) Egy matematikus kecskét tart a kertjében.

Részletesebben

Egy másik alapfeladat fűrészelt, illetve faragott gerendákra. 1. ábra

Egy másik alapfeladat fűrészelt, illetve faragott gerendákra. 1. ábra Ey másik alapfeladat fűrészelt, illetve faraott erendákra Az előző dolozatokban ld.: ( E - 1 ), ( E - ), ( E - ) már szinte teljesen előkészítettük az itteni feladatot. Ehhez tekintsük az 1. ábrát! 1.

Részletesebben

Hely és elmozdulás - meghatározás távolságméréssel

Hely és elmozdulás - meghatározás távolságméréssel Hely és elmozdulás - meghatározás távolságméréssel Bevezetés A repülő szerkezetek repülőgépek, rakéták, stb. helyének ( koordnátának ) meghatározása nem új feladat. Ezt a szakrodalom részletesen taglalja

Részletesebben

A bifiláris felfüggesztésű rúd mozgásáról

A bifiláris felfüggesztésű rúd mozgásáról 1 A bifiláris felfüggesztésű rúd mozgásáról A végein fonállal felfüggesztett egyenes rúd részleges erőtani vizsgálatát mutattuk be egy korábbi dolgozatunkban, melynek címe: Forgatónyomaték mérése - I.

Részletesebben

Az ötszög keresztmetszetű élszarufa kis elmozdulásainak számításáról

Az ötszög keresztmetszetű élszarufa kis elmozdulásainak számításáról 1 Az ötszög keresztmetszetű élszarufa kis elmozdulásainak számításáról Előző dolgozatunkban melynek címe: ED: Az ötszög keresztmetszetű élszarufa σ - feszültségeinek számításáról elkezdtük / folytattuk

Részletesebben

A tetők ferde összekötési feladatainak megoldása

A tetők ferde összekötési feladatainak megoldása 1 A tetők ferde összekötési feladatainak megoldása Előző dolgozatunkban melynek címe: Két tető összekötése ferdén három önállóan megoldandó feladattal zártunk. Most részletezzük a megoldásokat, azok hasznossága

Részletesebben

Kerekes kút 2.: A zuhanó vödör mozgásáról

Kerekes kút 2.: A zuhanó vödör mozgásáról 1 Kerekes kút 2.: A zuhanó vödör mozgásáról Előző dolgozatunkban melynek címe: A kerekes kútról a végén azt írtuk, hogy Az elengedett vödör a saját súlya hatására erősen felgyorsulhatott. Ezt személyes

Részletesebben

A fűrészáru száradása miatt fellépő méret - és alakváltozása meghatározásának egy újabb módszeréről

A fűrészáru száradása miatt fellépő méret - és alakváltozása meghatározásának egy újabb módszeréről 1 A fűrészáru száradása miatt fellépő méret - és alakváltozása meghatározásának egy újabb módszeréről Előző dolgozatunkban melynek címe: A zsugorodási viszonyszám, illetve százalék Keylwerth - féle képletének

Részletesebben

T s 2 képezve a. cos q s 0; 2. Kötélstatika I. A síkbeli kötelek egyensúlyi egyenleteiről és azok néhány alkalmazásáról

T s 2 képezve a. cos q s 0; 2. Kötélstatika I. A síkbeli kötelek egyensúlyi egyenleteiről és azok néhány alkalmazásáról Kötélstatika I. A síkbeli kötelek egyensúlyi egyenleteiről és azok néhány alkalmazásáról Úgy találjuk, hogy a kötelek statikájának népszerűsítése egy soha véget nem érő feladat. Annyi szép dolog tárháza

Részletesebben

A felcsapódó kavicsról. Az interneten találtuk az alábbi, a hajítás témakörébe tartozó érdekes feladatot 1. ábra.

A felcsapódó kavicsról. Az interneten találtuk az alábbi, a hajítás témakörébe tartozó érdekes feladatot 1. ábra. 1 A felcsapódó kavicsról Az interneten találtuk az alábbi, a hajítás témakörébe tartozó érdekes feladatot 1. ábra. 1. ábra forrása: [ 1 ] Ez azért is érdekes, mert autóvezetés közben már többször is eszünkbe

Részletesebben

A közönséges csavarvonal érintőjének képeiről

A közönséges csavarvonal érintőjének képeiről A közönséges csavarvonal érintőjének képeiről Már régóta rajzoljuk a táblára a közönséges csavarvonal vetületeinek és síkba teríté - sének ábráit, a Gépészeti alapismeretek tantárgy óráin. Úgy tűnik, itt

Részletesebben

Forgatónyomaték mérése I.

Forgatónyomaték mérése I. Forgatónyomaték mérése I Bevezetés A forgatónyomaték az erőpár mint statikai alapalakzat jellemzője A nevéből is következően a testekre forgató hatást fejt ki Vektormennyiség, melyet az M = a x F képlettel

Részletesebben

Egy sajátos ábrázolási feladatról

Egy sajátos ábrázolási feladatról 1 Egy sajátos ábrázolási feladatról Régen volt, ha volt egyáltalán. Én bizony nem emlékszem a ferde gerincvonalú túleme - lés ~ átmeneti megoldásra 1. ábra az ( erdészeti ) útépítésben. 1. ábra forrása:

Részletesebben