Egy másik érdekes feladat. A feladat

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Egy másik érdekes feladat. A feladat"

Átírás

1 Egy másik érdekes feladat Az előző dolgozatban melynek címe: Egy érdekes feladat az itteninek egy speciális esetét vizsgáltuk. Az általánosabb feladat az alábbi [ 1 ]. A feladat Adott: az ABCD zárt négyszög alakú csuklós rudazat, a, b, c, d oldalhosszakkal, melynek átlói mentén egy - egy húrt feszítettünk ki, T 1 és T nagyságú erővel. Keresett: a rudazat egyensúlyi helyzetében a húrerők nagyságának az aránya, illetve adott húrerő - arányhoz tartozó egyensúlyi helyzet. Ehhez tekintsük az 1. ábrát is. A megoldás 1. ábra A megoldás alapja: a virtuális munka elve. Eszerint [ ] : Egy mechanikai rendszer akkor és csak akkor van egyensúlyban, ha a rendszerre ható szabaderők teljes virtuális munkája zérus Képlettel: i F δr 0. ( 1 ) i Itt F i : az i - edik csuklóra ható szabaderő vektora, δr i : az i - edik csukló virtuális elmozdulása. A csuklós rudazatra ható szabaderők:

2 F1 FA T1 = T 1 e1, F FB T = T e, F3 FC T1 = T 1e1, F4 FD T = T e ; ( ) a csuklók virtuális elmozdulásai, a P momentán centrum körül végzett virtuális szögelfordulással: δr1 δra 0 ; δr δrb δ(bd) (PB) cos * e (PB) cos90 1e (PB) sin e ; 1 3 C (AC) (PC) cos * 1 (PC) cos 90 δr δr δ e e (PC) sin e ; 1 1 δr4 δrd 0. ( 3 ) Most ( 1 ), ( ), ( 3 ) - mal: F δr F δr F δr F δr 0 ; T e 0T e (PB) sin e T e (PC) sin e T e 0 0 ; 1 T (PB) sin T (PC) sin 0 ; 1 T (PB) sin T (PC) sin 0 ; 1 T (PC) sin T (PB) sin ; 1 (PC) T sin (PB) T sin 1. ( 4 ) A PBC háromszög területe az 1. ábra jelöléseivel: T PBC (PB) (AC) sin (PC) (BD) sin,

3 3 (PC) (PB) (AC) sin (BD) sin Most ( 4 ) és ( 5 ) - tel: T sin (AC) sin T sin (BD) sin T (AC) sin sin T (BD) sin sin bevezetve az (AC) e, (BD) f jelöléseket, ( 6 ) és ( 7 ) - tel:. ;, ( 5 ) ( 6 ) ( 7 ) T e sin sin 1. T f sin sin ( 8 ) Most állítsunk fel trigonometriai összefüggéseket az adott és a keresett mennyiségek között v.ö.: [ 3 ], [ 4 ]! Ehhez tekintsük a. ábrát is! Adott: a, b, c, d; α. Keresett: e, f ; α, β 1, γ 1, δ.. ábra

4 Az ABD Δ - ből koszinusz - tétellel: f a d a d cos, 4 ( 9 ) f a d adcos. ( 10 ) A BCD Δ - ből, hasonlóan: f b c bccos, ( 11 ) b c f cos ; ( 1 ) bc most ( 9 ) és ( 1 ) - vel: cos tehát: b c a d a d cos bc b c a d a d cos, bc bc b c a d ad cos cos. bc bc ( 13 ) Ezután a BDE Δ - ből: bsin180 bsin tg, c b cos 180 c b cos tehát: bsin tg. c b cos Majd a BDF Δ - ből: asin tg 1. d a cos ( 14 ) ( 15 ) Továbbá: ( 16 ) 1. Most az ABC Δ - ből:

5 5 180 ; majd az ACD Δ - ből: ; ezután ( 17 ) és ( 18 ) összegét képezve: , innen a. ábra szerint is: 360, ebből pedig: 360. Továbbá az ABD Δ - ből: 1 80, 180. Most az ACD Δ - ből: csin tg. 1 d c cos Majd ( 18 ) - ból: 180. ( 17 ) ( 18 ) ( 19 ) ( 0 ) ( 1 ) ( ) Ezután a. ábra szerint:. 1 ( 3 ) Végül az ACD Δ - ből koszinusz - tétellel: e c d c d cos, ( 4 ) e c d cdcos. ( 5 ) Most már minden, a ( 8 ) képletben szereplő mennyiséget kifejeztünk a bemenő adatokkal. Néha kényelmesebben használható összefüggésekkel jobban boldogulhatunk. Például célszerű lehet β - ra újabb összefüggést is levezetni. Az ABC Δ - ből, koszinusz - tétellel:

6 6 e a b abcos ; ( 6 ) most ( 4 ) és ( 6 ) - ból, az előzőekhez hasonlóan: a b e a b c d cdcos cos ab ab a b c d cd cos, ab ab tehát: a b c d cd cos cos. ( 7 ) ab ab Ehhez tekintsük a 3. ábrát is! Specializáció 3. ábra Itt együtt tüntettük fel az előző dolgozatban az I. részben, valamint a jelen dolgozatban a II. részben alkalmazott jelöléseket. Ez megkönnyítheti az azonosítást.

7 7 A specializáció esete: c a, d b. ( S1 ) Ekkor a 3. ábra második sorának megfelelő átalakulás megy végbe 4. ábra. A húrerők viszonya ( 8 ) - ból: T e sin sin T f sin sin ábra ( S ) A 4. ábra szerint, szinusz - tétellel: sin f sin e sin 1 f sin e 1,. Most ( S ), ( S3 ), ( S4 ) - gyel: ( S3 ) ( S4 ) T e f1 f. ( S5 ) T f e e Minthogy a paralelogramma átlói felezik egymást [ 5 ], ezért: e e1 e, f f 1 f. Most ( S5 ) és ( S6 ) - tal: T f ; T 1 e ( S6 ) ( S7 ) ennek reciproka, ( 7 ) - tel is:

8 8 T1 e (AC). ( S8 ) T f (BD) Az ( S8 ) összefüggés megegyezik az I. / ( 13 ) - mal, így a specializáció sikerrel zárult. Grafikus megoldás Korábban láttuk, hogy az általános rúdnégyszög esetére is előálltak a ( 8 ) - hoz szükséges geometriai mennyiségek, a húrerő - nagyságok arányának meghatározásához, egyensúly esetére. Az I. részben innen rögtön meghatároztuk az egyensúlyi helyzetet jellemző ω szöget is. Itt ez nem olyan egyszerű, mert a T 1 / T viszony a ( 8 ) képlet által meghatározott, az ( a, b, c, d ; α ) mennyiségeket tartalmazó bonyolult trigonometriai kapcsolatokon keresztül áll elő, melyekből az α szög meghatározása igen körülményes lenne, ismert ( a, b, c, d; T 1, T ) adatok esetén, analitikus vagy numerikus úton. Ezért grafikus megoldást választunk. Ennek lényege, hogy ( 8 ) alapján felírjuk a T e( ) sin ( ) sin 1( ) F ( G1 ) T1 f ( ) sin 1( ) sin ( ) függvénykapcsolatot, egy adott / felvett ( a, b,c, d ) adategyüttesre, majd ezt ábrázoljuk a Graph programmal. Így egyenlet - megoldás nélkül is hozzájuthatunk a megoldáshoz: ~ adott α - hoz az egyensúlyi T / T 1 meghatározása; ~ adott T / T 1 - hez az egyensúlyi α meghatározása. Ennek érdekében a korábbiak alapján felírjuk az alábbi függvényeket. f ( ) a d adcos ; ( G ) a sin 1( ) arctg ; d acos ( G3 ) b c a d ad ( ) arc cos cos ; bc bc ( G4 ) bsin ( ) ( ) arctg ; cbcos ( ) ( G6 ) ( ) ( ) ( ) ; ( G7 ) 1 e( ) c d cdcos ( ) ; ( G8 ) csin ( ) 1( ) arctg ; dccos ( ) ( G9 )

9 9 ( ) 1( ) ; ( G10 ) ( ) 180 ( ) ( ) ; 180 ( ). ( G11 ) ( G1 ) A függvényrajzoláshoz felvesszük az alábbi adatokat: a = 5,6 ( m ); b = 4,8 ( m ); c = 7,1 ( m ); d = 10,0 ( m ). ( A ) Most ( G ) ( G1 ) és ( A ) - val: f ( ) 131,36 11cos ( m ) ; sin 1( ) arctg ( ); 1, cos ( ) arc cos0, , cos ( ); sin ( ) ( ) arctg ( ); 1, cos ( ) ( ) 1( ) ( ) ( ); e( ) 150,4114cos ( ) ( m ) ; ( G13 ) sin ( ) 1( ) arctg ( ); 1, cos ( ) ( ) 1( ) ( ); 1( ) 180 1( ) ( ) ( ); 80 1( ) ( ). Majd ( G13 ) - mal elvégezzük a ( G1 ) szerinti műveleteket, a Graph - ban egyéni függvények megadásával. Az eredmény - görbe az 5. ábrán látható. A feladat természetéből adódik, hogy csak a nem - negatív ordináták jönnek számításba. Azt kaptuk, hogy ~ T / T 1 = 0, ha α 0 = 40,675 ; ~ α > 95 esetén csak T >> T 1 esetében lehet egyensúlyban a rudazat. A 6. ábra azt mutatja, hogyan kell az adott példa összetartozó értékpárjait leolvasni a grafikonról. Itt például kerestük az y 1 = 4 - hez tartozó szögértéket, melyre α 1 = 93,98 adódott. Ezzel a feladatot megoldottuk. Persze, nem mi vagyunk az elsők. Talán már Leonhard Euler is megoldotta [ 1 ], legfeljebb nem voltak ilyen szép grafikonjai, mint nekünk. Azért ez is valami. Mondják [ 6 ], hogy a nagy Euler megvakult. Bizony, akkoriban ( XVIII. sz. ) nagyon nehéz lehetett az ilyen hosszadalmas számításokat gyalogosan, rossz megvilágítás mellett végezni

10 10 30 y = T / T alfa ( fok ) α0 = 40,675 f(x)=(ee(x)*sin(a(x))*sin(g1(x)))/(ff(x)*sin(b1(x))*sin(d(x))) r(t)=40.675/cos(t) -10 Irodalom: 5. ábra [ 1 ] [ ] Budó Ágoston: Mechanika Tankönyvkiadó, Budapest, több kiadásban [ 3 ] Sz. N. Kozsevnyikov: Mechanizmusok és gépek elmélete Tankönyvkiadó, Budapest, 195. [ 4 ] Terplán Zénó: Mechanizmusok. kiadás, Tankönyvkiadó, Budapest, 196. [ 5 ] Obádovics J. Gyula: Matematika 15. kiadás, Scolar Kiadó, Budapest, [ 6 ]

11 11 0 y = T / T y1 = 4 alfa ( fok ) α0 = 40,675 α1 = 93, f(x)=(ee(x)*sin(a(x))*sin(g1(x)))/(ff(x)*sin(b1(x))*sin(d(x))) r(t)=40.675/cos(t) f(x)=4 r(t)=93.98/cos(t) 6. ábra Megjegyzések: M1. Ha a feladat T / T 1 < 0 - t is megengedne, akkor a keresett grafikon a 7. ábra szerinti lenne. M. Ha negatív szögeket is megengedünk, akkor a grafikon a 8. ábra szerinti.

12 1 30 y = T / T alfa ( fok ) α0 = 40, f(x)=(ee(x)*sin(a(x))*sin(g1(x)))/(ff(x)*sin(b1(x))*sin(d(x))) r(t)=40.675/cos(t) ábra

13 13 30 y = T / T alfa ( fok ) α0,1 = -58, α0, = 40, f(x)=(ee(x)*sin(a(x))*sin(g1(x)))/(ff(x)*sin(b1(x))*sin(d(x))) r(t)=40.675/cos(t) r(t)= /cos(t) ábra Sződliget, 010. december 18. Összeállította: Galgóczi Gyula mérnöktanár

Síkbeli csuklós rúdnégyszög egyensúlya

Síkbeli csuklós rúdnégyszög egyensúlya Síkbeli csuklós rúdnégyszög egyensúlya Két korábbi dolgozatunkban melyek címe és azonosítója: [KD ]: Egy érdekes feladat, [KD ]: Egy másik érdekes feladat azt vizsgáltuk, hogy egy csuklós rúdnégyszög milyen

Részletesebben

w u R. x 2 x w w u 2 u y y l ; x d y r ; x 2 x d d y r ; l 2 r 2 2 x w 2 x d w 2 u 2 d 2 2 u y ; x w u y l ; l r 2 x w 2 x d R d 2 u y ;

w u R. x 2 x w w u 2 u y y l ; x d y r ; x 2 x d d y r ; l 2 r 2 2 x w 2 x d w 2 u 2 d 2 2 u y ; x w u y l ; l r 2 x w 2 x d R d 2 u y ; A négysuklós mehanizmus alapfeladata másképpen Előző dolgozatunkban melynek íme: A négysuklós mehanizmus alapfeladatáról egy általunk legegyszerűbbnek gondolt megoldási módot ismertettünk. Ott megemlítet

Részletesebben

Fiók ferde betolása. A hűtőszekrényünk ajtajának és kihúzott fiókjának érintkezése ihlette az alábbi feladatot. Ehhez tekintsük az 1. ábrát!

Fiók ferde betolása. A hűtőszekrényünk ajtajának és kihúzott fiókjának érintkezése ihlette az alábbi feladatot. Ehhez tekintsük az 1. ábrát! 1 Fiók ferde betolása A hűtőszekrényünk ajtajának és kihúzott fiókjának érintkezése ihlette az alábbi feladatot. Ehhez tekintsük az 1. ábrát! 1. ábra Itt azt látjuk, hogy egy a x b méretű kis kék téglalapot

Részletesebben

Felső végükön egymásra támaszkodó szarugerendák egyensúlya

Felső végükön egymásra támaszkodó szarugerendák egyensúlya 1 Felső végükön egymásra támaszkodó szarugerendák egyensúlya Az [ 1 ] példatárban találtunk egy érdekes feladatot, melynek egy változatát vizsgáljuk meg itt. A feladat Ehhez tekintsük az 1. ábrát! 1. ábra

Részletesebben

Egy általánosabb súrlódásos alapfeladat

Egy általánosabb súrlódásos alapfeladat Egy általánosabb súrlódásos alapfeladat Az előző dolgozatunkban címe: Egy súrlódásos alapfeladat, jele: ( E D ) tárgyalt probléma általánosítása az alábbi, melynek forrása [ 1 ]. Tekintsük az 1. ábrát!

Részletesebben

Egy érdekes statikai - geometriai feladat

Egy érdekes statikai - geometriai feladat 1 Egy érdekes statikai - geometriai feladat Előző dolgozatunkban melynek címe: Egy érdekes geometriai feladat egy olyan feladatot oldottunk meg, ami az itteni előtanulmányának is tekinthető. Az ottani

Részletesebben

Egy forgáskúp metszéséről. Egy forgáskúpot az 1. ábra szerint helyeztünk el egy ( OXYZ ) derékszögű koordináta - rendszerben.

Egy forgáskúp metszéséről. Egy forgáskúpot az 1. ábra szerint helyeztünk el egy ( OXYZ ) derékszögű koordináta - rendszerben. Egy forgáskúp metszéséről Egy forgáskúpot az 1. ábra szerint helyeztünk el egy ( OXYZ ) derékszögű koordináta - rendszerben. Az O csúcsú, O tengelyű, γ félnyílásszögű kúpot az ( XY ) sík itt két alkotóban

Részletesebben

Függőleges koncentrált erőkkel csuklóin terhelt csuklós rúdlánc számításához

Függőleges koncentrált erőkkel csuklóin terhelt csuklós rúdlánc számításához 1 Függőleges koncentrált erőkkel csuklóin terhelt csuklós rúdlánc számításához Az interneten való nézelődés során találkoztunk az [ 1 ] művel, melyben egy érdekes és fontos feladat pontos(abb) megoldásához

Részletesebben

Érdekes geometriai számítások 10.

Érdekes geometriai számítások 10. 1 Érdekes geometriai számítások 10. Találtunk az interneten egy könyvrészletet [ 1 ], ahol egy a triéder - geometriában fontos összefüggést egyszerű módon vezetnek le. Ennek eredményét összevetjük más

Részletesebben

Érdekes geometriai számítások Téma: A kardáncsukló kinematikai alapegyenletének levezetése gömbháromszögtani alapon

Érdekes geometriai számítások Téma: A kardáncsukló kinematikai alapegyenletének levezetése gömbháromszögtani alapon Érdekes geometriai számítások 7. Folytatjuk a sorozatot. 7. Téma: A kardáncsukló kinematikai alapegyenletének levezetése gömbháromszögtani alapon Korábbi dolgozatainkban már többféle módon is bemutattuk

Részletesebben

Ellipszis átszelése. 1. ábra

Ellipszis átszelése. 1. ábra 1 Ellipszis átszelése Adott egy a és b féltengely - adatokkal bíró ellipszis, melyet a befoglaló téglalapjának bal alsó sarkában csuklósan rögzítettnek képzelünk. Az ellipszist e C csukló körül forgatva

Részletesebben

Egy mozgástani feladat

Egy mozgástani feladat 1 Egy mozgástani feladat Előző dolgozatunk melynek jele és címe: ED ~ Ismét az ellipszis egyenleteiről folytatásának tekinthető ez az írás. Leválasztottuk róla, mert bár szorosan kapcsolódnak, más a céljuk.

Részletesebben

A szabályos sokszögek közelítő szerkesztéséhez

A szabályos sokszögek közelítő szerkesztéséhez 1 A szabályos sokszögek közelítő szerkesztéséhez A síkmértani szerkesztések között van egy kedvencünk: a szabályos n - szög közelítő szerkesztése. Azért vívta ki nálunk ezt az előkelő helyet, mert nagyon

Részletesebben

Fa rudak forgatása II.

Fa rudak forgatása II. Fa rudak forgatása II. Dolgozatunk I. részében egy speciális esetre oldottuk meg a kitűzött feladatokat. Most egy általánosabb elrendezés vizsgálatát végezzük el. A számítás a korábbi úton halad, ügyelve

Részletesebben

Forogj! Az [ 1 ] munkában találtunk egy feladatot, ami beindította a HD - készítési folyamatokat. Eredményei alább olvashatók. 1.

Forogj! Az [ 1 ] munkában találtunk egy feladatot, ami beindította a HD - készítési folyamatokat. Eredményei alább olvashatók. 1. 1 Forogj! Az [ 1 ] munkában találtunk egy feladatot, ami beindította a HD - készítési folyamatokat. Eredményei alább olvashatók. 1. Feladat Egy G gépkocsi állandó v 0 nagyságú sebességgel egyenes úton

Részletesebben

Befordulás sarkon bútorral

Befordulás sarkon bútorral Befordulás sarkon bútorral Bizonyára volt már olyan élményed, hogy bútort kellett cipelned, és nem voltál biztos benne, hogy be tudjátok - e vinni a szobába. Erről jutott eszembe az alábbi feladat. Adott

Részletesebben

Két körhenger általánosabban ( Alkalmazzuk a vektoralgebrát! ) 1. ábra

Két körhenger általánosabban ( Alkalmazzuk a vektoralgebrát! ) 1. ábra Két körhenger általánosabban ( Alkalmazzuk a vektoralgebrát! ) Egy korábbi dolgozatunkban címe: Két egyenes körhenger a merőlegesen metsződő tengelyű körhengerek áthatási feladatával foglalkoztunk. Most

Részletesebben

Egy újabb térmértani feladat. Az [ 1 ] könyvben az interneten találtuk az alábbi érdekes feladatot is 1. ábra.

Egy újabb térmértani feladat. Az [ 1 ] könyvben az interneten találtuk az alábbi érdekes feladatot is 1. ábra. 1 Egy újabb térmértani feladat Az [ 1 ] könyvben az interneten találtuk az alábbi érdekes feladatot is 1. ábra. Úgy látjuk, érdekes és tanulságos lesz végigvenni. 2 A feladat Egy szabályos n - szög alapú

Részletesebben

Keresztezett pálcák II.

Keresztezett pálcák II. Keresztezett pálcák II Dolgozatunk I részéen a merőleges tengelyű pálcák esetét vizsgáltuk Most nézzük meg azt az esetet amikor a pálcák tengelyei nem merőlegesen keresztezik egymást Ehhez tekintsük az

Részletesebben

Ellipszis vezérgörbéjű ferde kúp felszínének meghatározásához

Ellipszis vezérgörbéjű ferde kúp felszínének meghatározásához 1 Ellipszis vezérgörbéjű ferde kúp felszínének meghatározásához Előző dolgozatunkkal melynek címe: A ferde körkúp palástfelszínének meghatározásához már mintegy megágyaztunk a jelen írásnak. Több mindent

Részletesebben

A középponti és a kerületi szögek összefüggéséről szaktanároknak

A középponti és a kerületi szögek összefüggéséről szaktanároknak A középponti és a kerületi szögek összefüggéséről szaktanároknak Középiskolai tanulmányaink fontos része volt az elemi síkgeometriai tananyag. Ennek egyik nevezetes tétele így szól [ 1 ] : Az ugyanazon

Részletesebben

Végein függesztett rúd egyensúlyi helyzete. Az interneten találtuk az [ 1 ] munkát, benne az alábbi érdekes feladatot 1. ábra. Most erről lesz szó.

Végein függesztett rúd egyensúlyi helyzete. Az interneten találtuk az [ 1 ] munkát, benne az alábbi érdekes feladatot 1. ábra. Most erről lesz szó. 1 Végein függesztett rúd egyensúlyi helyzete Az interneten találtuk az [ 1 ] munkát, benne az alábbi érdekes feladatot 1. ábra. Most erről lesz szó. A feladat Ehhez tekintsük a 2. ábrát is! 1. ábra forrása:

Részletesebben

A ferde szabadforgácsolásról, ill. a csúszóforgácsolásról ismét

A ferde szabadforgácsolásról, ill. a csúszóforgácsolásról ismét A ferde szabadforgácsolásról, ill. a csúszóforgácsolásról ismét A szabadforgácsolást [ 1 ] az alábbiak szerint definiálja, ill. jellemzi. Ha a forgácsolószerszám élének minden pontjában a forgácsolási

Részletesebben

Az éjszakai rovarok repüléséről

Az éjszakai rovarok repüléséről Erről ezt olvashatjuk [ ] - ben: Az éjszakai rovarok repüléséről Az a kijelentés, miszerint a repülés pályája logaritmikus spirális, a következőképpen igazolható [ 2 ].. ábra Az állandó v nagyságú sebességgel

Részletesebben

A gúla ~ projekthez 2. rész

A gúla ~ projekthez 2. rész 1 A gúla ~ projekthez 2. rész Dolgozatunk 1. részében egy speciális esetre a négyzet alapú egyenes gúla esetére írtuk fel és alkalmaztuk képleteinket. Most a tetszőleges oldalszámú szabályos sokszög alakú

Részletesebben

Egy érdekes statikai feladat. Az interneten találtuk az [ 1 ] művet, benne az alábbi feladattal.

Egy érdekes statikai feladat. Az interneten találtuk az [ 1 ] művet, benne az alábbi feladattal. 1 Egy érdekes statikai feladat Az interneten találtuk az [ 1 ] művet, benne az alábbi feladattal. A feladat A szabályos n - szög alakú, A, B, C, csúcsú lap az A csúcsán egy sima függőleges fal - hoz támaszkodik,

Részletesebben

A csavarvonal axonometrikus képéről

A csavarvonal axonometrikus képéről A avarvonal axonometrikus képéről Miután egyre jobban megy a Graph ingyenes függvény - ábrázoló szoftver használata, kipróbáltuk, hogy tudunk - e vele avarvonalat ábrázolni, axonometrikusan. A válasz:

Részletesebben

Forgatónyomaték mérése I.

Forgatónyomaték mérése I. Forgatónyomaték mérése I Bevezetés A forgatónyomaték az erőpár mint statikai alapalakzat jellemzője A nevéből is következően a testekre forgató hatást fejt ki Vektormennyiség, melyet az M = a x F képlettel

Részletesebben

Szabályos fahengeres keresztmetszet geometriai jellemzőinek meghatározása számítással

Szabályos fahengeres keresztmetszet geometriai jellemzőinek meghatározása számítással Szabályos fahengeres keresztmetszet geometriai jellemzőinek meghatározása számítással Előző dolgozatunkban jele: ( E ), címe: Szimmetrikusan szélezett körkeresztmetszet geometriai jellemzőinek meghatározása

Részletesebben

Megoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Megoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások 1. Határozd meg az a és b vektor skaláris szorzatát, ha a = 5, b = 4 és a közbezárt szög φ = 55! Alkalmazzuk a megfelelő képletet: a b = a b cos φ = 5 4 cos 55 11,47. 2. Határozd meg a következő

Részletesebben

Trigonometria. Szögfüggvények alkalmazása derékszög háromszögekben. Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1

Trigonometria. Szögfüggvények alkalmazása derékszög háromszögekben. Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1 Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1 Trigonometria Szögfüggvények alkalmazása derékszög háromszögekben 1. Az ABC hegyesszög háromszögben BC = 14 cm, AC = 1 cm, a BCA szög nagysága

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások Megoldások 1. Határozd meg a szakasz hosszát, ha a végpontok koordinátái: A ( 1; ) és B (5; )! A szakasz hosszához számítsuk ki a két pont távolságát: d AB = AB = (5 ( 1)) + ( ) = 6 + 1 = 7 6,08.. Határozd

Részletesebben

Egy érdekes nyeregtetőről

Egy érdekes nyeregtetőről Egy érdekes nyeregtetőről Adott egy nyeregtető, az 1 ábra szerinti adatokkal 1 ábra Végezzük el vetületi ábrázolását, az alábbi számszerű adatokkal: a = 10,00 m; b = 6,00 m; c = 3,00 m; α = 45 ; M 1:100!

Részletesebben

Az egyenes ellipszishenger ferde síkmetszeteiről

Az egyenes ellipszishenger ferde síkmetszeteiről 1 Az egyenes ellipszishenger ferde síkmetszeteiről Vegyünk egy a és b féltengelyekkel bíró ellipszist a vezérgörbét, majd az ellipszis O centrumában állítsunk merőlegest az ellipszis síkjára. Ez a merőleges

Részletesebben

Két naszád legkisebb távolsága. Az [ 1 ] gyűjteményben találtuk az alábbi feladatot és egy megoldását: 1. ábra.

Két naszád legkisebb távolsága. Az [ 1 ] gyűjteményben találtuk az alábbi feladatot és egy megoldását: 1. ábra. 1 Két naszád legkisebb távolsága Az [ 1 ] gyűjteményben találtuk az alábbi feladatot és egy megoldását: 1. ábra. 1. ábra A feladat Az A és B, egymástól l távolságra lévő kikötőből egyidejűleg indul két

Részletesebben

Egy kinematikai feladat

Egy kinematikai feladat 1 Egy kinematikai feladat Valami geometriai dologról ötlött eszembe az alábbi feladat 1. ábra. 1. ábra Adott az a és b egyenes, melyek α szöget zárnak be egymással. A b egyenesre ráfektetünk egy d hosszúságú

Részletesebben

A kardáncsukló kinematikája I. A szögelfordulások közti kapcsolat skaláris levezetése

A kardáncsukló kinematikája I. A szögelfordulások közti kapcsolat skaláris levezetése A kardáncsukló kinematikája I. A szögelfordulások közti kapcsolat skaláris levezetése Bevezetés A Hooke -, vagy Kardán - csukló a gyakorlatban széles körben elterjedt gépelem. Feladata a forgó mozgás átszármaztatása

Részletesebben

Kiegészítés a három erő egyensúlyához

Kiegészítés a három erő egyensúlyához 1 Kiegészítés a három erő egyensúlyához Egy régebbi dolgozatunkban melynek jele és címe : RD: Három erő egyensúlya ~ kéttámaszú tartó már sok mindent elmondtunk a címbeli témáról. Ez ugyanis egy megkerülhetetlen

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások Megoldások 1. Tekintsük az alábbi szabályos hatszögben a következő vektorokat: a = AB és b = AF. Add meg az FO, DC, AO, AC, BE, FB, CE, DF vektorok koordinátáit az (a ; b ) koordinátarendszerben! Alkalmazzuk

Részletesebben

Rugalmas láncgörbe alapvető összefüggések és tudnivalók I. rész

Rugalmas láncgörbe alapvető összefüggések és tudnivalók I. rész Rugalmas láncgörbe alapvető összefüggések és tudnivalók I rész evezetés rugalmas láncgörbe magyar nyelvű szakirodalma nem túl gazdag Egy viszonylag rövid ismertetés található [ 1 ] - ben közönséges ( azaz

Részletesebben

Egy kinematikai feladathoz

Egy kinematikai feladathoz 1 Egy kinematikai feladathoz Az [ 1 ] példatárból való az alábbi feladat. Egy bütyök v 0 állandó nagyságú sebességgel halad jobbról balra. Kontúrjának egyenlete a hozzá kötött, vele együtt haladó O 1 xy

Részletesebben

A visszacsapó kilincs működéséről

A visszacsapó kilincs működéséről 1 A visszacsapó kilincs működéséről A faipari forgácsoló gépek egy részén a munkadarab visszasodródása ellen visszacsapó kilincset / kilincssort alkalmaznak. Ilyen gépek például a felülről vágó körfűrészek

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások Megoldások 1. Egy háromszög egyik oldala 10 cm hosszú, s a rajta fekvő két szög 50 és 70. Számítsd ki a hiányzó szöget és oldalakat! Legyen a = 10 cm; β = 50 és γ = 70. A két szög ismeretében a harmadik

Részletesebben

Néhány véges trigonometriai összegről. Határozzuk meg az alábbi véges összegek értékét!, ( 1 ) ( 2 )

Néhány véges trigonometriai összegről. Határozzuk meg az alábbi véges összegek értékét!, ( 1 ) ( 2 ) 1 Néhány véges trigonometriai összegről A Fizika számos területén találkozhatunk véges számú tagból álló trigonometriai össze - gekkel, melyek a számítások során állnak elő. Ezek értékét kinézhetjük matematikai

Részletesebben

Az eltérő hajlású szarufák és a taréjszelemen kapcsolatáról 1. rész. Eltérő keresztmetszet - magasságú szarufák esete

Az eltérő hajlású szarufák és a taréjszelemen kapcsolatáról 1. rész. Eltérő keresztmetszet - magasságú szarufák esete 1 Az eltérő hajlású szarufák és a taréjszelemen kapcsolatáról 1. rész Eltérő keresztmetszet - magasságú szarufák esete Az alábbi ábrát találtuk az interneten 1. ábra 1. ábra forrás( ok ): http://www.sema-soft.com/de/forum/files/firstpfettenverschiebung_432.jpg

Részletesebben

Poncelet egy tételéről

Poncelet egy tételéről 1 Poncelet egy tételéről Már régebben találkoztunk az [ 1 ] műben egy problémával, mostanában pedig a [ 2 ] műben a megoldásával. A probléma lényege: határozzuk meg a egyenletben szereplő α, β együtthatókat,

Részletesebben

A magától becsukódó ajtó működéséről

A magától becsukódó ajtó működéséről 1 A magától becsukódó ajtó működéséről Az [ 1 ] műben találtunk egy érdekes feladatot, amit most mi is feldolgozunk. Az 1. ábrán látható az eredeti feladat másolata. A feladat kitűzése 1. ábra forrása:

Részletesebben

Összefüggések egy csonkolt hasábra

Összefüggések egy csonkolt hasábra Összefüggések egy sonkolt hasábra Az idők során ár többször készítettünk hasonló dolgozatokat. Ne baj: az isétlés sose árt. Most tekintsük az. ábrát!. ábra Eszerint úgy is képzelhetjük hogy egy téglalap

Részletesebben

5. házi feladat. AB, CD kitér élpárra történ tükrözések: Az ered transzformáció: mivel az origó xpont, így nincs szükség homogénkoordinátás

5. házi feladat. AB, CD kitér élpárra történ tükrözések: Az ered transzformáció: mivel az origó xpont, így nincs szükség homogénkoordinátás 5. házi feladat 1.feladat A csúcsok: A = (0, 1, 1) T, B = (0, 1, 1) T, C = (1, 0, 0) T, D = ( 1, 0, 0) T AB, CD kitér élpárra történ tükrözések: 1 0 0 T AB = 0 1 0, elotlási rész:(i T AB )A = (0, 0, )

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Trigonometria III.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Trigonometria III. Trigonometria III. TÉTEL: (Szinusz - tétel) Bármely háromszögben az oldalak és a velük szemközti szögek szinuszainak aránya egyenlő. Jelöléssel: a: b: c = sin α : sin β : sin γ. Megjegyzés: A szinusz -

Részletesebben

Egy gyakorlati szélsőérték - feladat. 1. ábra forrása: [ 1 ]

Egy gyakorlati szélsőérték - feladat. 1. ábra forrása: [ 1 ] 1 Egy gyakorlati szélsőérték - feladat Az [ 1 ] munkában találtuk az alábbi feladatot. 1. ábra forrása: [ 1 ] Magyarul: Három egyforma széles deszkából egy (eresz - )csatornát szegezünk össze. Az oldalfal

Részletesebben

Az elliptikus hengerre írt csavarvonalról

Az elliptikus hengerre írt csavarvonalról 1 Az elliptikus hengerre írt csavarvonalról Erről viszonylag ritkán olvashatunk, ezért most erről lesz szó. Az [ 1 ] munkában találtuk az alábbi részt 1. ábra. 1. ábra Itt a ( c ) feladat és annak megoldása

Részletesebben

A kötélsúrlódás képletének egy általánosításáról

A kötélsúrlódás képletének egy általánosításáról 1 A kötélsúrlódás képletének egy általánosításáról Sok korábbi dolgozatunkban foglalkoztunk kötélstatikai feladatokkal. Ez a mostani azon - ban még nem került szóba. A feladat: az egyenes körhengerre feltekert,

Részletesebben

Az ablakos problémához

Az ablakos problémához 1 Az ablakos problémához A Hajdu Endre által felvetett, egy ablak akadályoztatott kinyitásával kapcsolatos probléma a következő. Helyezzünk el egy d oldalhosszúságú, álló, négyzet alapú egyenes hasábot

Részletesebben

Kosárra dobás I. Egy érdekes feladattal találkoztunk [ 1 ] - ben, ahol ezt szerkesztéssel oldották meg. Most itt számítással oldjuk meg ugyanezt.

Kosárra dobás I. Egy érdekes feladattal találkoztunk [ 1 ] - ben, ahol ezt szerkesztéssel oldották meg. Most itt számítással oldjuk meg ugyanezt. osárra dobás I. Egy érdekes feladattal találkoztunk [ 1 ] - ben, ahol ezt szerkesztéssel oldották meg. Most itt számítással oldjuk meg ugyanezt. A feladat Az 1. ábrán [ 1 ] egy tornaterem hosszmetszetét

Részletesebben

Vonatablakon át. A szabadvezeték alakjának leírása. 1. ábra

Vonatablakon át. A szabadvezeték alakjának leírása. 1. ábra 1 Vonatablakon át Sokat utazom vonaton, és gyakran elnézem a vonatablakon át a légvezeték(ek) táncát. Már régóta gondolom, hogy le kellene írni ezt a látszólagos mozgást. Most erről lesz szó. Ehhez tekintsük

Részletesebben

4 = 0 egyenlet csak. 4 = 0 egyenletből behelyettesítés és egyszerűsítés után. adódik, ennek az egyenletnek két valós megoldása van, mégpedig

4 = 0 egyenlet csak. 4 = 0 egyenletből behelyettesítés és egyszerűsítés után. adódik, ennek az egyenletnek két valós megoldása van, mégpedig Oktatási Hivatal Az forduló feladatainak megoldása (Szakközépiskola) Melyek azok az m Z számok, amelyekre az ( m ) x mx = 0 egyenletnek legfeljebb egy, az m x + 3mx 4 = 0 egyenletnek legalább egy valós

Részletesebben

A kardáncsukló tengelyei szögelfordulása közötti összefüggés ábrázolása. Az 1. ábrán mutatjuk be a végeredményt, egy körülfordulásra.

A kardáncsukló tengelyei szögelfordulása közötti összefüggés ábrázolása. Az 1. ábrán mutatjuk be a végeredményt, egy körülfordulásra. A kardáncsukló tengelei szögelfordulása közötti összefüggés ábrázolása Az 1. ábrán mutatjuk be a végeredmént, eg körülfordulásra. 3 330 270 2 210 1 150 A kardáncsukló hajtott tengelének szögelfordulása

Részletesebben

Szökőkút - feladat. 1. ábra. A fotók forrása:

Szökőkút - feladat. 1. ábra. A fotók forrása: Szökőkút - feladat Nemrégen Gyulán jártunk, ahol sok szép szökőkutat láttunk. Az egyik különösen megtetszett, ezért elhatároztam, hogy megpróbálom elemi módon leírni a ízsugarak, illete az általuk leírt

Részletesebben

Fénypont a falon Feladat

Fénypont a falon Feladat Fénypont a falon 3. Dolgozat - sorozatunk. és. részében két speiális eset vizsgálatát részleteztük. Itt az általánosabb síkbeli esettel foglalkozunk, főbb vonalaiban. Ehhez tekintsük az. ábrát is! 3. Feladat.

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny tanévi második fordulójának feladatmegoldásai. x 2 sin x cos (2x) < 1 x.

Az Országos Középiskolai Tanulmányi Verseny tanévi második fordulójának feladatmegoldásai. x 2 sin x cos (2x) < 1 x. Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi második fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Oldja meg a következő egyenlőtlenséget, ha x > 0: x 2 sin

Részletesebben

A hordófelület síkmetszeteiről

A hordófelület síkmetszeteiről 1 A hordófelület síkmetszeteiről Előző dolgozatunkban melynek címe: Ismét egy érdekes mechanizmusról azon hiányérzetünknek adtunk hangot, hogy a hordószerű test görbe felülete nem kapott nevet. Itt elneveztük

Részletesebben

A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató

A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató Oktatási Hivatal 04/0 tanévi Országos Középiskolai Tanulmányi Verseny első forduló MTEMTIK I KTEGÓRI (SZKKÖZÉPISKOL) Javítási-értékelési útmutató Határozza meg a tízes számrendszerbeli x = abba és y =

Részletesebben

Chasles tételéről. Előkészítés

Chasles tételéről. Előkészítés 1 Chasles tételéről A minap megint találtunk valami érdekeset az interneten. Az [ 1 ] tankönyvet, illetve an - nak fejezetenként felrakott egyetemi internetes változatát. Utóbbi 20. fejezetében volt az,

Részletesebben

Egy látószög - feladat

Egy látószög - feladat Ehhez tekintsük z 1. ábrát is! Egy látószög - feldt 1. ábr Az A pont körül kering C pont, egy r sugrú körön. A rögzített A és B pontok egymástól távolság vnnk. Az = CAB szöget folymtosn mérjük. Keressük

Részletesebben

Lövés csúzlival. Egy csúzli k merevségű gumival készült. Adjuk meg az ebből kilőtt m tömegű lövedék sebességét, ha a csúzlit L - re húztuk ki!

Lövés csúzlival. Egy csúzli k merevségű gumival készült. Adjuk meg az ebből kilőtt m tömegű lövedék sebességét, ha a csúzlit L - re húztuk ki! 1 Lövés csúzlival Az [ 1 ] munkában találtuk az alábbi feladatot 1. ábra. A feladat Egy csúzli k merevségű gumival készült. Adjuk meg az ebből kilőtt m tömegű lövedék sebességét, ha a csúzlit L - re húztuk

Részletesebben

A felcsapódó kavicsról. Az interneten találtuk az alábbi, a hajítás témakörébe tartozó érdekes feladatot 1. ábra.

A felcsapódó kavicsról. Az interneten találtuk az alábbi, a hajítás témakörébe tartozó érdekes feladatot 1. ábra. 1 A felcsapódó kavicsról Az interneten találtuk az alábbi, a hajítás témakörébe tartozó érdekes feladatot 1. ábra. 1. ábra forrása: [ 1 ] Ez azért is érdekes, mert autóvezetés közben már többször is eszünkbe

Részletesebben

Ismét a fahengeres keresztmetszetű gerenda témájáról. 1. ábra forrása: [ 1 ]

Ismét a fahengeres keresztmetszetű gerenda témájáról. 1. ábra forrása: [ 1 ] 1 Ismét a fahengeres keresztmetszetű gerenda témájáról Az 1. ábrával már korábban is találkozhatott az Olvasó. 1. ábra forrása: [ 1 ] Ezen azt láthatjuk, hogy bizonyos esetekben a fűrészelt fagerenda a

Részletesebben

t, u v. u v t A kúpra írt csavarvonalról I. rész

t, u v. u v t A kúpra írt csavarvonalról I. rész A kúpra írt csavarvonalról I. rész Sokféle kúpra írt csavarvonal létezik. Ezek közül először a legegyszerűbbel foglalko - zunk. Ezt azért tesszük mert meglepő az a tény hogy eddig még szinte sehol nem

Részletesebben

Egy újabb látószög - feladat

Egy újabb látószög - feladat 1 Egy újabb látószög - feladat A feladat Adott az O középpontú, R sugarú körön az α szöggel jellemzett P pont. Határozzuk meg, hogy mekkora ϑ szög alatt látszik a P pontból a vízszintes átmérő - egyenes

Részletesebben

A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny második forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató

A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny második forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató Oktatási Hivatal A 0/04 tanévi Országos Középiskolai Tanulmányi erseny második forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató A 57 olyan háromjegyű szám, amelynek számjegyei

Részletesebben

További adalékok a merőleges axonometriához

További adalékok a merőleges axonometriához 1 További adalékok a merőleges axonometriához Egy szép összefoglaló munkát [ 1 ] találtunk az interneten, melynek előző dolgoza - tunkhoz csatlakozó részeit itt dolgozzuk fel. Előző dolgozatunk címe: Kiegészítés

Részletesebben

Egy sík és a koordinátasíkok metszésvonalainak meghatározása

Egy sík és a koordinátasíkok metszésvonalainak meghatározása 1 Egy sík és a koordinátasíkok metszésvonalainak meghatározása Ehhez tekintsük az 1. ábrát! 1. ábra Itt az ( u, v, w ) tengelymetszeteivel adott S síkot látjuk, az Oxyz térbeli derékszögű koordináta -

Részletesebben

Síkgeometria 12. évfolyam. Szögek, szögpárok és fajtáik

Síkgeometria 12. évfolyam. Szögek, szögpárok és fajtáik Szögek, szögpárok és fajtáik Szögfajták: Jelölés: Mindkét esetben: α + β = 180 Pótszögek: Olyan szögek, amelyeknek összege 90. Oldalak szerint csoportosítva A háromszögek Általános háromszög: Minden oldala

Részletesebben

Húrnégyszögek, Ptolemaiosz tétele

Húrnégyszögek, Ptolemaiosz tétele Húrnégyszögek, Ptolemaiosz tétele Markó Zoltán 11C Húrnégyszögek Definíció: Húrnégyszögnek nevezzük az olyan négyszöget, amely köré kör írható Vagyis az olyan konvex négyszögek, amelyeknek oldalai egyben

Részletesebben

Ellipszissel kapcsolatos képletekről

Ellipszissel kapcsolatos képletekről 1 Ellipszissel kapcsolatos képletekről Előző dolgozatunkban melynek címe: A Lenz - vektorról viszonylag sokat kellett ellipszissel kapcsolatos képletekkel dolgozni. Ennek során is adódott pár észrevételünk,

Részletesebben

A véges forgatás vektoráról

A véges forgatás vektoráról A véges forgatás vektoráról Az idők során sokszor olvastuk azt a mondatot a mechanika - könyvekben hogy a végtelen kis szögelfordulások az elemi forgások vektornak tekinthetők [ ] Természetesen adódik

Részletesebben

Egy kérdés: merre folyik le az esővíz az úttestről? Ezt a kérdést az után tettük fel magunknak, hogy megláttuk az 1. ábrát.

Egy kérdés: merre folyik le az esővíz az úttestről? Ezt a kérdést az után tettük fel magunknak, hogy megláttuk az 1. ábrát. 1 Egy kérdés: merre folyik le az esővíz az úttestről? Ezt a kérdést az után tettük fel magunknak, hogy megláttuk az 1. ábrát. 1. ábra forrása: [ 1 ] Ezen egy út tengelyvonalának egy pontjában tüntették

Részletesebben

A Kepler - problémáról. Megint az interneten találtunk egy szép animációt 1. ábra, amin elgondolkoztunk: Ezt hogyan oldanánk meg? Most erről lesz szó.

A Kepler - problémáról. Megint az interneten találtunk egy szép animációt 1. ábra, amin elgondolkoztunk: Ezt hogyan oldanánk meg? Most erről lesz szó. 1 A Kepler - problémáról Megint az interneten találtunk egy szép animációt 1. ábra, amin elgondolkoztunk: Ezt hogyan oldanánk meg? Most erről lesz szó. 1. ábra forrása: https://hu.wikipedia.org/wiki/kepler-probl%c3%a9ma

Részletesebben

Egy kötélstatikai alapfeladat megoldása másként

Egy kötélstatikai alapfeladat megoldása másként 1 Egy kötélstatikai alapfeladat megoldása másként Most megint egyik kedvenc témánkat vesszük elő. Bízunk benne, hogy az itt előforduló ismétlések szükségesek, ámde nem feleslegesek. A más módon való megoldás

Részletesebben

Vontatás III. A feladat

Vontatás III. A feladat Vontatás III Ebben a részben ázoljuk a ontatási feladat egy lehetséges numerikus megoldási módját Ezt az I részben ismertetett alapegyenletre építjük fel Itt az egy ontatott kerékpár esetét izsgáljuk feladat

Részletesebben

Egy geometriai szélsőérték - feladat

Egy geometriai szélsőérték - feladat 1 Egy geometriai szélsőérték - feladat A feladat: Szerkesztendő egy olyan legnagyobb területű háromszög, melynek egyik csúcsa az a és b féltengelyeivel adott ellipszis tetszőlegesen felvett pontja. Keresendő

Részletesebben

A loxodrómáról. Előző írásunkban melynek címe: A Gudermann - függvényről szó esett a Mercator - vetületről,illetve az ezen alapuló térképről 1. ábra.

A loxodrómáról. Előző írásunkban melynek címe: A Gudermann - függvényről szó esett a Mercator - vetületről,illetve az ezen alapuló térképről 1. ábra. 1 A loxodrómáról Előző írásunkban melynek címe: A Gudermann - függvényről szó esett a Mercator - vetületről,illetve az ezen alapuló térképről 1. ábra. 1. ábra forrása: [ 1 ] Ezen a térképen a szélességi

Részletesebben

Rönk kiemelése a vízből

Rönk kiemelése a vízből 1 Rönk kiemelése a vízből Az interneten találtuk az [ 1 ] művet, benne az alábbi feladatot 1. ábra. A feladat 1. ábra forrása: [ 1 ] Egy daru kötél segítségével lassan emeli ki a vízből a benne úszó gerendát

Részletesebben

A tűzfalakkal lezárt nyeregtető feladatához

A tűzfalakkal lezárt nyeregtető feladatához 1 A tűzfalakkal lezárt nyeregtető feladatához Bevezetés Ehhez először tekintsük az 1. ábrát! 1 Itt azt szemlélhetjük, hogy hogyan lehet el - kerülni egy épület tűzfalának eláztatását. A felső ábrarészen

Részletesebben

1. ábra forrása: [ 1 ]

1. ábra forrása: [ 1 ] Merev test emelése négy kötéllel Előző dolgozatunkban melynek címe: Lépcső beemelése már foglalkoztunk a témával. Akkor elmondtuk, hogy a négyköteles teheremelés feladata statikailag egyszeresen hatá -

Részletesebben

A lengőfűrészelésről

A lengőfűrészelésről A lengőfűrészelésről Az [ 1 ] tankönyvben ezt írják a lengőfűrészről, működéséről, használatáról: A lengőfűrész árkolásra, csaprések készítésére alkalmazott, 150 00 mm átmérőjű, 3 4 mm vastag, sűrű fogazású

Részletesebben

Csúcsívek rajzolása. Kezdjük egy általános csúcsív rajzolásával! Ehhez tekintsük az 1. ábrát!

Csúcsívek rajzolása. Kezdjük egy általános csúcsív rajzolásával! Ehhez tekintsük az 1. ábrát! 1 Csúcsívek rajzolása Előző dolgozatunk kapcsán melynek címe: Íves nyeregtető főbb számítási képleteiről találkoztunk a csúcsívvel, mint az építészetben igen gyakran előforduló vonalidommal. Most egy másik

Részletesebben

Egy nyíllövéses feladat

Egy nyíllövéses feladat 1 Egy nyíllövéses feladat Az [ 1 ] munkában találtuk az alábbi feladatot 1. ábra. 1. ábra forrása: [ 1 / 1 ] Igencsak tanulságos, ezért részletesen bemutatjuk a megoldását. A feladat Egy sportíjjal nyilat

Részletesebben

A csúszóvágásról, ill. - forgácsolásról

A csúszóvágásról, ill. - forgácsolásról A csúszóvágásról, ill. - forgácsolásról A vágás, ill. a forgácsolás célja: anyagi részek egymástól való elválasztása. A vágás, ill. a forgácsolás hagyományos eszköze: a kés. A kés a v haladási irányhoz

Részletesebben

Kocka perspektivikus ábrázolása. Bevezetés

Kocka perspektivikus ábrázolása. Bevezetés 1 Kocka perspektivikus ábrázolása Bevezetés Előző három dolgozatunkban ~ melyek címe: 1. Sínpár perspektivikus ábrázolása, 2. Sínpár perspektivikus ábrázolása másként, 3. Sínpár perspektivikus ábrázolása

Részletesebben

Henger és kúp metsződő tengelyekkel

Henger és kúp metsződő tengelyekkel Henger és kúp metsződő tengelyekkel Ebben a dolgozatban egy forgáshenger és egy forgáskúp áthatását tanulmányozzuk abban az egyszerűbb esetben, amikor a két test tengelye egyazon síkban fekszik, vagyis

Részletesebben

A Cassini - görbékről

A Cassini - görbékről A Cassini - görbékről Giovanni Domenico Cassini, a 17-18 században élt olasz származású francia csillagász neve egyebek mellett a róla elnevezett görbékről is ismert lehet; ilyeneket mutat az 1 ábra is

Részletesebben

Lépcső beemelése. Az interneten találkoztunk az [ 1 ] művel, benne az 1. ábrával.

Lépcső beemelése. Az interneten találkoztunk az [ 1 ] művel, benne az 1. ábrával. 1 Lépcső beemelése Az interneten találkoztunk az [ 1 ] művel, benne az 1. ábrával. 1. ábra forrása: [ 1 ] Itt példákat látunk előregyártott vasbeton szerkezeti elemek kötéllel / lánccal történő emelésére,

Részletesebben

Érdekes geometriai számítások 9.

Érdekes geometriai számítások 9. 1 Érdekes geometriai számítások 9. Folytatjuk a sorozatot. 9. Téma: Szimmetrikus kontytető tetősíkjai lapszögének maghatározásáról Már több dolgozatunk témája volt két metsződő tetősík közbezárt szögének

Részletesebben

Aszimmetrikus nyeregtető ~ feladat 2.

Aszimmetrikus nyeregtető ~ feladat 2. 1 Aszimmetrikus nyeregtető ~ feladat 2. Ehhez tekintsük az 1. ábrát is! Itt az A és B pontok egy nyeregtető oromfali ereszpontjai, a P pont pedig a taréj pontja. Az ereszek egymástól való távolságának

Részletesebben

Egymásra támaszkodó rudak

Egymásra támaszkodó rudak 1 Egymásra támaszkodó rudak Úgy látszik, ez is egy visszatérő téma. Egy korábbi írásunkban melynek címe: A mandala - tetőről már találkoztunk az 1. ábrán vázolthoz hasonló felülnézetű szerkezettel, foglalkoztunk

Részletesebben

A gúla ~ projekthez 1. rész

A gúla ~ projekthez 1. rész 1 A gúla ~ projekthez 1. rész Megint találtunk az interneten valami érdekeset: az [ 1 ], [ 2 ], [ 3 ] anyagokat. Úgy véljük, hogy az alábbi téma / témakör kiválóan alkalmas lehet projekt - módszerrel történő

Részletesebben

Érdekes geometriai számítások Téma: Szimmetrikus kontytető tetősíkjai lapszögének meghatározásáról

Érdekes geometriai számítások Téma: Szimmetrikus kontytető tetősíkjai lapszögének meghatározásáról 1 Folytatjuk a sorozatot. Érdekes geometriai számítások 9. 9. Téma: Szimmetrikus kontytető tetősíkjai lapszögének meghatározásáról Már több dolgozatunk témája volt két metsződő tetősík közbezárt szögének

Részletesebben

Rönk mozgatása rámpán kötelekkel

Rönk mozgatása rámpán kötelekkel Rönk mozgatása rámpán kötelekkel Az interneten találtuk az alábbi feladatot. ábra..3. Тяжелое бревно втягивают вверх по наклонной плоскости с помощью двух параллельных канатов, закрепленных, как указано

Részletesebben