Szökőkút - feladat. 1. ábra. A fotók forrása:

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Szökőkút - feladat. 1. ábra. A fotók forrása:"

Átírás

1 Szökőkút - feladat Nemrégen Gyulán jártunk, ahol sok szép szökőkutat láttunk. Az egyik különösen megtetszett, ezért elhatároztam, hogy megpróbálom elemi módon leírni a ízsugarak, illete az általuk leírt ízsugár - felület alakját, működését. A szökőkút felépítése olyan, hogy egy R sugarú alapkör mentén egyenletes kiosztásban helyeztek el n darab szórófejet, melyek a ízszintes síkkal α szöget zárnak be, a kör középpontja felé fordíta. ábra.. ábra A fotók forrása: A szökőkút úgy működik, hogy minden szórófej egyező kezdősebességgel löi ki a izet, ámde ez a kezdősebesség az időben áltozik. Ennek eredményeképpen különböző alakzatokat esz fel a ízsugár - felület. Ezt a kifejezést itt abban az értelemben használom, mintha nagyon sok szórófejet helyeztek olna el az alapkör mentén, és minden ízsugár a forgástengelyig egy - egy meridiángörbe - darabját képezné a forgásfelületnek. A ízsugarak kezdősebessége áltozásának hatása a fotókon is köethető.

2 . ábra Először a. ábra szerinti kis kezdősebességgel lő ki a íz, majd felnöekszik a 3. ábra szerinti értékre, ezután pedig fokozatosan eléri a 4. ábra szerinti legnagyobb értéket, létrehoza a fényképek szerinti alakzatokat. A középső szökőkút - résszel itt nem foglalkozunk. A feladatunkat úgy oldjuk meg, hogy először összefoglaljuk a ferde hajítás alapösszefüggéseit, majd ezekkel leírjuk a ízsugár - felület alakját, stb., matematikailag. A ferde hajítás alapösszefüggései ( a légellenállás elhanyagolásáal ) [ ] Ehhez tekintsük az 5. ábrát is!

3 3 z x tg x x ; 0 cos 0 g 3. ábra l sin ; ( ) g 0 h sin. g A ízsugár - felület matematikai leírása ( ) ( 3 ) Ehhez tekintsük a 6. ábrát is! A jobb oldali parabola z ( x ) egyenletét az ( ) egyenletből nyerjük a z z, x R x transzformációal. ( 4 ) A 6. ábrán ügyeltünk az egyes tartományok megjelenített hosszára is.

4 4 4. ábra A 6. ábra készítését még az alábbiak is megelőzték: ~ képeztük ( 3 ) és ( ) hányadosát, amiből h tg 4 ; ( 5 ) l ~ ( ) és ( 5 ) - tel, alamint az ismert trigonometriai azonossággal: h g h zx 4 x 6 x. l l 0 A 6. ábrához a h, R 0 m, 0 m / s, g 0 m / s 0 l adatokat ettük fel. A ( 6 ) egyenleten kíül még más egyenlet - alakok is szóba jöhetnek. ( 6 )

5 5 z ( m ) 5 4 Hajítási parabola 3 l / g 0 h α x ( m ) f(x)=x-0.*x^ Pontsor r(t)=0.75 f(x)=.5 Pontsor Pontsor 3 Pontsor 4 5. ábra ( ) - ből: gl 0 ; sin majd ( ) és ( 7 ) - tel: g sin zx tgx x tg x x gl cos lcos sin sin cos x x x tgx x tgx tg ltg, lcos l l l tehát x x zx l tg. l l ( 7 ) ( 8 )

6 6 0 z ( m ) A forgásfelület meridiángörbéje: egy parabola és egy egyenes szakasz Z z x ( m ) R R f(x)=*x-0.5*x^ f(x)=*(0-x)-0.5*(0-x)^ Pontsor Pontsor Pontsor 3 f(x)=0 f(x)=0 6. ábra Majd ( 5 ) és ( 8 ) - cal: x x zx 4h. l l Vagy ( 8 ) - ból: x zx tg x. l A ( 0 ) képletet átírhatjuk az alábbi alakba: x zx, t tg x. lt ( 9 ) ( 0 ) ( ) Ez lehet az időben áltozó méretű ízsugarak egyenlete.

7 7 A ízsugár - alakok főbb esetei az alábbiak. a.) 0 l R; b.) l R; c.) R l R; d.) l R. 4 z ( m ) Vízsugár - alakok az a.), b.), c.), d.) esetben 0 8 f(x)=*x*(-x/5) f(x)=*(0-x)*(-(0-x)/5) Pontsor f(x)=*x*(-x/0) f(x)=*(0-x)*(-(0-x)/0) f(x)=*x*(-x/5) f(x)=*(0-x)*(-(0-x)/5) f(x)=*x*(-x/0) f(x)=*(0-x)*(-(0-x)/0) 6 4 x ( m ) ábra A 7. ábráról már látható a ízsugár - felületek meridiángörbéinek az alakulása. A megfelelő forgásfelületek egyenletének felírásához tekintsük a 8. ábrát! Itt az elölnézeti képen feltüntettük a forgásfelületnek az Y = 0 síkkal aló metszetét is. A forgásfelület paraméteres egyenletrendszerét úgy írjuk fel, hogy felírjuk egy tetszőleges P pontjának ( X P, Y P, Z P ) koordinátáit. Itt áttérünk egy újabb derékszögű koordináta - rendszerre, melynek kezdőpontja az alapkör O k középpontja, Z tengelye a forgásfelület forgástengelye.

8 8 8. ábra XP rp cos P, YP rp sin P, ZP z P. ( ) A 8. ábra szerint is: r R x, r 0; ( 3 ) P P P majd ( ) - gyel is: x l P zp tg xp. Most ( ), ( 3 ), ( 4 ) - gyel: ( 4 )

9 9 XP R xp cos P, YP R xp sin P, x P ZP tg xp. l Majd ( 5 ) és ( 5 ) - tel, a P indexeket elhagya: Xx, R xcos, Yx, R xsin, h x Zx, 4 x. l l ( 5 ) ( 6 ) A ( 6 ) képletek szerint a forgásfelület leírására az x és a φ áltozókat használjuk. Ez egy lehetséges felírási mód. Az x és a φ áltozók értelmezési tartománya: 0 x l; ( 7 ). Ez a felírási mód rendben an az a.) és a b.) esetekben, amikor is fennáll, hogy l R. ( 8 ) Azonban a c.) és a d.) esetekben, amikor is R l R, ( 9 ) a szemlélet alapján is könnyen beláthatóan már az alábbiak érényesek: X x, R x cos, Yx, R xsin, h x Zx, 4 x ; l l 0 x R; ( 0 ) Most írjuk fel a forgásfelület Z = Z ( X, Y ) alakú egyenletét is, az érdekesség kedéért!

10 0 ( 6 ), ill. ( 0 ) első két egyenletéből és a 8. ábra szerint is : r X Y R x, ( ) innen: x R X Y ; ( ) Most ( 6 ), ill. ( 0 ) harmadik egyenletéel és ( ) - el: h R X Y ZX, Y 4 R X Y. l l ( 3 ) Látjuk, hogy az alkalmazás során a ( 6 ), ill. a ( 0 ) képletek jönnek inkább számításba. Most határozzuk meg a ízsugár kilöési sebességének nagyságát az a.), b.), c.), d.) esetekre! Ezt a ( 7 ) képlet alapján égezzük el. a.) eset: 0 l(a) R; 0(a) gr 0 sin R 0 0 0(a) ; l sin ; g sin ( 4 ) g b.) eset: l(b) R; 0 (b) g R sin R 0 0(b) ; l sin ; g sin g c.) eset: R l(c) R; 0(c) gr gr R sin R 0 0(c) ; l sin ; g sin sin g d.) eset: l(d) R; 0(d) g R sin R 0 0(d). l sin ; g sin g ( 5 ) ( 6 ) ( 7 ) A 7. ábra adataial is:

11 h l Most ( 5 ) - ből: h arctg 4 arctg 6, 43 ; l ezzel sin sin 6, 43 0,8 ; R 0 m,, g 9,8 m / s. majd ( 5 ) és ( 7 ) - ből: m 9,8 0 m gr s m gr m, ; 5,7 ; sin 0,8 s sin s ezekkel az adatokkal és eredményekkel a négy esetre: m m 0 0(a), ; s s m 0(b), ; s m m, 0(c) 5, 7 ; s s m 0(d) 5,7. s Most nézzük meg az i - edik ízsugár egyenleteit! ( ) - ből: X r cos, i i i i Y r sin, Z z. i ( 8 ) Majd ( 3 ) - ból: r R x, r 0. ( 9 ) Ezután ( 4 ) - ből: x z tgx. l ( 30 ) Toábbá ( 8 ), ( 9 ), ( 30 ) - cal:

12 Xi x, i R xcos i, Yi x, ir xsin i, h x Zi x, i 4 x. l l ( 3 ) Ezekben a képletekben: 360 i i, n i,,...,n. ( 3 ) A korábbiakhoz hasonlóan itt is: 0 x l, ha l R ; 0 x R, ha R l R. ( 33 ) Az egyes ízsugarak előlnézeti képének ábrázolása P ( X i, Z i ) parabola - pontonként célszerűen úgy történhet, hogy esszük ( 3 ) első és harmadik egyenletét, ügyele ( 3 ) és ( 33 ) - ra is. Itt sem célszerű r - et kiküszöbölni az egyenletekből. Az egyes ízsugarak felülnézeti képének ábrázolása P ( X i, Y i ) egyenes - pontonként célszerűen úgy történhet, hogy esszük ( 3 ) első és második egyenletét, ügyele ( 3 ) és ( 33 ) - ra is. Itt sem célszerű r - et kiküszöbölni az egyenletekből. Ezeket azért említettük meg, mert hátha alaki számítógépesíteni szeretné az ábrázolást. A 9. ábrán egy ízsugár elölnézeti képét ábrázoltuk a Graph program segítségéel, paraméteres függénymegadási móddal. A parabola paraméteres egyenleteit az ábrán feltüntettük. A 0. ábrán ugyanannak a ízsugárnak a felülnézeti képét ábrázoltuk. A. ábrán a 8. ábra esetében látható ízsugár - sor elölnézetét / metszetét ábrázoltuk. A. ábrán a 8. ábra esetében látható ízsugár - sor felülnézetének felét ábrázoltuk. Megjegyezzük, hogy a ízsugarak kezdősebessége annak időbeli áltozása során akár zérus nagyságú is lehet. A fentiekben ezt mint triiális esetet nem hangsúlyoztuk.

13 3 7 Z ( m ) 6 A φ = 30 - hoz tartozó ízsugár elölnézeti képe Adatok: R = 0 m; tgα = ; l = 8 m. 5 x(t)=(0-t)*cos(30), y(t)=*t*(-t/8) 4 3 X ( m ) ábra A ízsugár - sor által szolgáltatott látány fő jellegzetessége az időbeli áltozás, melyre ( ) és ( ) - gyel: x zx, t tgx. 0 t ( 34 ) sin g ( 34 ) - ből kiolasható, hogy az egész produkció lelke: a 0 ( t ) függény. Időbeli lefutásának meghatározása a látányterezés egyik fő feladata lehet.

14 4 6 Y ( m ) A φ = 30 - hoz tartozó ízsugár felülnézeti képe Adatok: R = 0 m; tgα = ; l = 8 m x(t)=(0-t)*cos(30), y(t)=(0-t)*sin(30) X ( m ) ábra

15 5 Vízsugár - sor elölnézete / metszete 8 Z ( m ) 6 4 X ( m ) x(t)=(0-t)*cos(30), y(t)=*t*(-t/8) x(t)=(0-t)*cos(60), y(t)=*t*(-t/8) x(t)=(0-t)*cos(90), y(t)=*t*(-t/8) x(t)=(0-t)*cos(0), y(t)=*t*(-t/8) x(t)=(0-t)*cos(50), y(t)=*t*(-t/8) x(t)=(0-t)*cos(80), y(t)=*t*(-t/8) x(t)=(0-t)*cos(360), y(t)=*t*(-t/8) Pontsor. ábra

16 6 Y ( m ) Vízsugár - sor felülnézete X ( m ) x(t)=(0-t)*cos(30), y(t)=(0-t)*sin(30) x(t)=(0-t)*cos(60), y(t)=(0-t)*sin(60) - x(t)=(0-t)*cos(90), y(t)=(0-t)*sin(90) x(t)=(0-t)*cos(0), y(t)=(0-t)*sin(0) x(t)=(0-t)*cos(50), y(t)=(0-t)*sin(50) -4 x(t)=(0-t)*cos(80), y(t)=(0-t)*sin(80) x(t)=(0-t)*cos(360), y(t)=(0-t)*sin(360) r(t)= r(t)=0-6 r(t)=6 Ezzel feladatunkat megoldottuk.. ábra Irodalom: [ ] Szerk.: M. Csizmadia Béla ~ Nándori Ernő: Mechanika mérnököknek Mozgástan Nemzeti Tankönykiadó, Budapest, 997. Sződliget, 00. július 8. Összeállította: Galgóczi Gyula mérnöktanár

A csavarvonal axonometrikus képéről

A csavarvonal axonometrikus képéről A avarvonal axonometrikus képéről Miután egyre jobban megy a Graph ingyenes függvény - ábrázoló szoftver használata, kipróbáltuk, hogy tudunk - e vele avarvonalat ábrázolni, axonometrikusan. A válasz:

Részletesebben

A hordófelület síkmetszeteiről

A hordófelület síkmetszeteiről 1 A hordófelület síkmetszeteiről Előző dolgozatunkban melynek címe: Ismét egy érdekes mechanizmusról azon hiányérzetünknek adtunk hangot, hogy a hordószerű test görbe felülete nem kapott nevet. Itt elneveztük

Részletesebben

Vontatás III. A feladat

Vontatás III. A feladat Vontatás III Ebben a részben ázoljuk a ontatási feladat egy lehetséges numerikus megoldási módját Ezt az I részben ismertetett alapegyenletre építjük fel Itt az egy ontatott kerékpár esetét izsgáljuk feladat

Részletesebben

t, u v. u v t A kúpra írt csavarvonalról I. rész

t, u v. u v t A kúpra írt csavarvonalról I. rész A kúpra írt csavarvonalról I. rész Sokféle kúpra írt csavarvonal létezik. Ezek közül először a legegyszerűbbel foglalko - zunk. Ezt azért tesszük mert meglepő az a tény hogy eddig még szinte sehol nem

Részletesebben

Egy forgáskúp metszéséről. Egy forgáskúpot az 1. ábra szerint helyeztünk el egy ( OXYZ ) derékszögű koordináta - rendszerben.

Egy forgáskúp metszéséről. Egy forgáskúpot az 1. ábra szerint helyeztünk el egy ( OXYZ ) derékszögű koordináta - rendszerben. Egy forgáskúp metszéséről Egy forgáskúpot az 1. ábra szerint helyeztünk el egy ( OXYZ ) derékszögű koordináta - rendszerben. Az O csúcsú, O tengelyű, γ félnyílásszögű kúpot az ( XY ) sík itt két alkotóban

Részletesebben

A Cassini - görbékről

A Cassini - görbékről A Cassini - görbékről Giovanni Domenico Cassini, a 17-18 században élt olasz származású francia csillagász neve egyebek mellett a róla elnevezett görbékről is ismert lehet; ilyeneket mutat az 1 ábra is

Részletesebben

Az egyenes ellipszishenger ferde síkmetszeteiről

Az egyenes ellipszishenger ferde síkmetszeteiről 1 Az egyenes ellipszishenger ferde síkmetszeteiről Vegyünk egy a és b féltengelyekkel bíró ellipszist a vezérgörbét, majd az ellipszis O centrumában állítsunk merőlegest az ellipszis síkjára. Ez a merőleges

Részletesebben

Egy általánosabb súrlódásos alapfeladat

Egy általánosabb súrlódásos alapfeladat Egy általánosabb súrlódásos alapfeladat Az előző dolgozatunkban címe: Egy súrlódásos alapfeladat, jele: ( E D ) tárgyalt probléma általánosítása az alábbi, melynek forrása [ 1 ]. Tekintsük az 1. ábrát!

Részletesebben

Fa rudak forgatása II.

Fa rudak forgatása II. Fa rudak forgatása II. Dolgozatunk I. részében egy speciális esetre oldottuk meg a kitűzött feladatokat. Most egy általánosabb elrendezés vizsgálatát végezzük el. A számítás a korábbi úton halad, ügyelve

Részletesebben

Egy geometriai szélsőérték - feladat

Egy geometriai szélsőérték - feladat 1 Egy geometriai szélsőérték - feladat A feladat: Szerkesztendő egy olyan legnagyobb területű háromszög, melynek egyik csúcsa az a és b féltengelyeivel adott ellipszis tetszőlegesen felvett pontja. Keresendő

Részletesebben

Forogj! Az [ 1 ] munkában találtunk egy feladatot, ami beindította a HD - készítési folyamatokat. Eredményei alább olvashatók. 1.

Forogj! Az [ 1 ] munkában találtunk egy feladatot, ami beindította a HD - készítési folyamatokat. Eredményei alább olvashatók. 1. 1 Forogj! Az [ 1 ] munkában találtunk egy feladatot, ami beindította a HD - készítési folyamatokat. Eredményei alább olvashatók. 1. Feladat Egy G gépkocsi állandó v 0 nagyságú sebességgel egyenes úton

Részletesebben

Az arkhimédészi csőfelületről

Az arkhimédészi csőfelületről Az arkhimédészi csőfelületről Az előző dolgozatban melynek címe: Csaarokról és rokon témákról elkezdtük a csaaros témakör körüljárását. Most folytatjuk a címbeli témáal. A felület definíciója [ 1 ] szerint:

Részletesebben

A loxodrómáról. Előző írásunkban melynek címe: A Gudermann - függvényről szó esett a Mercator - vetületről,illetve az ezen alapuló térképről 1. ábra.

A loxodrómáról. Előző írásunkban melynek címe: A Gudermann - függvényről szó esett a Mercator - vetületről,illetve az ezen alapuló térképről 1. ábra. 1 A loxodrómáról Előző írásunkban melynek címe: A Gudermann - függvényről szó esett a Mercator - vetületről,illetve az ezen alapuló térképről 1. ábra. 1. ábra forrása: [ 1 ] Ezen a térképen a szélességi

Részletesebben

Kosárra dobás I. Egy érdekes feladattal találkoztunk [ 1 ] - ben, ahol ezt szerkesztéssel oldották meg. Most itt számítással oldjuk meg ugyanezt.

Kosárra dobás I. Egy érdekes feladattal találkoztunk [ 1 ] - ben, ahol ezt szerkesztéssel oldották meg. Most itt számítással oldjuk meg ugyanezt. osárra dobás I. Egy érdekes feladattal találkoztunk [ 1 ] - ben, ahol ezt szerkesztéssel oldották meg. Most itt számítással oldjuk meg ugyanezt. A feladat Az 1. ábrán [ 1 ] egy tornaterem hosszmetszetét

Részletesebben

Két körhenger általánosabban ( Alkalmazzuk a vektoralgebrát! ) 1. ábra

Két körhenger általánosabban ( Alkalmazzuk a vektoralgebrát! ) 1. ábra Két körhenger általánosabban ( Alkalmazzuk a vektoralgebrát! ) Egy korábbi dolgozatunkban címe: Két egyenes körhenger a merőlegesen metsződő tengelyű körhengerek áthatási feladatával foglalkoztunk. Most

Részletesebben

Síkbeli csuklós rúdnégyszög egyensúlya

Síkbeli csuklós rúdnégyszög egyensúlya Síkbeli csuklós rúdnégyszög egyensúlya Két korábbi dolgozatunkban melyek címe és azonosítója: [KD ]: Egy érdekes feladat, [KD ]: Egy másik érdekes feladat azt vizsgáltuk, hogy egy csuklós rúdnégyszög milyen

Részletesebben

Fiók ferde betolása. A hűtőszekrényünk ajtajának és kihúzott fiókjának érintkezése ihlette az alábbi feladatot. Ehhez tekintsük az 1. ábrát!

Fiók ferde betolása. A hűtőszekrényünk ajtajának és kihúzott fiókjának érintkezése ihlette az alábbi feladatot. Ehhez tekintsük az 1. ábrát! 1 Fiók ferde betolása A hűtőszekrényünk ajtajának és kihúzott fiókjának érintkezése ihlette az alábbi feladatot. Ehhez tekintsük az 1. ábrát! 1. ábra Itt azt látjuk, hogy egy a x b méretű kis kék téglalapot

Részletesebben

Egy sajátos ábrázolási feladatról

Egy sajátos ábrázolási feladatról 1 Egy sajátos ábrázolási feladatról Régen volt, ha volt egyáltalán. Én bizony nem emlékszem a ferde gerincvonalú túleme - lés ~ átmeneti megoldásra 1. ábra az ( erdészeti ) útépítésben. 1. ábra forrása:

Részletesebben

A közönséges csavarvonal érintőjének képeiről

A közönséges csavarvonal érintőjének képeiről A közönséges csavarvonal érintőjének képeiről Már régóta rajzoljuk a táblára a közönséges csavarvonal vetületeinek és síkba teríté - sének ábráit, a Gépészeti alapismeretek tantárgy óráin. Úgy tűnik, itt

Részletesebben

Henger és kúp metsződő tengelyekkel

Henger és kúp metsződő tengelyekkel Henger és kúp metsződő tengelyekkel Ebben a dolgozatban egy forgáshenger és egy forgáskúp áthatását tanulmányozzuk abban az egyszerűbb esetben, amikor a két test tengelye egyazon síkban fekszik, vagyis

Részletesebben

A bifiláris felfüggesztésű rúd mozgásáról

A bifiláris felfüggesztésű rúd mozgásáról 1 A bifiláris felfüggesztésű rúd mozgásáról A végein fonállal felfüggesztett egyenes rúd részleges erőtani vizsgálatát mutattuk be egy korábbi dolgozatunkban, melynek címe: Forgatónyomaték mérése - I.

Részletesebben

Egy érdekes nyeregtetőről

Egy érdekes nyeregtetőről Egy érdekes nyeregtetőről Adott egy nyeregtető, az 1 ábra szerinti adatokkal 1 ábra Végezzük el vetületi ábrázolását, az alábbi számszerű adatokkal: a = 10,00 m; b = 6,00 m; c = 3,00 m; α = 45 ; M 1:100!

Részletesebben

Az éjszakai rovarok repüléséről

Az éjszakai rovarok repüléséről Erről ezt olvashatjuk [ ] - ben: Az éjszakai rovarok repüléséről Az a kijelentés, miszerint a repülés pályája logaritmikus spirális, a következőképpen igazolható [ 2 ].. ábra Az állandó v nagyságú sebességgel

Részletesebben

Vonatablakon át. A szabadvezeték alakjának leírása. 1. ábra

Vonatablakon át. A szabadvezeték alakjának leírása. 1. ábra 1 Vonatablakon át Sokat utazom vonaton, és gyakran elnézem a vonatablakon át a légvezeték(ek) táncát. Már régóta gondolom, hogy le kellene írni ezt a látszólagos mozgást. Most erről lesz szó. Ehhez tekintsük

Részletesebben

Keresztezett pálcák II.

Keresztezett pálcák II. Keresztezett pálcák II Dolgozatunk I részéen a merőleges tengelyű pálcák esetét vizsgáltuk Most nézzük meg azt az esetet amikor a pálcák tengelyei nem merőlegesen keresztezik egymást Ehhez tekintsük az

Részletesebben

Rugalmas láncgörbe alapvető összefüggések és tudnivalók I. rész

Rugalmas láncgörbe alapvető összefüggések és tudnivalók I. rész Rugalmas láncgörbe alapvető összefüggések és tudnivalók I rész evezetés rugalmas láncgörbe magyar nyelvű szakirodalma nem túl gazdag Egy viszonylag rövid ismertetés található [ 1 ] - ben közönséges ( azaz

Részletesebben

Ellipszis vezérgörbéjű ferde kúp felszínének meghatározásához

Ellipszis vezérgörbéjű ferde kúp felszínének meghatározásához 1 Ellipszis vezérgörbéjű ferde kúp felszínének meghatározásához Előző dolgozatunkkal melynek címe: A ferde körkúp palástfelszínének meghatározásához már mintegy megágyaztunk a jelen írásnak. Több mindent

Részletesebben

Egyenletek, egyenletrendszerek, egyenlőtlenségek Megoldások

Egyenletek, egyenletrendszerek, egyenlőtlenségek Megoldások ) Egyenletek, egyenletrendszerek, egyenlőtlenségek - megoldások Egyenletek, egyenletrendszerek, egyenlőtlenségek Megoldások a) Oldja meg a valós számok halmazán az alábbi egyenletet! = 6 (5 pont) b) Oldja

Részletesebben

Felső végükön egymásra támaszkodó szarugerendák egyensúlya

Felső végükön egymásra támaszkodó szarugerendák egyensúlya 1 Felső végükön egymásra támaszkodó szarugerendák egyensúlya Az [ 1 ] példatárban találtunk egy érdekes feladatot, melynek egy változatát vizsgáljuk meg itt. A feladat Ehhez tekintsük az 1. ábrát! 1. ábra

Részletesebben

A visszacsapó kilincs működéséről

A visszacsapó kilincs működéséről 1 A visszacsapó kilincs működéséről A faipari forgácsoló gépek egy részén a munkadarab visszasodródása ellen visszacsapó kilincset / kilincssort alkalmaznak. Ilyen gépek például a felülről vágó körfűrészek

Részletesebben

Egy mozgástani feladat

Egy mozgástani feladat 1 Egy mozgástani feladat Előző dolgozatunk melynek jele és címe: ED ~ Ismét az ellipszis egyenleteiről folytatásának tekinthető ez az írás. Leválasztottuk róla, mert bár szorosan kapcsolódnak, más a céljuk.

Részletesebben

Egy másik érdekes feladat. A feladat

Egy másik érdekes feladat. A feladat Egy másik érdekes feladat Az előző dolgozatban melynek címe: Egy érdekes feladat az itteninek egy speciális esetét vizsgáltuk. Az általánosabb feladat az alábbi [ 1 ]. A feladat Adott: az ABCD zárt négyszög

Részletesebben

Egy nyíllövéses feladat

Egy nyíllövéses feladat 1 Egy nyíllövéses feladat Az [ 1 ] munkában találtuk az alábbi feladatot 1. ábra. 1. ábra forrása: [ 1 / 1 ] Igencsak tanulságos, ezért részletesen bemutatjuk a megoldását. A feladat Egy sportíjjal nyilat

Részletesebben

Egy kötélstatikai alapfeladat megoldása másként

Egy kötélstatikai alapfeladat megoldása másként 1 Egy kötélstatikai alapfeladat megoldása másként Most megint egyik kedvenc témánkat vesszük elő. Bízunk benne, hogy az itt előforduló ismétlések szükségesek, ámde nem feleslegesek. A más módon való megoldás

Részletesebben

Fénypont a falon Feladat

Fénypont a falon Feladat Fénypont a falon 3. Dolgozat - sorozatunk. és. részében két speiális eset vizsgálatát részleteztük. Itt az általánosabb síkbeli esettel foglalkozunk, főbb vonalaiban. Ehhez tekintsük az. ábrát is! 3. Feladat.

Részletesebben

A gúla ~ projekthez 2. rész

A gúla ~ projekthez 2. rész 1 A gúla ~ projekthez 2. rész Dolgozatunk 1. részében egy speciális esetre a négyzet alapú egyenes gúla esetére írtuk fel és alkalmaztuk képleteinket. Most a tetszőleges oldalszámú szabályos sokszög alakú

Részletesebben

Aszimmetrikus nyeregtető ~ feladat 2.

Aszimmetrikus nyeregtető ~ feladat 2. 1 Aszimmetrikus nyeregtető ~ feladat 2. Ehhez tekintsük az 1. ábrát is! Itt az A és B pontok egy nyeregtető oromfali ereszpontjai, a P pont pedig a taréj pontja. Az ereszek egymástól való távolságának

Részletesebben

Ellipszis átszelése. 1. ábra

Ellipszis átszelése. 1. ábra 1 Ellipszis átszelése Adott egy a és b féltengely - adatokkal bíró ellipszis, melyet a befoglaló téglalapjának bal alsó sarkában csuklósan rögzítettnek képzelünk. Az ellipszist e C csukló körül forgatva

Részletesebben

Tömegpontok mozgása egyenes mentén, hajítások

Tömegpontok mozgása egyenes mentén, hajítások 2. gyakorlat 1. Feladatok a kinematika tárgyköréből Tömegpontok mozgása egyenes mentén, hajítások 1.1. Feladat: Mekkora az átlagsebessége annak pontnak, amely mozgásának első szakaszában v 1 sebességgel

Részletesebben

Szélsőérték feladatok megoldása

Szélsőérték feladatok megoldása Szélsőérték feladatok megoldása A z = f (x,y) függvény lokális szélsőértékének meghatározása: A. Szükséges feltétel: f x (x,y) = 0 f y (x,y) = 0 egyenletrendszer megoldása, amire a továbbiakban az x =

Részletesebben

Egy sík és a koordinátasíkok metszésvonalainak meghatározása

Egy sík és a koordinátasíkok metszésvonalainak meghatározása 1 Egy sík és a koordinátasíkok metszésvonalainak meghatározása Ehhez tekintsük az 1. ábrát! 1. ábra Itt az ( u, v, w ) tengelymetszeteivel adott S síkot látjuk, az Oxyz térbeli derékszögű koordináta -

Részletesebben

Egy furcsa tartóról. A probléma felvetése. Adott az 1. ábra szerinti kéttámaszú tartó. 1. ábra

Egy furcsa tartóról. A probléma felvetése. Adott az 1. ábra szerinti kéttámaszú tartó. 1. ábra Egy furcsa tartóról Az alábbi probléma ha jól emlékszem tanulói felvetés, melyet tanáruk volt kol - légánk G. A. továbbított. ( Üdv Néked, Nagy Király! ) Hogy a probléma valós - e vagy mondvacsinált, azt

Részletesebben

Észrevételek a forgásfelületek síkmetszeteivel kapcsolatban. Bevezetés

Észrevételek a forgásfelületek síkmetszeteivel kapcsolatban. Bevezetés 1 Észrevételek a forgásfelületek síkmetszeteivel kapcsolatban Bevezetés Előző dolgozatainkban melyek jelölése és címe: ~ ED - 1: Ismét egy érdekes mechanizmusról; ~ ED - 2: A hordófelület síkmetszeteiről

Részletesebben

Kerék gördüléséről. A feladat

Kerék gördüléséről. A feladat 1 Kerék gördüléséről Nemrégen egy órán szóba került a címbeli téma, középiskolások előtt. Úgy látszott, nem nagyon értik, miről van szó. Persze, lehet, hogy még nem tartottak ott, vagy csak aludtak a fizika

Részletesebben

Megoldás A számtani sorozat első három eleme kifejezhető a második elemmel és a differenciával. Összegük így a 2. d =33, azaz 3a 2. a 2.

Megoldás A számtani sorozat első három eleme kifejezhető a második elemmel és a differenciával. Összegük így a 2. d =33, azaz 3a 2. a 2. 1. Egy 33-as létszámú zenetagozatos osztályban hegedülni és zongorázni tanulnak a diákok. Minden diák játszik legalább egy hangszeren. Azok száma, akik mindkét hangszeren játszanak, akik csak hegedülnek,

Részletesebben

sin x = cos x =? sin x = dx =? dx = cos x =? g) Adja meg a helyettesítéses integrálás szabályát határozott integrálokra vonatkozóan!

sin x = cos x =? sin x = dx =? dx = cos x =? g) Adja meg a helyettesítéses integrálás szabályát határozott integrálokra vonatkozóan! Matematika előadás elméleti kérdéseinél kérdezhető képletek Analízis II Határozatlan integrálszámítás g) t = tg x 2 helyettesítés esetén mivel egyenlő sin x = cos x =? g) t = tg x 2 helyettesítés esetén

Részletesebben

A kör és ellipszis csavarmozgása során keletkező felületekről

A kör és ellipszis csavarmozgása során keletkező felületekről 1 A kör és ellipszis csavarmozgása során keletkező felületekről Előző dolgozatunkban melynek címe: Megint a két csavarfelületről levezettük a cím - beli körös felület - család paraméteres egyenletrendszerét,

Részletesebben

A felcsapódó kavicsról. Az interneten találtuk az alábbi, a hajítás témakörébe tartozó érdekes feladatot 1. ábra.

A felcsapódó kavicsról. Az interneten találtuk az alábbi, a hajítás témakörébe tartozó érdekes feladatot 1. ábra. 1 A felcsapódó kavicsról Az interneten találtuk az alábbi, a hajítás témakörébe tartozó érdekes feladatot 1. ábra. 1. ábra forrása: [ 1 ] Ez azért is érdekes, mert autóvezetés közben már többször is eszünkbe

Részletesebben

Matematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx =

Matematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx = Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika II Határozatlan Integrálszámítás d) Adja meg az alábbi alapintegrálokat! x n 1 dx =, sin 2 x dx = d) Adja meg az alábbi alapintegrálokat!

Részletesebben

Az R forgató mátrix [ 1 ] - beli képleteinek levezetése: I. rész

Az R forgató mátrix [ 1 ] - beli képleteinek levezetése: I. rész Az R forgató mátri [ ] - beli képleteinek levezetése: I rész Az [ ] forrás kötetében a ( 49 ), ( 50 ) képletek nyilván mint közismertek nem lettek levezetve Minthogy az ottani további számítások miatt

Részletesebben

A kötélsúrlódás képletének egy általánosításáról

A kötélsúrlódás képletének egy általánosításáról 1 A kötélsúrlódás képletének egy általánosításáról Sok korábbi dolgozatunkban foglalkoztunk kötélstatikai feladatokkal. Ez a mostani azon - ban még nem került szóba. A feladat: az egyenes körhengerre feltekert,

Részletesebben

Ellipszissel kapcsolatos képletekről

Ellipszissel kapcsolatos képletekről 1 Ellipszissel kapcsolatos képletekről Előző dolgozatunkban melynek címe: A Lenz - vektorról viszonylag sokat kellett ellipszissel kapcsolatos képletekkel dolgozni. Ennek során is adódott pár észrevételünk,

Részletesebben

Lövés csúzlival. Egy csúzli k merevségű gumival készült. Adjuk meg az ebből kilőtt m tömegű lövedék sebességét, ha a csúzlit L - re húztuk ki!

Lövés csúzlival. Egy csúzli k merevségű gumival készült. Adjuk meg az ebből kilőtt m tömegű lövedék sebességét, ha a csúzlit L - re húztuk ki! 1 Lövés csúzlival Az [ 1 ] munkában találtuk az alábbi feladatot 1. ábra. A feladat Egy csúzli k merevségű gumival készült. Adjuk meg az ebből kilőtt m tömegű lövedék sebességét, ha a csúzlit L - re húztuk

Részletesebben

A ferde tartó megoszló terheléseiről

A ferde tartó megoszló terheléseiről A ferde tartó megoszló terheléseiről Úgy vettem észre az idők során, hogy nem nagyon magyarázták agyon azt a kérdést, amivel itt fogunk foglalkozni. Biztos azt mondják majd megint, hogy De hisz ezt mindenki

Részletesebben

A lengőfűrészelésről

A lengőfűrészelésről A lengőfűrészelésről Az [ 1 ] tankönyvben ezt írják a lengőfűrészről, működéséről, használatáról: A lengőfűrész árkolásra, csaprések készítésére alkalmazott, 150 00 mm átmérőjű, 3 4 mm vastag, sűrű fogazású

Részletesebben

A szabályos sokszögek közelítő szerkesztéséhez

A szabályos sokszögek közelítő szerkesztéséhez 1 A szabályos sokszögek közelítő szerkesztéséhez A síkmértani szerkesztések között van egy kedvencünk: a szabályos n - szög közelítő szerkesztése. Azért vívta ki nálunk ezt az előkelő helyet, mert nagyon

Részletesebben

Néhány véges trigonometriai összegről. Határozzuk meg az alábbi véges összegek értékét!, ( 1 ) ( 2 )

Néhány véges trigonometriai összegről. Határozzuk meg az alábbi véges összegek értékét!, ( 1 ) ( 2 ) 1 Néhány véges trigonometriai összegről A Fizika számos területén találkozhatunk véges számú tagból álló trigonometriai össze - gekkel, melyek a számítások során állnak elő. Ezek értékét kinézhetjük matematikai

Részletesebben

Ellipszis perspektivikus képe 2. rész

Ellipszis perspektivikus képe 2. rész 1 Ellipszis perspektivikus képe 2. rész Dolgozatunk 1. részében nem mentünk tovább a matematikai kifejtésben. Ezzel mintegy felhagytunk a belső összefüggések feltárásával. A jelen 2. részben megkíséreljük

Részletesebben

A magától becsukódó ajtó működéséről

A magától becsukódó ajtó működéséről 1 A magától becsukódó ajtó működéséről Az [ 1 ] műben találtunk egy érdekes feladatot, amit most mi is feldolgozunk. Az 1. ábrán látható az eredeti feladat másolata. A feladat kitűzése 1. ábra forrása:

Részletesebben

A csúszóvágásról, ill. - forgácsolásról

A csúszóvágásról, ill. - forgácsolásról A csúszóvágásról, ill. - forgácsolásról A vágás, ill. a forgácsolás célja: anyagi részek egymástól való elválasztása. A vágás, ill. a forgácsolás hagyományos eszköze: a kés. A kés a v haladási irányhoz

Részletesebben

Az elliptikus hengerre írt csavarvonalról

Az elliptikus hengerre írt csavarvonalról 1 Az elliptikus hengerre írt csavarvonalról Erről viszonylag ritkán olvashatunk, ezért most erről lesz szó. Az [ 1 ] munkában találtuk az alábbi részt 1. ábra. 1. ábra Itt a ( c ) feladat és annak megoldása

Részletesebben

Csúcsívek rajzolása. Kezdjük egy általános csúcsív rajzolásával! Ehhez tekintsük az 1. ábrát!

Csúcsívek rajzolása. Kezdjük egy általános csúcsív rajzolásával! Ehhez tekintsük az 1. ábrát! 1 Csúcsívek rajzolása Előző dolgozatunk kapcsán melynek címe: Íves nyeregtető főbb számítási képleteiről találkoztunk a csúcsívvel, mint az építészetben igen gyakran előforduló vonalidommal. Most egy másik

Részletesebben

A térbeli mozgás leírásához

A térbeli mozgás leírásához A térbeli mozgás leírásához Az idők során már többször foglalkoztunk a címbeli témával; az előzmények vagyis a korábbi dolgozatok: ~ KD : Az R forgató mátrix I Az R forgató mátrix II ~ KD : A véges forgatás

Részletesebben

Egy kinematikai feladathoz

Egy kinematikai feladathoz 1 Egy kinematikai feladathoz Az [ 1 ] példatárból való az alábbi feladat. Egy bütyök v 0 állandó nagyságú sebességgel halad jobbról balra. Kontúrjának egyenlete a hozzá kötött, vele együtt haladó O 1 xy

Részletesebben

A ferde szabadforgácsolásról, ill. a csúszóforgácsolásról ismét

A ferde szabadforgácsolásról, ill. a csúszóforgácsolásról ismét A ferde szabadforgácsolásról, ill. a csúszóforgácsolásról ismét A szabadforgácsolást [ 1 ] az alábbiak szerint definiálja, ill. jellemzi. Ha a forgácsolószerszám élének minden pontjában a forgácsolási

Részletesebben

Abszolútértékes és gyökös kifejezések Megoldások

Abszolútértékes és gyökös kifejezések Megoldások Abszolútértékes és gyökös kifejezések Megoldások ) Igazolja, hogy az alábbi négy egyenlet közül az a) és b) jelű egyenletnek pontosan egy megoldása van, a c) és d) jelű egyenletnek viszont nincs megoldása

Részletesebben

Érdekes geometriai számítások Téma: A kardáncsukló kinematikai alapegyenletének levezetése gömbháromszögtani alapon

Érdekes geometriai számítások Téma: A kardáncsukló kinematikai alapegyenletének levezetése gömbháromszögtani alapon Érdekes geometriai számítások 7. Folytatjuk a sorozatot. 7. Téma: A kardáncsukló kinematikai alapegyenletének levezetése gömbháromszögtani alapon Korábbi dolgozatainkban már többféle módon is bemutattuk

Részletesebben

Ismét a fahengeres keresztmetszetű gerenda témájáról. 1. ábra forrása: [ 1 ]

Ismét a fahengeres keresztmetszetű gerenda témájáról. 1. ábra forrása: [ 1 ] 1 Ismét a fahengeres keresztmetszetű gerenda témájáról Az 1. ábrával már korábban is találkozhatott az Olvasó. 1. ábra forrása: [ 1 ] Ezen azt láthatjuk, hogy bizonyos esetekben a fűrészelt fagerenda a

Részletesebben

T s 2 képezve a. cos q s 0; 2. Kötélstatika I. A síkbeli kötelek egyensúlyi egyenleteiről és azok néhány alkalmazásáról

T s 2 képezve a. cos q s 0; 2. Kötélstatika I. A síkbeli kötelek egyensúlyi egyenleteiről és azok néhány alkalmazásáról Kötélstatika I. A síkbeli kötelek egyensúlyi egyenleteiről és azok néhány alkalmazásáról Úgy találjuk, hogy a kötelek statikájának népszerűsítése egy soha véget nem érő feladat. Annyi szép dolog tárháza

Részletesebben

Az egyköpenyű forgáshiperboloid síkmetszeteiről

Az egyköpenyű forgáshiperboloid síkmetszeteiről 1 Az egyköpenyű forgáshiperboloid síkmetszeteiről Egyik előző dolgozatunkban melynek címe: Ismét egy érdekes mechanizmusról arról elmélkedtünk, hogy ha a forgáshenger ferde síkmetszete ( ellipszis ) mentén

Részletesebben

Az elforgatott ellipszisbe írható legnagyobb területű téglalapról

Az elforgatott ellipszisbe írható legnagyobb területű téglalapról 1 Az elforgatott ellipszisbe írható legnagyobb területű téglalapról Előző dolgozatunkban melynek címe: Az ellipszisbe írható legnagyobb területű négyszögről már beharangoztuk, hogy találtunk valami érdekeset

Részletesebben

Befordulás sarkon bútorral

Befordulás sarkon bútorral Befordulás sarkon bútorral Bizonyára volt már olyan élményed, hogy bútort kellett cipelned, és nem voltál biztos benne, hogy be tudjátok - e vinni a szobába. Erről jutott eszembe az alábbi feladat. Adott

Részletesebben

A főtengelyproblémához

A főtengelyproblémához 1 A főtengelyproblémához Korábbi, az ellipszis perspektivikus ábrázolásával foglalkozó dolgozatainkban előkerült a másodrendű görbék kanonikus alakra hozása, majd ebben a főtengelyrendszert előállító elforgatási

Részletesebben

a) A logaritmus értelmezése alapján: x 8 0 ( x 2 2 vagy x 2 2) (1 pont) Egy szorzat értéke pontosan akkor 0, ha valamelyik szorzótényező 0.

a) A logaritmus értelmezése alapján: x 8 0 ( x 2 2 vagy x 2 2) (1 pont) Egy szorzat értéke pontosan akkor 0, ha valamelyik szorzótényező 0. MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

Matematika II képletek. 1 sin xdx =, cos 2 x dx = sh 2 x dx = 1 + x 2 dx = 1 x. cos xdx =,

Matematika II képletek. 1 sin xdx =, cos 2 x dx = sh 2 x dx = 1 + x 2 dx = 1 x. cos xdx =, Matematika II előadás elméleti kérdéseinél kérdezhető képletek Matematika II képletek Határozatlan Integrálszámítás x n dx =, sin 2 x dx = sin xdx =, ch 2 x dx = sin xdx =, sh 2 x dx = cos xdx =, + x 2

Részletesebben

A befogott tartóvég erőtani vizsgálatához II. rész

A befogott tartóvég erőtani vizsgálatához II. rész A befogott tartóvég erőtani vizsgálatához II. rész A második feladat Az első feladat alapfeltevése az volt, hogy a gerendavég kellően merev, így a terhelések hatására is egyenes marad. A valóságos testek

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

A rektellipszis csavarmozgása során keletkező felületről

A rektellipszis csavarmozgása során keletkező felületről 1 A rektellipszis csavarmozgása során keletkező felületről Előző dolgozatunkban melynek címe: A kör és ellipszis csavarmozgása során keletkező felületekről felírtuk az általánosabb helyzetű ellipszis mint

Részletesebben

Végein függesztett rúd egyensúlyi helyzete. Az interneten találtuk az [ 1 ] munkát, benne az alábbi érdekes feladatot 1. ábra. Most erről lesz szó.

Végein függesztett rúd egyensúlyi helyzete. Az interneten találtuk az [ 1 ] munkát, benne az alábbi érdekes feladatot 1. ábra. Most erről lesz szó. 1 Végein függesztett rúd egyensúlyi helyzete Az interneten találtuk az [ 1 ] munkát, benne az alábbi érdekes feladatot 1. ábra. Most erről lesz szó. A feladat Ehhez tekintsük a 2. ábrát is! 1. ábra forrása:

Részletesebben

Vontatás V.

Vontatás V. Az interneten találtam ezt a szövegrészt.. Schleppkurven Vontatás V. Schleppkurven: die Größen f(t) = (x(t), y(t)) Führungskurve s(t) = (u(t), v(t)) Schleppkurve Parameter D Deichsellänge Systemgleichungen

Részletesebben

Poncelet egy tételéről

Poncelet egy tételéről 1 Poncelet egy tételéről Már régebben találkoztunk az [ 1 ] műben egy problémával, mostanában pedig a [ 2 ] műben a megoldásával. A probléma lényege: határozzuk meg a egyenletben szereplő α, β együtthatókat,

Részletesebben

A fő - másodrendű nyomatékok meghatározása feltételes szélsőérték - feladatként

A fő - másodrendű nyomatékok meghatározása feltételes szélsőérték - feladatként A fő - másodrendű nomatékok meghatározása feltételes szélsőérték - feladatként A Keresztmetszeti jellemzők című mappa első lakója eg ritkábban látható levezetést mutat be amel talán segít helesen elrendezni

Részletesebben

Egy érdekes statikai - geometriai feladat

Egy érdekes statikai - geometriai feladat 1 Egy érdekes statikai - geometriai feladat Előző dolgozatunkban melynek címe: Egy érdekes geometriai feladat egy olyan feladatot oldottunk meg, ami az itteni előtanulmányának is tekinthető. Az ottani

Részletesebben

Egy újabb cérnás feladat

Egy újabb cérnás feladat 1 Egy újabb cérnás feladat Az interneten találkoztunk az [ 1 ] dolgozattal, amely csak rész - információkat adott. Ez azonban elég is volt ahhoz, hogy elkezdjünk gondolkodni róla. Erről lesz most szó.

Részletesebben

Az eltérő hajlású szarufák és a taréjszelemen kapcsolatáról 1. rész. Eltérő keresztmetszet - magasságú szarufák esete

Az eltérő hajlású szarufák és a taréjszelemen kapcsolatáról 1. rész. Eltérő keresztmetszet - magasságú szarufák esete 1 Az eltérő hajlású szarufák és a taréjszelemen kapcsolatáról 1. rész Eltérő keresztmetszet - magasságú szarufák esete Az alábbi ábrát találtuk az interneten 1. ábra 1. ábra forrás( ok ): http://www.sema-soft.com/de/forum/files/firstpfettenverschiebung_432.jpg

Részletesebben

Egy újabb látószög - feladat

Egy újabb látószög - feladat 1 Egy újabb látószög - feladat A feladat Adott az O középpontú, R sugarú körön az α szöggel jellemzett P pont. Határozzuk meg, hogy mekkora ϑ szög alatt látszik a P pontból a vízszintes átmérő - egyenes

Részletesebben

Egy újabb térmértani feladat. Az [ 1 ] könyvben az interneten találtuk az alábbi érdekes feladatot is 1. ábra.

Egy újabb térmértani feladat. Az [ 1 ] könyvben az interneten találtuk az alábbi érdekes feladatot is 1. ábra. 1 Egy újabb térmértani feladat Az [ 1 ] könyvben az interneten találtuk az alábbi érdekes feladatot is 1. ábra. Úgy látjuk, érdekes és tanulságos lesz végigvenni. 2 A feladat Egy szabályos n - szög alapú

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Paraméter

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Paraméter MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Paraméter A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Függőleges koncentrált erőkkel csuklóin terhelt csuklós rúdlánc számításához

Függőleges koncentrált erőkkel csuklóin terhelt csuklós rúdlánc számításához 1 Függőleges koncentrált erőkkel csuklóin terhelt csuklós rúdlánc számításához Az interneten való nézelődés során találkoztunk az [ 1 ] művel, melyben egy érdekes és fontos feladat pontos(abb) megoldásához

Részletesebben

A Kepler - problémáról. Megint az interneten találtunk egy szép animációt 1. ábra, amin elgondolkoztunk: Ezt hogyan oldanánk meg? Most erről lesz szó.

A Kepler - problémáról. Megint az interneten találtunk egy szép animációt 1. ábra, amin elgondolkoztunk: Ezt hogyan oldanánk meg? Most erről lesz szó. 1 A Kepler - problémáról Megint az interneten találtunk egy szép animációt 1. ábra, amin elgondolkoztunk: Ezt hogyan oldanánk meg? Most erről lesz szó. 1. ábra forrása: https://hu.wikipedia.org/wiki/kepler-probl%c3%a9ma

Részletesebben

Egy általános helyzetű lekerekített sarkú téglalap paraméteres egyenletrendszere. Az egyenletek felírása

Egy általános helyzetű lekerekített sarkú téglalap paraméteres egyenletrendszere. Az egyenletek felírása 1 Egy általános helyzetű lekerekített sarkú téglalap paraméteres egyenletrendszere Az egyenletek felírása Korábbi dolgozataink már mintegy előkészítették a mostanit; ezek: ~ KD - 1: Általános helyzetű

Részletesebben

Ismét egy érdekes mechanizmusról. Az interneten találkoztunk az [ 1 ] művel, benne az 1. ábrával.

Ismét egy érdekes mechanizmusról. Az interneten találkoztunk az [ 1 ] művel, benne az 1. ábrával. 1 Ismét egy érdekes mechanizmusról Az interneten találkoztunk az [ 1 ] művel, benne az 1. ábrával. 1. ábra forrása: [ 1 ] Ennek a 10. 47. számú rajza egy szinuszos mechanizmust ábrázol. Ezzel korábban

Részletesebben

Cikloisgörbék ábrázolása. Az ábrázoló program számára el kell készítenünk az ábrázolandó függvényt. Ehhez tekintsük az 1. ábrát is!

Cikloisgörbék ábrázolása. Az ábrázoló program számára el kell készítenünk az ábrázolandó függvényt. Ehhez tekintsük az 1. ábrát is! Cikloisgörbék ábrázolása Bevezetés A forgó főmozgású szerszám ( pl. galukés, marószerszám ) élének pontjai rendszerint hurkolt cikloisgörbéket írnak le, a munkadarabhoz képest. Ez eg igen fontos tén, mert

Részletesebben

A Lenz - vektorról. Ha jól emlékszem, először [ 1 ] - ben találkoztam a címbeli fogalommal 1. ábra.

A Lenz - vektorról. Ha jól emlékszem, először [ 1 ] - ben találkoztam a címbeli fogalommal 1. ábra. 1 A Lenz - vektorról Ha jól emlékszem, először [ 1 ] - ben találkoztam a címbeli fogalommal 1. ábra. 1. ábra forrása: [ 1 ] Ez nem régen történt. Meglepett, hogy eddig ez kimaradt. Annál is inkább, mert

Részletesebben

Matematikai háttér. 3. Fejezet. A matematika hozzászoktatja a szemünket ahhoz, hogy tisztán és világosan lássa az igazságot.

Matematikai háttér. 3. Fejezet. A matematika hozzászoktatja a szemünket ahhoz, hogy tisztán és világosan lássa az igazságot. 3. Fejezet Matematikai háttér A matematika hozzászoktatja a szemünket ahhoz, hogy tisztán és világosan lássa az igazságot René Descartes Számtalan kiváló szakirodalom foglalkozik a különféle differenciálegyenletek

Részletesebben

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al: Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x

Részletesebben

Egy kinematikai feladat

Egy kinematikai feladat 1 Egy kinematikai feladat Valami geometriai dologról ötlött eszembe az alábbi feladat 1. ábra. 1. ábra Adott az a és b egyenes, melyek α szöget zárnak be egymással. A b egyenesre ráfektetünk egy d hosszúságú

Részletesebben

A síkbeli Statika egyensúlyi egyenleteiről

A síkbeli Statika egyensúlyi egyenleteiről 1 A síkbeli Statika egyensúlyi egyenleteiről Statikai tanulmányaink egyik mérföldköve az egyensúlyi egyenletek belátása és sikeres alkalmazása. Most egy erre vonatkozó lehetséges tanulási / tanítási útvonalat

Részletesebben

Egy kérdés: merre folyik le az esővíz az úttestről? Ezt a kérdést az után tettük fel magunknak, hogy megláttuk az 1. ábrát.

Egy kérdés: merre folyik le az esővíz az úttestről? Ezt a kérdést az után tettük fel magunknak, hogy megláttuk az 1. ábrát. 1 Egy kérdés: merre folyik le az esővíz az úttestről? Ezt a kérdést az után tettük fel magunknak, hogy megláttuk az 1. ábrát. 1. ábra forrása: [ 1 ] Ezen egy út tengelyvonalának egy pontjában tüntették

Részletesebben

Kiegészítés a három erő egyensúlyához

Kiegészítés a három erő egyensúlyához 1 Kiegészítés a három erő egyensúlyához Egy régebbi dolgozatunkban melynek jele és címe : RD: Három erő egyensúlya ~ kéttámaszú tartó már sok mindent elmondtunk a címbeli témáról. Ez ugyanis egy megkerülhetetlen

Részletesebben