Egy szép és jó ábra csodákra képes. Az alábbi 1. ábrát [ 1 ] - ben találtuk; talán már máskor is hivatkoztunk rá.
|
|
- Lóránd Papp
- 7 évvel ezelőtt
- Látták:
Átírás
1 Egy szép és jó ábr csodákr képes Az lábbi. ábrát [ ] - ben tláltuk; tlán már máskor is hivtkoztunk rá.. ábr Az különlegessége, hogy vlki nem volt rest megcsinál(tt)ni, még h sok is volt vele munk. Ennek eredményeként villámgyorsn megérthető z igzolndó állítás, mi z lábbi. Tétel: Egy körhenger minden síkmetszete ellipszis, h metsző sík nem párhuzmos körhenger tengelyével. Igzolás: Az. ábrán zt szemléltetik, hogy egy sugrú körhengert egy α síkkl elmetszettek, mely henger tengelyére merőleges β metszősíkkl φ szöget zár be. A β sík körhengert egy k körben metszi. Azt krjuk igzolni, hogy z α sík áltl előállított k metszeti görbe: ellipszis. Ehhez felvesszük α - bn z Oxy síkbeli derék - szögű koordinát - rendszert, z. ábr szerint. Most válsszuk ki k görbe egy tetszőleges M pontját, melynek k - n lévő vetülete z P pont, mjd írjuk fel M pont Oxy - beli koordinátáit! Az. ábr szerint: x = OQ = OP cost = cos t, QP OP sin t y = = = sin t = b sin t, cos ϕ cos ϕ cos ϕ
2 zz: x = cos t, y = b sin t, hol b =. cos ϕ ( ) Az ( ) egyenletek egy ellipszis prméteres egyenletrendszere, hiszen innen x y + = t + t = b cos sin, vgyis x y + =, b ( ) mi pedig egy ellipszis knonikus egyenlete. Megjegyzendő, hogy b =, cos ϕ 0 ϕ < 90. ( 3 ) Itt b z ellipszis ngytengelye, pedig kistengelye. Értelemszerűen: h φ = 0, kkor ( ) és ( 3 ) szerint b =, vgyis síkmetszet kör. Ezzel igzolást nyert fent kimondott tétel. Megjegyzések: M. Az. ábr gusztust csinált egyéb összefüggések felírásár is, mintegy ismétlő jelleggel. Ehhez tekintsük. ábrát is! Ez lpján z M pont koordinátáir írhtjuk, hogy X = cos t, Y = sin t, Z = tg ψ. ( 4 )
3 3. ábr Mjd ( 4 ) - gyel is: ρ = X + Y + Z = cos t + sin t + tg ψ = cos sin tg tg, = t + t + ψ = + ψ tehát: ρ = + tg ψ. ( 5 ) Ezután megint ( 4 ) - gyel is: Z tgψ tgψ tg ϕ = = =, Y sin t sin t innen: tgψ = tgϕ sin t. ( 6 ) Most megint. ábr lpján: X és = ρ cos ϑ = ρ cos ψ cos t, ( 7 )
4 4 d sin ψ = ρ sin ϑ = ρ. sin ϕ ( 8 ) Mjd ( 7 ) és ( 8 ) - cl: sin ψ ρ d sin ϕ sin ψ tgψ tg ϑ = = = =, X ρ cos ψ cost sin ϕ cos ψ cost sin ϕ cost tehát: tgψ tg ϑ =. sin ϕ cos t ( 9 ) Ezután ( 6 ) és ( 9 ) - cel: tgϕ sin t tgt tg ϑ = =, sin ϕ cos t cos ϕ tehát: tgt tg ϑ =. cos ϕ Mjd jellemző szögek összefüggései ( 6 ) és ( 0 ) - ből: ψ( ϕ, t) = rctg ( tgϕ sin t), ϑ( ϕ, t) = rctg tg t. cos ϕ ( 0 ) ( ) Ezután ( 5 ) és ( 6 ) szerint: ρ( ϕ, t) = + tg ϕ sin t. ( 3 ) Azonos átlkításokkl, ( 0 ) - zel is: tg t cos tg tg sin t tg tg ρ ϕ ϑ = + ϕ = + ϕ = + ϕ = + tg t + cos ϕ tg ϑ sin ϕ tg ϑ + cos ϕ tg ϑ + sin ϕ tg ϑ = + = ; cos tg cos tg + ϕ ϑ + ϕ ϑ
5 5 tovább lkítv: ρ + tg ϑ cos ϕ + sin ϕ + tg ϑ = = = = + cos ϕ tg ϑ + cos ϕ tg ϑ cos ϑ + cos ϕ tg ϑ =, cos ϑ + cos ϕ sin ϑ innen ( / 3 ) - ml is: ρ = = = cos ϑ + cos ϕ sin ϑ cos ϑ cos ϕ cos ϑ sin ϑ + sin ϑ + b, miből: ρ( ϑ ) =. cos ϑ sin ϑ + b ( 4 ) Ez z ellipszis polárkoordinátás egyenlete, hol pólus z origó. Ugynis (4 ) - gyel: cos ϑ sin ϑ ρ +, = b ρ cos ϑ ρ sin ϑ + =, b vlmint. ábráról is leolvshtó x = ρ cos ϑ, y = ρ sin ϑ ( 5 ) egyenletekkel ( ) dódik. M. H z. ábr szerinti P pont ω = áll. szögsebességgel kering O körül, kkor t szögre írhtjuk, hogy t( τ ) = ω τ, ( 6 ) hol τ z idő - változó.
6 6 Most ( 0 ) - et z idő szerint differenciálv: dϑ dt = ; cos ϑ dτ cos ϕ cos t dτ bevezetve ferde síkon történő keringés szögsebességére z dϑ Ω = d τ jelölést, ( 6 ), ( 7 ) és ( 8 ) - cl kpjuk, hogy ω cos ϑ ω + tg t Ω = = ; cos ϕ cos t cos ϕ + tg ϑ mjd ( 0 ) és ( 9 ) - cel: ω + tg t + tg t Ω = = ω cos ϕ, cos ϕ tg t cos ϕ + tg t + cos ϕ ( 7 ) ( 8 ) ( 9 ) ( 0 ) vgy ( 6 ) és ( 0 ) - szl: + tg ω τ Ω( τ ) = ω cos ϕ. cos ϕ + tg ω τ ( ) Eszerint ferde síkon vló keringés szögsebessége z időben periodikusn változik z + tg ω 0 ω cos tg 0 cos cos Ω τ = 0 = ω cosϕ = ω cos ϕ = ϕ + ω ϕ ϕ ( ) és z + π π + tg tg π Ω cos cos τ = = ω ϕ = ω ϕ = ω cos ϕ ω π cos ϕ cos ϕ + tg + π tg ( 3 )
7 7 htárok között. A 3. ábrán szemlélhetjük ( ) függvény lefutását, z lábbi dtokkl: ω =, ϕ = 60. s.8 Ω( / s ) f(x)=*(+tn(x)*tn(x))/(+4*tn(x)*tn(x)) τ( s ) ábr M3. A fenti képletek lkj már máshonnn is ismerős lehet figyelmes Olvsónk. Vlóbn, krdáncsukló kinemtikájávl kpcsoltos korábbi dolgoztink szerint is éppen egy ( 0 ) lkú összefüggés áll fenn hjtó és hjtott tengelyek szögelfordu - lási között, így nem véletlen, hogy szögsebességek formulái is ismerősek. Ezek szerint előttünk áll egy lehetséges geometrii szemléltető eszköz, krdáncsukló működésének mgyráztához. Forrás: [ ] Ефимов, Н. В. : Краткий курс аналитической геометрии (0-е изд.), М.: Наука, 967. Sződliget, 03. június 0. Összeállított: Glgóczi Gyul mérnöktnár
Egy látószög - feladat
Ehhez tekintsük z 1. ábrát is! Egy látószög - feldt 1. ábr Az A pont körül kering C pont, egy r sugrú körön. A rögzített A és B pontok egymástól távolság vnnk. Az = CAB szöget folymtosn mérjük. Keressük
Megint a szíjhajtásról
Megint szíjhjtásról Ezzel témávl már egy korábbi dolgoztunkbn is foglkoztunk ennek címe: Richrd - II. Most egy kicsit más lkú bár ugynrr vontkozó képleteket állítunk elő részben szkirodlom segítségével.
Az egyenes ellipszishenger ferde síkmetszeteiről
1 Az egyenes ellipszishenger ferde síkmetszeteiről Vegyünk egy a és b féltengelyekkel bíró ellipszist a vezérgörbét, majd az ellipszis O centrumában állítsunk merőlegest az ellipszis síkjára. Ez a merőleges
Differenciálgeometria feladatok
Differenciálgeometri feldtok 1. sorozt 1. Egy sugrú kör csúszás nélkül gördül egy egyenes mentén. A kör egy rögzített kerületi pontj áltl leírt pályát cikloisnk nevezzük. () Írjuk fel ciklois egy c: R
Tehetetlenségi nyomatékok
Tehetetlenségi nyomtékok 1 Htározzuk meg z m tömegű l hosszúságú homogén rúd tehetetlenségi nyomtékát rúd trtóegyenesét metsző tetszőleges egyenesre vontkozón, h rúd és z egyenes hjlásszöge α, rúd középpontjánk
A hordófelület síkmetszeteiről
1 A hordófelület síkmetszeteiről Előző dolgozatunkban melynek címe: Ismét egy érdekes mechanizmusról azon hiányérzetünknek adtunk hangot, hogy a hordószerű test görbe felülete nem kapott nevet. Itt elneveztük
Két körhenger általánosabban ( Alkalmazzuk a vektoralgebrát! ) 1. ábra
Két körhenger általánosabban ( Alkalmazzuk a vektoralgebrát! ) Egy korábbi dolgozatunkban címe: Két egyenes körhenger a merőlegesen metsződő tengelyű körhengerek áthatási feladatával foglalkoztunk. Most
A csavarvonal axonometrikus képéről
A avarvonal axonometrikus képéről Miután egyre jobban megy a Graph ingyenes függvény - ábrázoló szoftver használata, kipróbáltuk, hogy tudunk - e vele avarvonalat ábrázolni, axonometrikusan. A válasz:
Egy mozgástani feladat
1 Egy mozgástani feladat Előző dolgozatunk melynek jele és címe: ED ~ Ismét az ellipszis egyenleteiről folytatásának tekinthető ez az írás. Leválasztottuk róla, mert bár szorosan kapcsolódnak, más a céljuk.
Az elliptikus hengerre írt csavarvonalról
1 Az elliptikus hengerre írt csavarvonalról Erről viszonylag ritkán olvashatunk, ezért most erről lesz szó. Az [ 1 ] munkában találtuk az alábbi részt 1. ábra. 1. ábra Itt a ( c ) feladat és annak megoldása
Térbeli pont helyzetének és elmozdulásának meghatározásáról - I.
Térbeli pont helyzetének és elmozdulásánk meghtározásáról - I Egy korábbi dolgoztunkbn melynek címe: Hely és elmozdulás - meghtározás távolságméréssel már volt szó címbeli témáról Ott térbeli mozgást végző
t, u v. u v t A kúpra írt csavarvonalról I. rész
A kúpra írt csavarvonalról I. rész Sokféle kúpra írt csavarvonal létezik. Ezek közül először a legegyszerűbbel foglalko - zunk. Ezt azért tesszük mert meglepő az a tény hogy eddig még szinte sehol nem
= n 2 = x 2 dx = 3c 2 ( 1 ( 4)). = π 13.1
Htározott integrál megoldások + 7 + + 9 = 9 6 A bl végpontokt válsztv: i = i n, i+ i = n, fξ i = i 6 d = lim n n i= i n n = n lim n n i = lim n i= A jobb végpontokt válsztv: fξ i = n i, n i d = lim n n
A bifiláris felfüggesztésű rúd mozgásáról
1 A bifiláris felfüggesztésű rúd mozgásáról A végein fonállal felfüggesztett egyenes rúd részleges erőtani vizsgálatát mutattuk be egy korábbi dolgozatunkban, melynek címe: Forgatónyomaték mérése - I.
Érdekes geometriai számítások Téma: A kardáncsukló kinematikai alapegyenletének levezetése gömbháromszögtani alapon
Érdekes geometriai számítások 7. Folytatjuk a sorozatot. 7. Téma: A kardáncsukló kinematikai alapegyenletének levezetése gömbháromszögtani alapon Korábbi dolgozatainkban már többféle módon is bemutattuk
4. előadás: A vetületek általános elmélete
4. elődás: A vetületek áltlános elmélete A vetítés mtemtiki elve Két mtemtikilg meghtározott felület prméteres egyenletei legyenek következők: x = f 1 (u, v), y = f 2 (u, v), I. z = f 3 (u, v). ξ = g 1
A közönséges csavarvonal érintőjének képeiről
A közönséges csavarvonal érintőjének képeiről Már régóta rajzoljuk a táblára a közönséges csavarvonal vetületeinek és síkba teríté - sének ábráit, a Gépészeti alapismeretek tantárgy óráin. Úgy tűnik, itt
Néhány egyszerű tétel kontytetőre
Néhány egyszerű tétel kontytetőre ekintsük z ábr szerinti szimmeikus kontytetőt! ábr Az ABC Δ területe: ABC' m,v; ( ) z ABC Δ területe: ABC m ; ( ) z ABC* Δ területe: ABC* m ( 3 ) Az ábr szerint: m,v cos
Észrevételek a forgásfelületek síkmetszeteivel kapcsolatban. Bevezetés
1 Észrevételek a forgásfelületek síkmetszeteivel kapcsolatban Bevezetés Előző dolgozatainkban melyek jelölése és címe: ~ ED - 1: Ismét egy érdekes mechanizmusról; ~ ED - 2: A hordófelület síkmetszeteiről
Fa rudak forgatása II.
Fa rudak forgatása II. Dolgozatunk I. részében egy speciális esetre oldottuk meg a kitűzött feladatokat. Most egy általánosabb elrendezés vizsgálatát végezzük el. A számítás a korábbi úton halad, ügyelve
Ellipszis vezérgörbéjű ferde kúp felszínének meghatározásához
1 Ellipszis vezérgörbéjű ferde kúp felszínének meghatározásához Előző dolgozatunkkal melynek címe: A ferde körkúp palástfelszínének meghatározásához már mintegy megágyaztunk a jelen írásnak. Több mindent
A kardáncsukló kinematikája I. A szögelfordulások közti kapcsolat skaláris levezetése
A kardáncsukló kinematikája I. A szögelfordulások közti kapcsolat skaláris levezetése Bevezetés A Hooke -, vagy Kardán - csukló a gyakorlatban széles körben elterjedt gépelem. Feladata a forgó mozgás átszármaztatása
A kör és ellipszis csavarmozgása során keletkező felületekről
1 A kör és ellipszis csavarmozgása során keletkező felületekről Előző dolgozatunkban melynek címe: Megint a két csavarfelületről levezettük a cím - beli körös felület - család paraméteres egyenletrendszerét,
Egy feladat a gördülő kerékről
1 Egy feldt gördülő kerékről Az orosz nyelvű mechniki szkirodlom tnulmányozás során láttuk, hogy sokt fog - llkoznk merev test síkmozgásánk tárgyláskor P sebességpólussl, illetve Q gyorsuláspólussl. E
Differenciálszámítás. Lokális szélsőérték: Az f(x) függvénynek az x 0 helyen lokális szélsőértéke
Differenciálszámítás Lokális növekedés (illetve csökkenés): H z f() függvény deriváltj z 0 helyen pozitív: f () > 0 (illetve negtív: f () < 0), kkor z f() függvény z 0 helyen növekvően (illetve csökkenően)
Ellipszis átszelése. 1. ábra
1 Ellipszis átszelése Adott egy a és b féltengely - adatokkal bíró ellipszis, melyet a befoglaló téglalapjának bal alsó sarkában csuklósan rögzítettnek képzelünk. Az ellipszist e C csukló körül forgatva
Heves Megyei Középiskolák Palotás József és Kertész Andor Matematikai Emlékversenye évfolyam (a feladatok megoldása)
Okttási Hivtl E g r i P e d g ó g i i O k t t á s i K ö z p o n t Cím: 00 Eger, Szvorényi u. 7. Postcím: 00 Eger, Szvorényi u. 7. elefon: /50-90 Honlp: www.oktts.hu E-mil: POKEger@oh.gov.hu Heves Megyei
FELVÉTELI VIZSGA, július 15.
BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR FELVÉTELI VIZSGA, 8. július. Írásbeli vizsg MATEMATIKÁBÓL FONTOS TUDNIVALÓK: ) A feleletválsztós feldtok (,,A rész) esetén egy vgy
9. Írjuk fel annak a síknak az egyenletét, amely átmegy az M 0(1, 2, 3) ponton és. egyenessel;
Síkok és egyenesek FELADATLAP Írjuk fel annak az egyenesnek az egyenletét, amely átmegy az M 0(,, ) ponton és a) az M(,, 0) ponton; b) párhuzamos a d(,, 5) vektorral; c) merőleges a x y + z 0 = 0 síkra;
Laplace-transzformáció. Vajda István február 26.
Anlízis elődások Vjd István 9. február 6. Az improprius integrálok fjtái Tegyük fel, hogy egy vlós-vlós függvényt szeretnénk z I intervllumon integrálni, de függvény nincs értelmezve I minden pontjábn,
Fénypont a falon Feladat
Fénypont a falon 3. Dolgozat - sorozatunk. és. részében két speiális eset vizsgálatát részleteztük. Itt az általánosabb síkbeli esettel foglalkozunk, főbb vonalaiban. Ehhez tekintsük az. ábrát is! 3. Feladat.
A loxodrómáról. Előző írásunkban melynek címe: A Gudermann - függvényről szó esett a Mercator - vetületről,illetve az ezen alapuló térképről 1. ábra.
1 A loxodrómáról Előző írásunkban melynek címe: A Gudermann - függvényről szó esett a Mercator - vetületről,illetve az ezen alapuló térképről 1. ábra. 1. ábra forrása: [ 1 ] Ezen a térképen a szélességi
A főtengelyproblémához
1 A főtengelyproblémához Korábbi, az ellipszis perspektivikus ábrázolásával foglalkozó dolgozatainkban előkerült a másodrendű görbék kanonikus alakra hozása, majd ebben a főtengelyrendszert előállító elforgatási
Egy általánosabb súrlódásos alapfeladat
Egy általánosabb súrlódásos alapfeladat Az előző dolgozatunkban címe: Egy súrlódásos alapfeladat, jele: ( E D ) tárgyalt probléma általánosítása az alábbi, melynek forrása [ 1 ]. Tekintsük az 1. ábrát!
Egy általános helyzetű lekerekített sarkú téglalap paraméteres egyenletrendszere. Az egyenletek felírása
1 Egy általános helyzetű lekerekített sarkú téglalap paraméteres egyenletrendszere Az egyenletek felírása Korábbi dolgozataink már mintegy előkészítették a mostanit; ezek: ~ KD - 1: Általános helyzetű
Az éjszakai rovarok repüléséről
Erről ezt olvashatjuk [ ] - ben: Az éjszakai rovarok repüléséről Az a kijelentés, miszerint a repülés pályája logaritmikus spirális, a következőképpen igazolható [ 2 ].. ábra Az állandó v nagyságú sebességgel
Országos Középiskolai Tanulmányi Verseny 2010/2011 Matematika I. kategória (SZAKKÖZÉPISKOLA) Az 1. forduló feladatainak megoldása
Okttási Hivtl Országos Középiskoli Tnulmányi Verseny 00/0 Mtemtik I ktegóri (SZAKKÖZÉPISKOLA) Az forduló feldtink megoldás Az x vlós számr teljesül hogy Htározz meg sin x értékét! 6 sin x os x + 6 = 0
KIDOLGOZÁSA - INFORMATIKAI MATEMATIKA SZAK -
ANALITIKUS MÉRTANBÓL KITŰZÖTT ÁLLAMVIZSGA TÉTELEK KIDOLGOZÁSA - INFORMATIKAI MATEMATIKA SZAK - Trtlomjegyzék 1. Anlitikus mértn síkbn 1.1. Síkbeli egyenesek egyenletei Descrtes-féle koordinát rendszerhez
A lengőfűrészelésről
A lengőfűrészelésről Az [ 1 ] tankönyvben ezt írják a lengőfűrészről, működéséről, használatáról: A lengőfűrész árkolásra, csaprések készítésére alkalmazott, 150 00 mm átmérőjű, 3 4 mm vastag, sűrű fogazású
Egy kinematikai feladathoz
1 Egy kinematikai feladathoz Az [ 1 ] példatárból való az alábbi feladat. Egy bütyök v 0 állandó nagyságú sebességgel halad jobbról balra. Kontúrjának egyenlete a hozzá kötött, vele együtt haladó O 1 xy
Végein függesztett rúd egyensúlyi helyzete. Az interneten találtuk az [ 1 ] munkát, benne az alábbi érdekes feladatot 1. ábra. Most erről lesz szó.
1 Végein függesztett rúd egyensúlyi helyzete Az interneten találtuk az [ 1 ] munkát, benne az alábbi érdekes feladatot 1. ábra. Most erről lesz szó. A feladat Ehhez tekintsük a 2. ábrát is! 1. ábra forrása:
Néhány szó a mátrixokról
VE 1 Az Néhány szó mátrixokról A : 11 1 m1 1 : m......... 1n n : mn tábláztot, hol ij H (i1,,m, j1,,n) H elemeiből képzett m n típusú vlós mátrixnk nevezzük. Továbbá zt mondjuk, hogy A-nk m sor és n oszlop
A torokgerendás fedélszerkezet erőjátékáról 2. rész
A torokgerendás fedélszerkezet erőjátékáról rész Az részben ddig jutottunk, hogy z A ) terhelési esetre vezettünk le képleteket Most további, gykorltilg is fontos esetek következnek B ) terhelési eset:
Exponenciális és logaritmikus egyenletek, egyenletrendszerek, egyenlôtlenségek
Eponenciális és logritmikus egyenletek, Eponenciális és logritmikus egyenletek, egyenletrendszerek, egyenlôtlenségek Eponenciális egyenletek 60 ) = ; b) = ; c) = ; d) = 0; e) = ; f) = ; g) = ; h) =- 7
A Cassini - görbékről
A Cassini - görbékről Giovanni Domenico Cassini, a 17-18 században élt olasz származású francia csillagász neve egyebek mellett a róla elnevezett görbékről is ismert lehet; ilyeneket mutat az 1 ábra is
A csavart oszlop előállításáról
1 A csavart oszlop előállításáról Egy korábbi dolgozatunkban melynek címe: A kör és ellipszis csavarmozgása során keletkező felületekről felírtuk a szakirodalom - ban ld. pl.: [ 1 ]! csavart oszlop néven
Többváltozós analízis gyakorlat
Többváltozós nlízis gykorlt Áltlános iskoli mtemtiktnár szk 07/08. őszi félév Ajánlott irodlom (sok gykorló feldt, megoldásokkl: Thoms-féle klkulus 3., Typote, 007. (Jól hsználhtók z -. kötetek is Fekete
Kiegészítés a merőleges axonometriához
1 Kiegészítés a merőleges axonometriához Időnként találunk egy szép és könnyebben érthető levezetést, magyarázó ábrát, amit érdemesnek gondolunk a megosztásra. Most is ez történt, az [ 1 ] és [ 3 ] művek
1. feladat Oldja meg a valós számok halmazán a következő egyenletet: 3. x log3 2
A 004/005 tnévi Országos Középiskoli Tnulmányi Verseny második fordulójánk feldtmegoldási MATEMATIKÁBÓL ( I ktegóri ) feldt Oldj meg vlós számok hlmzán következő egyenletet: log log log + log Megoldás:
Henger és kúp metsződő tengelyekkel
Henger és kúp metsződő tengelyekkel Ebben a dolgozatban egy forgáshenger és egy forgáskúp áthatását tanulmányozzuk abban az egyszerűbb esetben, amikor a két test tengelye egyazon síkban fekszik, vagyis
5. Logaritmus. I. Nulladik ZH-ban láttuk: 125 -öt kapjunk. A 3 5 -nek a 3. hatványa 5, log. x Mennyi a log kifejezés értéke?
. Logritmus I. Nulldik ZH-bn láttuk:. Mennyi kifejezés értéke? (A) Megoldás I.: BME 0. szeptember. (7B) A feldt ritmus definíciójából kiindulv gykorltilg fejben végiggondolhtó. Az kérdés, hogy -öt hánydik
Matematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx =
Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika II Határozatlan Integrálszámítás d) Adja meg az alábbi alapintegrálokat! x n 1 dx =, sin 2 x dx = d) Adja meg az alábbi alapintegrálokat!
ANALÍZIS II. Példatár
ANALÍZIS II. Példatár Többszörös integrálok 3. április 8. . fejezet Feladatok 3 4.. Kett s integrálok Számítsa ki az alábbi integrálokat:...3. π 4 sinx.. (x + y) dx dy (x + y) dy dx.4. 5 3 y (5x y y 3
EGY ABLAK - GEOMETRIAI PROBLÉMA
EGY ABLAK - GEOMETRIAI PROBLÉMA Írta: Hajdu Endre A számítógépemhez tartozó két hangfal egy-egy négyzet keresztmetszetű hasáb hely - szűke miatt az ablakpárkányon van elhelyezve (. ábra).. ábra Hogy az
Vektorok. Vektoron irányított szakaszt értünk.
Vektorok Vektoron irányított szkszt értünk A definíció értelmében tehát vektort kkor ismerjük, h ismerjük hosszát és z irányát A vektort kövér kis betűkkel (, b stb) jelöljük, megkülönböztetve z, b számoktól,
Érdekes geometriai számítások 10.
1 Érdekes geometriai számítások 10. Találtunk az interneten egy könyvrészletet [ 1 ], ahol egy a triéder - geometriában fontos összefüggést egyszerű módon vezetnek le. Ennek eredményét összevetjük más
Aszimmetrikus nyeregtető ~ feladat 2.
1 Aszimmetrikus nyeregtető ~ feladat 2. Ehhez tekintsük az 1. ábrát is! Itt az A és B pontok egy nyeregtető oromfali ereszpontjai, a P pont pedig a taréj pontja. Az ereszek egymástól való távolságának
Az integrálszámítás néhány alkalmazása
Az integrálszámítás néhány lklmzás (szerkesztés ltt) Dr Toledo Rodolfo 4 november 4 Trtlomjegyzék Két függvények áltl htárolt terület Forgástestek térfogt és felszíne 5 3 Ívhosszszámítás 7 4 Feldtok 8
Transzformáció a főtengelyekre és a nem főtengelyekre vonatkoztatott. Az ellipszis a sík azon pontjainak mértani helye, amelyeknek két adott pontól
Ellipsis.tex, February 9, 01 Az ellipszis Az ellipszis leírása Az ellipszis szerkesztése és tulajdonságai Az ellipszis kanonikus egyenlete A kör vetülete ellipszis Az ellipszis polárkoordinátás egyenlete
Matematika II képletek. 1 sin xdx =, cos 2 x dx = sh 2 x dx = 1 + x 2 dx = 1 x. cos xdx =,
Matematika II előadás elméleti kérdéseinél kérdezhető képletek Matematika II képletek Határozatlan Integrálszámítás x n dx =, sin 2 x dx = sin xdx =, ch 2 x dx = sin xdx =, sh 2 x dx = cos xdx =, + x 2
Egy sajátos ábrázolási feladatról
1 Egy sajátos ábrázolási feladatról Régen volt, ha volt egyáltalán. Én bizony nem emlékszem a ferde gerincvonalú túleme - lés ~ átmeneti megoldásra 1. ábra az ( erdészeti ) útépítésben. 1. ábra forrása:
Koordinátarendszerek
Koordinátarendszerek KO 1 Koordinátarendszerek Ponthalmazok előállításai Koordinátarendszerek KO Két gyakran alkalmazott síkbeli koordinátarendszer Derékszögű (Descartes féle) koordinátarendszer Síkbeli
Az arkhimédészi csőfelületről
Az arkhimédészi csőfelületről Az előző dolgozatban melynek címe: Csaarokról és rokon témákról elkezdtük a csaaros témakör körüljárását. Most folytatjuk a címbeli témáal. A felület definíciója [ 1 ] szerint:
17. előadás: Vektorok a térben
17. előadás: Vektorok a térben Szabó Szilárd A vektor fogalma A mai előadásban n 1 tetszőleges egész szám lehet, de az egyszerűség kedvéért a képletek az n = 2 esetben szerepelnek. Vektorok: rendezett
Egy geometriai szélsőérték - feladat
1 Egy geometriai szélsőérték - feladat A feladat: Szerkesztendő egy olyan legnagyobb területű háromszög, melynek egyik csúcsa az a és b féltengelyeivel adott ellipszis tetszőlegesen felvett pontja. Keresendő
1 2. Az anyagi pont kinematikája
1. Az anyagi pont kinematikája 1. Ha egy P anyagi pont egyenes vonalú mozgását az x = 1t +t) egyenlet írja le x a megtett út hossza m-ben), határozzuk meg a pont sebességét és gyorsulását az indulás utáni
Összeállította: dr. Leitold Adrien egyetemi docens
Az R 3 tér geometriája Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok Vektor: irányított szakasz Jel.: a, a, a, AB, Jellemzői: irány, hosszúság, (abszolút érték) jel.: a Speciális
11. évfolyam feladatsorának megoldásai
évolym eldtsoránk megoldási Oldjuk meg természetes számok hlmzán következő egyenleteket x ) y 6 x! 3 b) y 6 3 ) Átrendezve megoldndó egyenlet y 6 x! 3 H x 0, kkor H x, kkor H x, kkor H x 3, kkor H x, kkor
Egy érdekes nyeregtetőről
Egy érdekes nyeregtetőről Adott egy nyeregtető, az 1 ábra szerinti adatokkal 1 ábra Végezzük el vetületi ábrázolását, az alábbi számszerű adatokkal: a = 10,00 m; b = 6,00 m; c = 3,00 m; α = 45 ; M 1:100!
Forogj! Az [ 1 ] munkában találtunk egy feladatot, ami beindította a HD - készítési folyamatokat. Eredményei alább olvashatók. 1.
1 Forogj! Az [ 1 ] munkában találtunk egy feladatot, ami beindította a HD - készítési folyamatokat. Eredményei alább olvashatók. 1. Feladat Egy G gépkocsi állandó v 0 nagyságú sebességgel egyenes úton
Ismét egy érdekes mechanizmusról. Az interneten találkoztunk az [ 1 ] művel, benne az 1. ábrával.
1 Ismét egy érdekes mechanizmusról Az interneten találkoztunk az [ 1 ] művel, benne az 1. ábrával. 1. ábra forrása: [ 1 ] Ennek a 10. 47. számú rajza egy szinuszos mechanizmust ábrázol. Ezzel korábban
Az egyköpenyű forgáshiperboloid síkmetszeteiről
1 Az egyköpenyű forgáshiperboloid síkmetszeteiről Egyik előző dolgozatunkban melynek címe: Ismét egy érdekes mechanizmusról arról elmélkedtünk, hogy ha a forgáshenger ferde síkmetszete ( ellipszis ) mentén
sin x = cos x =? sin x = dx =? dx = cos x =? g) Adja meg a helyettesítéses integrálás szabályát határozott integrálokra vonatkozóan!
Matematika előadás elméleti kérdéseinél kérdezhető képletek Analízis II Határozatlan integrálszámítás g) t = tg x 2 helyettesítés esetén mivel egyenlő sin x = cos x =? g) t = tg x 2 helyettesítés esetén
Az ötszög keresztmetszetű élszarufa kis elmozdulásainak számításáról
1 Az ötszög keresztmetszetű élszarufa kis elmozdulásainak számításáról Előző dolgozatunkban melynek címe: ED: Az ötszög keresztmetszetű élszarufa σ - feszültségeinek számításáról elkezdtük / folytattuk
Síkbeli csuklós rúdnégyszög egyensúlya
Síkbeli csuklós rúdnégyszög egyensúlya Két korábbi dolgozatunkban melyek címe és azonosítója: [KD ]: Egy érdekes feladat, [KD ]: Egy másik érdekes feladat azt vizsgáltuk, hogy egy csuklós rúdnégyszög milyen
Határozott integrál. Newton -Leibniz szabály. alkalmazások. improprius integrál
Htározott integrál definíció folytonos függvények esetén definíció korlátos függvények esetén Newton -Leibniz szbály integrálási szbályok lklmzások improprius integrál Legyen z f függvény [, b]-n értelmezett
1. Házi feladatsor Varga Bonbien, VABPACT.ELTE
. Házi feldtsor Vrg Bonbien, VBPCT.LT. Feldt: feldt szerint z ellipszis istengelye ngytengelye b. Prméterezzü z ellipszist z lábbi módon: x = b cos t zz: y = sin t r(t) = b cos t sin t z ismert éplet szerint
0.1 Deníció. Egy (X, A, µ) téren értelmezett mérhet függvényekb l álló valamely (f α ) α egyenletesen integrálhatónak mondunk, ha
Vegyük észre, hogy egy mérhet f függvény pontosn kkor integrálhtó, h f dµ =. lim N Ez indokolj következ deníciót. { f α >N}. Deníció. Egy X, A, µ téren értelmezett mérhet függvényekb l álló vlmely f α
Néhány földstatikai képletről. Bevezetés
Néhány földsttiki képletről Bevezetés Tljmechniki tnulmányink során tlálkozhttunk először szóbn forgó képlet - szörnyeteg - gel melynek levezetésével vlhogyn dósk mrdtk tnkönyvek A Coulomb - féle földnyomás
Kontytető torzfelülettel
Kontytető torzfelülettel A tnulmányi és npi munkáj során z ács viszonylg ritkán tlálkozik torzfelület elnevezésű mértni lkzttl bár tetők és zsluztok építése során is kpcsoltb kerülhet velük Most nem merülve
Fiók ferde betolása. A hűtőszekrényünk ajtajának és kihúzott fiókjának érintkezése ihlette az alábbi feladatot. Ehhez tekintsük az 1. ábrát!
1 Fiók ferde betolása A hűtőszekrényünk ajtajának és kihúzott fiókjának érintkezése ihlette az alábbi feladatot. Ehhez tekintsük az 1. ábrát! 1. ábra Itt azt látjuk, hogy egy a x b méretű kis kék téglalapot
f (ξ i ) (x i x i 1 )
Villmosmérnök Szk, Távokttás Mtemtik segédnyg 4. Integrálszámítás 4.. A htározott integrál Definíció Az [, b] intervllum vlmely n részes felosztásán (n N) z F n ={,,..., n } hlmzt értjük, melyre = <
IX. A TRIGONOMETRIA ALKALMAZÁSA A GEOMETRIÁBAN
4 trigonometri lklmzás geometrián IX TRIGONOMETRI LKLMZÁS GEOMETRIÁN IX szinusz tétel Feldt Számítsd ki z háromszög köré írhtó kör sugrát háromszög egy oldl és szemen fekvő szög függvényéen Megoldás z
HÁZI FELADAT megoldási segédlet Relatív kinematika. Két autó. 2. rész
HÁZI FELDT megoldási segédlet Reltí kinemtik Két utó.. rész. Htározzuk meg, hogy milyennek észleli utóbn ülő megfigyelő z utó sebességét és gyorsulását bbn pillntbn, mikor z ábrán ázolt helyzetbe érnek..
Ellipszis perspektivikus képe 2. rész
1 Ellipszis perspektivikus képe 2. rész Dolgozatunk 1. részében nem mentünk tovább a matematikai kifejtésben. Ezzel mintegy felhagytunk a belső összefüggések feltárásával. A jelen 2. részben megkíséreljük
Numerikus módszerek 2.
Numerikus módszerek 2. 12. elődás: Numerikus integrálás I. Krebsz Ann ELTE IK 2015. május 5. Trtlomjegyzék 1 Numerikus integrálás 2 Newton Cotes típusú kvdrtúr formulák 3 Hibformulák 4 Összetett formulák
KIEGÉSZÍTÉS A VONALINTEGRÁLHOZ
KIEGÉSZÍTÉS A VONALINTEGRÁLHOZ BSC MATEMATIKATANÁR SZAKIRÁNY 28/29. TAVASZI FÉLÉV Az lábbikbn z el dáson vonlinterálról ill. primitív füvényr l elhnzottk közül zok olvshtók, mik Lczkovich-T. Sós: Anlízis
2. Gauss elimináció. 2.1 Oldjuk meg Gauss-Jordan eliminációval a következő egyenletrendszert:
. Guss elimináció.1 Oldjuk meg Guss-Jordn eliminációvl következő egyenletrendszert: x - x + x + x5 = -5 x1-7x + 8x - 5x = 9 x1-9x + 1x - 9x = 15. A t prméter mely értékeire nincs z egyenletrendszernek
Kalkulus. Komplex számok
Komplex számok Komplex számsík A komplex számok a valós számok természetes kiterjesztése, annak érdekében, hogy a gyökvonás művelete elvégezhető legyen a negatív számok körében is. Vegyük tehát hozzá az
Egy másik érdekes feladat. A feladat
Egy másik érdekes feladat Az előző dolgozatban melynek címe: Egy érdekes feladat az itteninek egy speciális esetét vizsgáltuk. Az általánosabb feladat az alábbi [ 1 ]. A feladat Adott: az ABCD zárt négyszög
Tömegpontok mozgása egyenes mentén, hajítások
2. gyakorlat 1. Feladatok a kinematika tárgyköréből Tömegpontok mozgása egyenes mentén, hajítások 1.1. Feladat: Mekkora az átlagsebessége annak pontnak, amely mozgásának első szakaszában v 1 sebességgel
Analízis III. gyakorlat október
Vektoranalízis Analízis III. gyakorlat 216. október Gyakorló feladatok és korábbi zh feladatok V1. Igazolja az alábbi "szorzat deriválási" szabályt: div(ff) = F, f + f div(f). V2. Legyen f : IR 3 IR kétszer
Vontatás III. A feladat
Vontatás III Ebben a részben ázoljuk a ontatási feladat egy lehetséges numerikus megoldási módját Ezt az I részben ismertetett alapegyenletre építjük fel Itt az egy ontatott kerékpár esetét izsgáljuk feladat
Komplex számok. (a, b) + (c, d) := (a + c, b + d)
Komplex számok Definíció. Komplex számoknak nevezzük a valós számokból képzett rendezett (a, b) számpárok halmazát, ha közöttük az összeadást és a szorzást következőképpen értelmezzük: (a, b) + (c, d)
A véges forgatás vektoráról
A véges forgatás vektoráról Az idők során sokszor olvastuk azt a mondatot a mechanika - könyvekben hogy a végtelen kis szögelfordulások az elemi forgások vektornak tekinthetők [ ] Természetesen adódik
Ellipszissel kapcsolatos képletekről
1 Ellipszissel kapcsolatos képletekről Előző dolgozatunkban melynek címe: A Lenz - vektorról viszonylag sokat kellett ellipszissel kapcsolatos képletekkel dolgozni. Ennek során is adódott pár észrevételünk,
Trigonometrikus egyenletek megoldása Azonosságok és 12 mintapélda
Trigonometrikus egyenletek megoldása Azonosságok és 1 mintapélda Frissítve: 01. novermber 19. :07:41 1. Azonosságok 1.1. Azonosság. A sin és cos szögfüggvények derékszög háromszögben vett, majd kiterjesztett
Befordulás sarkon bútorral
Befordulás sarkon bútorral Bizonyára volt már olyan élményed, hogy bútort kellett cipelned, és nem voltál biztos benne, hogy be tudjátok - e vinni a szobába. Erről jutott eszembe az alábbi feladat. Adott
a térerősség mindig az üreg falára merőleges, ezért a tér ott nem gömbszimmetrikus.
2. Gyakorlat 25A-0 Tekintsünk egy l0 cm sugarú üreges fémgömböt, amelyen +0 µc töltés van. Legyen a gömb középpontja a koordinátarendszer origójában. A gömb belsejében az x = 5 cm pontban legyen egy 3
5. házi feladat. AB, CD kitér élpárra történ tükrözések: Az ered transzformáció: mivel az origó xpont, így nincs szükség homogénkoordinátás
5. házi feladat 1.feladat A csúcsok: A = (0, 1, 1) T, B = (0, 1, 1) T, C = (1, 0, 0) T, D = ( 1, 0, 0) T AB, CD kitér élpárra történ tükrözések: 1 0 0 T AB = 0 1 0, elotlási rész:(i T AB )A = (0, 0, )