Numerikus módszerek 2.
|
|
- Pál Bogdán
- 8 évvel ezelőtt
- Látták:
Átírás
1 Numerikus módszerek elődás: Numerikus integrálás I. Krebsz Ann ELTE IK május 5.
2 Trtlomjegyzék 1 Numerikus integrálás 2 Newton Cotes típusú kvdrtúr formulák 3 Hibformulák 4 Összetett formulák
3 Trtlomjegyzék 1 Numerikus integrálás 2 Newton Cotes típusú kvdrtúr formulák 3 Hibformulák 4 Összetett formulák
4 Numerikus integrálás Feldt: z f (x) dx illetve z f (x)w(x) dx Riemnn integrál közelítő kiszámítás, hol w(x) 0 súlyfüggvény. Kézenfekvő lenne definícióvl (lsó- és felső közelítő összegekkel vgy Riemnn közelítő összeggel) számolni, zonbn így túl sokt kellene számolnunk pontosbb eredmény eléréséhez. Nem gzdságos.
5 Numerikus integrálás Alklmzási területei mtemtikábn: Amikor primitív függvény nem állíthtó elő zárt lkbn. Az nlitikus integrálás túl bonyolult lenne. Terület, térfogt, ívhossz számításnál. Differenciálegyeletek numerikus módszereinél módszerek konstrukciójkor. Péld: Számítsuk ki következő integrálok értékét! 1 0 e x 2 dx =?, π 0 cos(x 2 ) dx =?
6 Numerikus integrálás Alklmzási területei fizikábn: : Pl. forgtónyomték, sűrűség, görbület számításnál. H függvény csk mintvételezéssel dott. Péld: Egy gzdság területe egy folyó egyenes 10 km hosszú prtszkszánk egyik prtján fekszik. A folyó mentén kilométerenként megmérték, hogy folyór merőleges iránybn hány kilométerre nyúlik gzdság területe. A kpott 11 értékből számítsuk ki közelítően gzdság területét!
7 Ötlet: Numerikus integrálás Tekintsük z x 0 < x 1 <... < x n b felosztást és w(x) 0 súlyfüggvényt. Feltesszük, hogy w(x) dx <. Közelítsük z f (x) függvényt z interpolációs polinomjánk Lgrnge-lkjávl, L n (x)-el. f (x)w(x) dx = n k=0 L n (x)w(x) dx = f (x k ) n f (x k )l k (x)w(x) dx = k=0 l k (x)w(x) dx = } {{ } =:A k n A k f (x k ) k=0 Megj.: A k csk z lppontoktól és súlyfüggvénytől függ, f -től nem. Szingulritássl rendelkező függvények esetén lesz szerepe súlyfüggvénynek.
8 Definíció: Interpolációs kvdrtúr formulák Numerikus integrálás 1 A n k=0 A k f (x k ) formulát kvdrtúr formulánk nevezzük. 2 A kvdrtúr formul interpolációs típusú, h A k = l k(x)w(x) dx (k = 0,..., n). Tétel: Pontossági tétel f P n -re f (x)w(x) dx = A k = n A k f (x k ) k=0 l k (x)w(x) dx (k = 0,..., n) Biz.: Táblán.
9 Numerikus integrálás Következmény: 1 f 1-re pontos formul: n A k = w(x) dx =: µ 0. k=0 2 H w(x) 1, kkor n A k = b. k=0
10 Numerikus integrálás Megjegyzés.: A n k=0 A k f (x k ) képletben 2(n + 1) szbd prméter vn (A k, x k ), legfeljebb n + 1-edfokú polinomokr vló pontosság kevésnek tűnik. Kvdrtúr formul típusok: 1 Newton Cotes típus: w(x) 1 és z {x i : i = 0,..., n} lppontok egyenletes felosztású pontok [; b]-n. 2 Csebisev típus: A k A (k = 0,..., n). 3 Guss típus: mximális fokszámig (2n + 1) pontos formulák.
11 Trtlomjegyzék 1 Numerikus integrálás 2 Newton Cotes típusú kvdrtúr formulák 3 Hibformulák 4 Összetett formulák
12 Newton Cotes formulák Newton Cotes típusú kvdrtúr formulák: w(x) 1 és x k = x 0 + kh Zárt formulák (Z(n)): és b lppont x 0 =, x n = b, h = b n és x k = + kh (k = 0,..., n) Nyílt formulák (Ny(n)): és b nem lppont h = b n + 2, x k = +kh (k = 0,..., n) zz x 0 = +h, x n = b h
13 Newton Cotes formulák A zárt N-C együtthtók számítás: A k = x = + th, t [0; n] x x j = (t j)h x k x j = (k j)h l k (x) dx = (x x 0 )... k... (x x n ) (x k x 0 )... k... (x k x n ) dx A t = x h helyettesítést bevezetve 0, b n és dx = h dt: n (t 0)(t 1)... k... (t n) A k = h 0 (k 0)(k 1)... k... (k n) dt
14 Newton Cotes formulák A B (z) k n A k = h 0 (t 0)(t 1)... k... (t n) (k 0)(k 1)... k... (k n) dt = n ( 1) n k = h k!(n k)! t(t 1)... (t n) dt = 0 (t k) ( 1) n k n = (b ) n k!(n k)! t(t 1)... (t n) dt 0 (t k) }{{} =B (z) k együtthtók függetlenek z [; b] intervllumtól.
15 Newton Cotes formulák A nyílt N-C együtthtók számítás. x = + th, t [0; n + 2] x x j = (t (j + 1)) h x k x j = (k j)h A k = l k (x) dx = (x x 0 )... k+1... (x x n ) (x k x 0 )... k+1... (x k x n ) dx A t = x h helyettesítést bevezetve 0, b n + 2 és dx = h dt: n+2 ((t 1)... k+1... (t (n + 1)) A k = h 0 (k 1)... k+1... (k (n + 1)) dt
16 Newton Cotes formulák n+2 ((t 1)... k+1... (t (n + 1)) A k = h 0 (k 1)... k+1... (k (n + 1)) dt = n+2 ( 1) n k = h k!(n k)! (t 1)... (t (n + 1)) dt = 0 (t (k + 1)) ( 1) n k n+2 = (b ) (n + 2) k!(n k)! (t 1)... (t (n + 1)) dt 0 (t (k + 1)) }{{} =B (ny) k A B (ny) k együtthtók függetlenek z [; b] intervllumtól.
17 Newton Cotes formulák Tétel: 1 n k=0 B k = 1 2 B k = B n k, k = 0,..., n Biz: 1 f 1-re pontos formul illetve 2 z lppontok szimmetriájából következik. (y := n t változó bevezetésével z integrálból.)
18 Newton Cotes formulák A N-C formulák együtthtóit más módon is meghtározhtjuk. A P n -re vló pontosság z integrál lineritás mitt zonos z 1, x, x 2,..., x n htványfüggvényekre vló pontossággl. Ebből A k -r LER-t írhtunk fel: 1 dx = b = A 0 + A A n x dx = 1 2 (b2 2 ) = A 0 x 0 + A 1 x A n x n x n dx = 1 n + 1 (bn+1 n+1 ) = A 0 x n 0 + A 1 x n A n x n n A kpott LER mátrix Vndermonde-mátrix trnszponáltj, tehát fenti módszer csk kézi számolásr hsználhtó.
19 Érintő formul (Ny(0)) Érintő formul (Ny(0)) f (b ) f ( ) + b =: E(f ) 2 Biz: Táblán
20 Trpéz formul (Z(1)) Trpéz formul (Z(1)) Biz: Táblán. f b 2 (f () + f (b)) =: T(f )
21 Simpson formul (Z(2)) Simpson formul (Z(2)) f b 6 ( f () + 4 f ( + b 2 ) ) + f (b) =: S(f ) Biz: Elég A 1 -et definícióból számolni. A 1 = l 1 (x) dx = ( +b = 4 (b ) 2 = 4 (b ) 2 (x )(x b) ) ( ) dx = 2 +b 2 b (x )(x b) dx = (x 2 ( + b)x + b) dx
22 Simpson formul (Z(2)) = 4 [ x 3 (b ) 2 3 = 4 (b ) 2 = = = Innen ( + b)x2 2 + b x = ( 1 3 (b3 3 ) 1 2 ( + b)(b2 2 ) + b(b )) = 4 ( ) 6(b ) 2 2(b 3 3 ) 3( + b)(b 2 2 ) + 6b(b ) = 4 ( 6(b ) 2 2b (3b b b) + 6b b 4 ( 6(b ) 2 b b b ] b ) = ) = 4(b )3 6(b ) 2 = 4 6 (b ) = A 1 A 0 + A 1 + A 2 = b, A 0 = A 2 A 0 = A 2 = 1 (b ). 6
23 Trtlomjegyzék 1 Numerikus integrálás 2 Newton Cotes típusú kvdrtúr formulák 3 Hibformulák 4 Összetett formulák
24 Hibformulák Tétel (Emlékeztető): Az integrálszámítás középértéktétele H f C[; b] és g 0, ekkor ξ (; b): fg = f (ξ) g. Tétel: Az érintő formul hibáj H f C 2 [; b], ekkor η [; b]: f E(f ) = (b )3 24 f (η). Biz.: Táblán.
25 Hibformulák Tétel: A trpéz formul hibáj H f C 2 [; b], ekkor η [; b]: (b )3 f T(f ) = f (η). 12 Biz.: Táblán. Tétel: A Simpson formul hibáj H f C 4 [; b], ekkor η [; b]: (b )5 f S(f ) = f (4) (η) Biz.: Táblán.
26 Hibformulák Tétel: A N-C formulák hibáj Jelölje I(f ) jelöli N-C kvdrtúr formulát. 1 H n pártln és f C n+1 [; b], kkor f I(f ) = f (n+1) ω n (x) dx. (n + 1)! 2 H n páros és f C n+2 [; b], kkor f I(f ) = f (n+2) x ω n (x) dx. (n + 2)! Megjegyzés: Vgyis páros n esetén formul ngyobb pontosságot tud, mint mit elvárunk tőle. (Lásd érintő és Simpson formul.) Nem biz.
27 Trtlomjegyzék 1 Numerikus integrálás 2 Newton Cotes típusú kvdrtúr formulák 3 Hibformulák 4 Összetett formulák
28 Biz.: Táblán. Trpéz összetett formul [; b]-t m egyenlő részre osztjuk és minden részintervllumon trpéz formulát (T(f )) lklmzunk. Trpéz összetett formul (Trpéz szbály) f b ( ) m 1 2m f () + 2 f (x k ) + f (b) k=1 =: T m (f ) Megj.: A megjegyzendő együtthtó sorozt: 1, 2, 2,..., 2, 2, 1. Tétel: A trpéz összetett formul hibáj H f C 2 [; b], ekkor η [; b]: (b )3 f T m (f ) = 12m 2 f (η).
29 Simpson összetett formul Legyen m páros és [; b]-t m egyenlő részre osztjuk, mjd z I k := [x 2k 2, x 2k ], (k = 1,..., m 2 ) részintervllumokr Simpson formulát (S(f )) lklmzunk. Vgyis belső felezőpontokt is megszámoztuk, így m 2 Simpson formulát hsználunk. Simpson összetett formul (Simpson szbály) S m (f ) := b 3m f () + 4 f S m (f ) m m f (x 2k 1 ) + 2 f (x 2k ) + f (b) k=1 k=1 Megj.: A megjegyzendő együtthtó sorozt: 1, 4, 2, 4,..., 4, 2, 4, 1.
30 Tétel: A Simpson összetett formul hibáj H f C 4 [; b], ekkor η [; b]: (b )5 f S m (f ) = 180m 4 f (4) (η). Simpson összetett formul Biz.: Táblán. Megjegyzés: Az érintő formulából is készíthető összetett formul z előzőekhez hsonlón. H f C 2 [; b] illetve f C 4 [; b], kkor m esetén T m (f ) m 2 illetve m 4 ngyságrendben. f, illetve S m (f ) f
31 Richrdson-féle extrpoláció Richrdson-féle extrpoláció trpéz összetett formulár: Írjuk fel trpéz összetett formulát m-re és 2m-re: (b )3 f T m (f ) = 12m 2 f (η 1 ) (b )3 f T 2m (f ) = 48m 2 f (η 2 ) H f elég sim, kkor f (η 1 ) f (η 2 ), így 2. egyenlet 4-szereséből kivonv z 1. egyenletet 3 f 4T 2m (f ) + T m (f ) 0 f 1 3 (4T 2m(f ) T m (f ))
32 Richrdson-féle extrpoláció A trpéz szbály jvító formuláj A közelítés hibáj O(h 4 ). 1 3 (4T 2m(f ) T m (f )) = S m (f ) Péld: Az 1 0 x1/3 dx integrál kiszámításához Richrdson-féle extrpoláció nem hsználhtó, mert f nem deriválhtó 0-bn. Az ehhez hsonló szingulritások kezeléséhez más típusú módszerek kellenek. (Lásd Guss-kvdrtúr formulák.)
33 Richrdson-féle extrpoláció Richrdson-féle extrpoláció Simpson összetett formulár: Írjuk fel Simpson összetett formulát m-re és 2m-re: (b )5 f S m (f ) = 180 m 4 f (4) (η 1 ) (b )5 f S 2m (f ) = m 4 f (4) (η 2 ) H f (4) elég sim, kkor f (4) (η 1 ) f (4) (η 2 ), így 2. egyenlet 16-szorosából kivonv z 1. egyenletet 15 f 16 S 2m (f ) + S m (f ) 0 f 1 15 (16 S 2m(f ) S m (f ))
34 Richrdson-féle extrpoláció A Simpson szbály jvító formuláj A közelítés hibáj O(h 6 ) (16 S 2m(f ) S m (f ))
35 Richrdson-féle extrpoláció Megjegyzés: A Richrson-féle extrpolációból készített rekurzió Romberg integrálás lpj. A gykorlti számítások során jól hsználhtók következő tételek: Tétel: H f korlátos [; b]-n, kkor f T m (f ) T m(f ) T 2m (f ). H f (4) korlátos [; b]-n, kkor f S m (f ) S m(f ) S 2m (f ).
Az érintőformula A Simpson formula Gauss-kvadratúrák Hiba utólagos becslése. Numerikus analízis
Az érintőformul Érintőformul Az érintőformul egy nyílt Newton-Cotes formul, melyre: ( ) + b f (x)dx (b )f. 2 Az érintőformul úgy is értelmezhető, hogy függvényt z [, b] intervllum középpontjához húzott
Részletesebben2. NUMERIKUS INTEGRÁLÁS
numerikus nlízis ii. 39 B - SPLINEOK DERIVÁLTJÁRA ÉRVÉNYES : B mi x =m Bm,i x B m,ix. t i+m t i t i+m+ t i+. NUMERIKUS INTEGRÁLÁS Htározott integrálok numerikus kiszámítás mtemtik egyik legrégebbi problémáj.
RészletesebbenNumerikus integrálás. Szakdolgozat. Írta: Pásztor Nikolett Matematika BSc - matematikai elemz szakirány
Szkdolgozt Numerikus integrálás Írt: Pásztor Nikolett Mtemtik BSc - mtemtiki elemz szkirány Témvezet : Kurics Tmás, egyetemi tnársegéd Alklmzott Anlízis és Számításmtemtiki Tnszék Eötvös Loránd Tudományegyetem,
RészletesebbenHatározott integrál. Newton -Leibniz szabály. alkalmazások. improprius integrál
Htározott integrál definíció folytonos függvények esetén definíció korlátos függvények esetén Newton -Leibniz szbály integrálási szbályok lklmzások improprius integrál Legyen z f függvény [, b]-n értelmezett
RészletesebbenMatematika A1a - Analízis elméleti kérdései
Mtemtik A1 - Anlízis elméleti kérdései (műszki menedzser szk, 2018. ősz) Kör egyenlete Az (x 0, y 0 ) középpontú, R sugrú kör egyenlete síkon (x x 0 ) 2 + (y y 0 ) 2 = R 2. Polinom Az x n x n + n 1 x n
RészletesebbenA Riemann-integrál intervallumon I.
A Riemnn-integrál intervllumon I. A htározott integrál foglm és kiszámítás Boros Zoltán Debreceni Egyetem, TTK Mtemtiki Intézet, Anĺızis Tnszék Debrecen, 2017. március 6. Zárt intervllum felosztási A továbbikbn,
RészletesebbenLaplace-transzformáció. Vajda István február 26.
Anlízis elődások Vjd István 9. február 6. Az improprius integrálok fjtái Tegyük fel, hogy egy vlós-vlós függvényt szeretnénk z I intervllumon integrálni, de függvény nincs értelmezve I minden pontjábn,
Részletesebben9. HATÁROZATLAN INTEGRÁL
9. HATÁROZATLAN INTEGRÁL 9. Definíció és lpintegrálok. Definíció. Legyen f : I R dott függvény (I R egy intervllum). A F : I R függvényt f függvény primitív függvényének nevezzük I-n, h F differenciálhtó
RészletesebbenNumerikus integrálás
Közelítő és szimbolikus számítások 11. gyakorlat Numerikus integrálás Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor Vinkó Tamás London András Deák Gábor jegyzetei alapján 1. Határozatlan integrál
RészletesebbenKalkulus II. Beugró kérdések és válaszok 2012/2013 as tanév II. félév
Klkulus II. Beugró kérdések és válszok 2012/2013 s tnév II. félév 1. Legyen ], b[ R nemüres, nyílt intervllum, f :], b[ R függvény. Hogyn vn értelmezve z f függvény primitív függvénye? Válsz. Legyen ],
Részletesebbenf (ξ i ) (x i x i 1 )
Villmosmérnök Szk, Távokttás Mtemtik segédnyg 4. Integrálszámítás 4.. A htározott integrál Definíció Az [, b] intervllum vlmely n részes felosztásán (n N) z F n ={,,..., n } hlmzt értjük, melyre = <
RészletesebbenFeladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai 1.
Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai.). Feladat. Határozzuk meg az alábbi integrálokat: a) x x + dx d) xe x dx b) c)
RészletesebbenVektortér fogalma vektortér lineáris tér x, y x, y x, y, z x, y x + y) y; 7.)
Dr. Vincze Szilvi Trtlomjegyzék.) Vektortér foglm.) Lineáris kombináció, lineáris függetlenség és lineáris függőség foglm 3.) Generátorrendszer, dimenzió, bázis 4.) Altér, rng, komptibilitás Vektortér
RészletesebbenNumerikus módszerek 1.
Numerikus módszerek 1. 11. előadás: A Newton-módszer és társai Lócsi Levente ELTE IK 2013. november 25. Tartalomjegyzék 1 A Newton-módszer és konvergenciatételei 2 Húrmódszer és szelőmódszer 3 Általánosítás
RészletesebbenNumerikus integrálás és az oszcillációs integrandusok komplex Gauss-kvadratúrája
Eötvös Loránd Tudományegyetem Természettudományi Kr Numerikus integrálás és z oszcillációs integrndusok komplex Guss-kvdrtúráj BSc szkdolgozt Készítette: Témvezet : Szrvs Kristóf Mtemtik BSc, Alklmzott
RészletesebbenGyakorló feladatok. Agbeko Kwami Nutefe és Nagy Noémi
Gyakorló feladatok Agbeko Kwami Nutefe és Nagy Noémi 25 Tartalomjegyzék. Klasszikus hibaszámítás 3 2. Lineáris egyenletrendszerek 3 3. Interpoláció 4 4. Sajátérték, sajátvektor 6 5. Lineáris és nemlineáris
RészletesebbenANALÍZIS II. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA
ANALÍZIS II. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA Szerkesztette: Blogh Tmás 2013. jnuár 16. H hibát tlálsz, kérlek jelezd info@bloghtms.hu e-mil címen! Ez Mű Cretive Commons Nevezd meg! - Ne dd el! - Így
Részletesebben2. Gauss elimináció. 2.1 Oldjuk meg Gauss-Jordan eliminációval a következő egyenletrendszert:
. Guss elimináció.1 Oldjuk meg Guss-Jordn eliminációvl következő egyenletrendszert: x - x + x + x5 = -5 x1-7x + 8x - 5x = 9 x1-9x + 1x - 9x = 15. A t prméter mely értékeire nincs z egyenletrendszernek
RészletesebbenFELVÉTELI VIZSGA, július 15.
BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR FELVÉTELI VIZSGA, 8. július. Írásbeli vizsg MATEMATIKÁBÓL FONTOS TUDNIVALÓK: ) A feleletválsztós feldtok (,,A rész) esetén egy vgy
RészletesebbenIpari matematika 2. gyakorlófeladatok
Ipari matematika. gyakorlófeladatok. december 5. A feladatok megoldása általában többféle úton is kiszámítató. Interpoláció a. Polinom-interpoláció segítségével adjunk közelítést sin π értékére a sin =,
RészletesebbenMolnár Bence. 1.Tétel: Intervallumon értelmezett folytonos függvény értékkészlete intervallum. 0,ami ellentmondás uis. f (x n ) f (y n ) ε > 0
Anlízis. Írásbeli tételek-bizonyítások Molnár Bence 1.Tétel: Intervllumon értelmezett folytonos függvény értékkészlete intervllum Legyen I R tetszőleges intervllum és f I R folytonos függvény R f intervllum
RészletesebbenTöbbváltozós analízis gyakorlat
Többváltozós nlízis gykorlt Áltlános iskoli mtemtiktnár szk 07/08. őszi félév Ajánlott irodlom (sok gykorló feldt, megoldásokkl: Thoms-féle klkulus 3., Typote, 007. (Jól hsználhtók z -. kötetek is Fekete
Részletesebben1.9. B - SPLINEOK B - SPLINEOK EGZISZTENCIÁJA. numerikus analízis ii. 34. [ a, b] - n legfeljebb n darab gyöke lehet. = r (m 1) n = r m + n 1
numerikus analízis ii 34 Ezért [ a, b] - n legfeljebb n darab gyöke lehet = r (m 1) n = r m + n 1 19 B - SPLINEOK VOLT: Ω n véges felosztás S n (Ω n ) véges dimenziós altér A bázis az úgynevezett egyoldalú
RészletesebbenKIEGÉSZÍTÉS A VONALINTEGRÁLHOZ
KIEGÉSZÍTÉS A VONALINTEGRÁLHOZ BSC MATEMATIKATANÁR SZAKIRÁNY 28/29. TAVASZI FÉLÉV Az lábbikbn z el dáson vonlinterálról ill. primitív füvényr l elhnzottk közül zok olvshtók, mik Lczkovich-T. Sós: Anlízis
RészletesebbenVektorok. Vektoron irányított szakaszt értünk.
Vektorok Vektoron irányított szkszt értünk A definíció értelmében tehát vektort kkor ismerjük, h ismerjük hosszát és z irányát A vektort kövér kis betűkkel (, b stb) jelöljük, megkülönböztetve z, b számoktól,
RészletesebbenExponenciális és logaritmikus egyenletek, egyenletrendszerek, egyenlôtlenségek
Eponenciális és logritmikus egyenletek, Eponenciális és logritmikus egyenletek, egyenletrendszerek, egyenlôtlenségek Eponenciális egyenletek 60 ) = ; b) = ; c) = ; d) = 0; e) = ; f) = ; g) = ; h) =- 7
RészletesebbenÖsszeállította: dr. Leitold Adrien egyetemi docens
Lineáris egyenletrendszerek Összeállított: dr. Leitold Adrien egyetemi docens 2008.09.08. Leontieff-modellek Leontieff-modellek: input-output modellek gzdság leírásár legyen n féle, egymássl összefüggésben
RészletesebbenNumerikus módszerek 1.
Numerikus módszerek 1. 10. előadás: Nemlineáris egyenletek numerikus megoldása Lócsi Levente ELTE IK 2013. november 18. Tartalomjegyzék 1 Bolzano-tétel, intervallumfelezés 2 Fixponttételek, egyszerű iterációk
RészletesebbenVarga Zsolt. Numerikus integrálás
Eötvös Loránd Tudományegyetem Természettudományi Kr Vrg Zsolt Numerikus integrálás BSc Szkdolgozt Témvezet : Dr. Hvsi Ágnes Alklmzott Anlízis és Számításmtemtiki Tnszék Budpest, 2017 Köszönetnyilvánítás
Részletesebben1/1. Házi feladat. 1. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy
/. Házi feladat. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy mindig igaz. (p (( p) q)) (( p) ( q)). Igazoljuk, hogy minden A, B és C halmazra A \ (B C) = (A \ B) (A \ C) teljesül.
Részletesebben= n 2 = x 2 dx = 3c 2 ( 1 ( 4)). = π 13.1
Htározott integrál megoldások + 7 + + 9 = 9 6 A bl végpontokt válsztv: i = i n, i+ i = n, fξ i = i 6 d = lim n n i= i n n = n lim n n i = lim n i= A jobb végpontokt válsztv: fξ i = n i, n i d = lim n n
RészletesebbenTöbbváltozós függvények integrálása téglákon és szimplexeken
Eötvös Loránd Tudományegyetem Természettudományi Kr Többváltozós függvények integrálás téglákon és szimplexeken Szkdolgozt Írt: Horváth Norbert Mtemtik BSc szk Témvezetők: Simon L. Péter, egyetemi docens
RészletesebbenNUMERIKUS MÓDSZEREK XII. GYAKORLAT. 12a Numerikus Integrálás: Simpson+Trapéz formulák. Alapötletek:
NUMERIKUS MÓDSZEREK XII. GYAKORLAT a Numerikus Integrálás: Simpson+Trapéz formulák Alapötletek: ) a f x x a Lx x ) Ekvidisztáns alappontrendszer a x x n, x k x k h Memo: a f x x a Lx x n i a n f x i l
Részletesebben7. tétel: Elsı- és másodfokú egyenletek és egyenletrendszerek megoldási módszerei
7. tétel: Elsı- és másodfokú egyenletek és egyenletrendszerek megoldási módszerei Elsıfokú függvények: f : A R A R, A és f () = m, hol m; R m 0 Az elsıfokú függvény képe egyenes. (lásd késı) m: meredekség,
Részletesebben5. Logaritmus. I. Nulladik ZH-ban láttuk: 125 -öt kapjunk. A 3 5 -nek a 3. hatványa 5, log. x Mennyi a log kifejezés értéke?
. Logritmus I. Nulldik ZH-bn láttuk:. Mennyi kifejezés értéke? (A) Megoldás I.: BME 0. szeptember. (7B) A feldt ritmus definíciójából kiindulv gykorltilg fejben végiggondolhtó. Az kérdés, hogy -öt hánydik
Részletesebben2010/2011 es tanév II. féléves tematika
2 február 9 Dr Vincze Szilvi 2/2 es tnév II féléves temtik Mátrix foglm, speciális mátrixok Műveletek mátrixokkl, mátrix inverze 2 A determináns foglm és tuljdonsági 3 Lineáris egyenletrendszerek és megoldási
Részletesebben2014/2015-ös tanév II. féléves tematika
Dr Vincze Szilvi 24/25-ös tnév II féléves temtik Mátrix foglm, speciális mátrixok Műveletek mátrixokkl, mátrix inverze 2 A determináns foglm és tuljdonsági 3 Lineáris egyenletrendszerek és megoldási módszereik
RészletesebbenLineáris egyenletrendszerek
Lineáris egyenletrendszerek lineáris elsőfokú, z ismeretlenek ( i -k) elsőfokon szerepelnek. + + n n + + n n m + m +m n n m m n n mn n m (m n)(n )m A A: együtthtó mátri Megoldás: milyen értékeket vehetnek
Részletesebben0.1 Deníció. Egy (X, A, µ) téren értelmezett mérhet függvényekb l álló valamely (f α ) α egyenletesen integrálhatónak mondunk, ha
Vegyük észre, hogy egy mérhet f függvény pontosn kkor integrálhtó, h f dµ =. lim N Ez indokolj következ deníciót. { f α >N}. Deníció. Egy X, A, µ téren értelmezett mérhet függvényekb l álló vlmely f α
RészletesebbenEgy szép és jó ábra csodákra képes. Az alábbi 1. ábrát [ 1 ] - ben találtuk; talán már máskor is hivatkoztunk rá.
Egy szép és jó ábr csodákr képes Az lábbi. ábrát [ ] - ben tláltuk; tlán már máskor is hivtkoztunk rá.. ábr Az különlegessége, hogy vlki nem volt rest megcsinál(tt)ni, még h sok is volt vele munk. Ennek
RészletesebbenANALÍZIS II. DEFINÍCIÓK, TÉTELEK
ANALÍZIS II. DEFINÍCIÓK, TÉTELEK Szerkesztette: Blogh Tmás 2013. jnuár 16. H hibát tlálsz, kérlek jelezd info@bloghtms.hu e-mil címen! Ez Mű Cretive Commons Nevezd meg! - Ne dd el! - Így dd tovább! 3.0
RészletesebbenEls gyakorlat. vagy más jelöléssel
Els gykorlt Egyszer egyenletek, EHL PDE A gykorlt elején megismerkedünk prciális dierenciálegyenletek (mostntól: PDE-k) lpfoglmivl. A félév során sokt fog szerepelni z ún. multiindex jelöl, melynek lényege,
RészletesebbenKözelítő és szimbolikus számítások haladóknak. 9. előadás Numerikus integrálás, Gauss-kvadratúra
Közelítő és szimolikus számítások hldókk 9. elődás Numerikus itegrálás, Guss-kvdrtúr Numerikus itegrálás Numerikus itegrálás Newto-Leiiz szály def I f f d F F Htározott Riem-itegrálok umerikus módszerekkel
RészletesebbenGyökvonás. Hatvány, gyök, logaritmus áttekintés
Htvány, gyök, logritmus áttekintés. osztály Gyökvonás Négyzetgyök: Vlmely nem negtív vlós szám négyzetgyöke olyn nem negtív vlós szám, melynek négyzete z szám. Mgj.: R = Azonosságok: b ; b k ;, h, b R
RészletesebbenÉrintő, trapéz, Simpson formulák és hibabecsléseik Összetett formulák (szabályok) l i. integrál közelítésére felírt c f. kvadratúra formula pontos f n
Gykorlt (4 ápr 9) Nuerkus tegrálás Elélet: Iterpoláós típusú kvdrtúr orulák Newto-Cotes típusú kvdrtúr orulák Értő, trpéz, Spso orulák és heslések Összetett orulák (szályok) Legye :, IR, korlátos és w,
RészletesebbenHatározatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit
Határozatlan integrál () First Prev Next Last Go Back Full Screen Close Quit 1. Az összetett függvények integrálására szolgáló egyik módszer a helyettesítéssel való integrálás. Az idevonatkozó tétel pontos
RészletesebbenGazdasági matematika I. tanmenet
Gzdsági mtemtik I. tnmenet Mádi-Ngy Gergely A hivtkozásokbn z lábbi két tnkönyvre utlunk: Cs: Csernyák László (szerk.): Anlízis, Nemzeti Tnkönyvkidó 200. D: Denkinger Géz: Anlízis gykorltok, Nemzeti Tnkönyvkidó
RészletesebbenMegint a szíjhajtásról
Megint szíjhjtásról Ezzel témávl már egy korábbi dolgoztunkbn is foglkoztunk ennek címe: Richrd - II. Most egy kicsit más lkú bár ugynrr vontkozó képleteket állítunk elő részben szkirodlom segítségével.
RészletesebbenAz integrálszámítás néhány alkalmazása
Az integrálszámítás néhány lklmzás (szerkesztés ltt) Dr Toledo Rodolfo 4 november 4 Trtlomjegyzék Két függvények áltl htárolt terület Forgástestek térfogt és felszíne 5 3 Ívhosszszámítás 7 4 Feldtok 8
RészletesebbenNumerikus módszerek 1.
Numerikus módszerek 1. Tantárgy kódja: IP-08bNM1E, IP-08bNM1G (2+2) Az elsajátítandó ismeretanyag rövid leírása: A lebegıpontos számábrázolás egy modellje. A hibaszámítás elemei. Lineáris egyenletrendszerek
RészletesebbenLNM folytonos Az interpoláció Lagrange interpoláció. Lineáris algebra numerikus módszerei
Legkisebb négyzetek módszere, folytonos eset Folytonos eset Legyen f C[a, b]és h(x) = a 1 φ 1 (x) + a 2 φ 2 (x) +... + a n φ n (x). Ekkor tehát az n 2 F (a 1,..., a n ) = f a i φ i = = b a i=1 f (x) 2
RészletesebbenNumerikus matematika vizsga
1. Az a = 2, t = 4, k = 3, k + = 2 számábrázolási jellemzők mellett hány pozitív, normalizált lebegőpontos szám ábrázolható? Adja meg a legnagyobb ábrázolható számot! Mi lesz a 0.8-hoz rendelt lebegőpontos
RészletesebbenDifferenciálgeometria feladatok
Differenciálgeometri feldtok 1. sorozt 1. Egy sugrú kör csúszás nélkül gördül egy egyenes mentén. A kör egy rögzített kerületi pontj áltl leírt pályát cikloisnk nevezzük. () Írjuk fel ciklois egy c: R
RészletesebbenA határozott integrál
A htározott integrál Bevezető problém: Egyenes úton egy utó időben változó v(t) = ds/dt sebességgel hld. A mindenkori sebesség ismeretében szeretnénk kiszámolni, hogy mekkor utt tesz meg vlmely t b időintervllumbn.
RészletesebbenKözépiskolás leszek! matematika. 13. feladatsor 1. 2. 3. 4. 5. 6.
Középiskolás leszek! mtemtik Melyik számot jelentheti A h tudjuk hogy I felennyi mint S S egyenlõ K és O összegével K egyenlõ O és L különbségével O háromszoros L-nek L negyede 64-nek I + S + K + O + L
RészletesebbenNumerikus integrálás április 20.
Numerikus integrálás 2017. április 20. Integrálás A deriválás papíron is automatikusan elvégezhető feladat. Az analitikus integrálás ezzel szemben problémás vannak szabályok, de nem minden integrálható
RészletesebbenBaran Ágnes, Burai Pál, Noszály Csaba. Gyakorlat Differenciálegyenletek numerikus megoldása
Matematika Mérnököknek 2. Baran Ágnes, Burai Pál, Noszály Csaba Gyakorlat Differenciálegyenletek numerikus megoldása Baran Ágnes, Burai Pál, Noszály Csaba Matematika Mérnököknek 2. Gyakorlat 1 / 18 Fokozatos
Részletesebben4. Hatványozás, gyökvonás
I. Nulldik ZH-bn láttuk:. Htványozás, gyökvonás. Válssz ki, hogy z lábbik közül melyikkel egyezik meg következő kifejezés, h, y és z pozitív számok! 7 y z z y (A) 7 8 y z (B) 7 8 y z (C) 9 9 8 y z (D)
RészletesebbenDifferenciálszámítás. 8. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Differenciálszámítás p. 1/1
Differenciálszámítás 8. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Differenciálszámítás p. 1/1 Egyenes meredeksége Egyenes meredekségén az egyenes és az X-tengely pozitív iránya
RészletesebbenMatematika 4 gyakorlat Földtudomány és Környezettan BSc II/2
Mtemtik 4 gykorlt Földtudomány és Környezettn BSc II/2 1. gykorlt Integrálszámítás R n -ben: vonlintegrál, primitív függvény, Newton Leibniz-szbály. Legyen Ω R n egy trtomány, f : Ω R n folytonos függvény
RészletesebbenImproprius integrálás
Improprius integrálás 7. feruár.. Feldt: d Megoldás: Egy improprius integrált kell meghtározni, mivel fels integrálási htár. Deníció: H z f() függvény folytonos z, intervllumon, vlmint létezik f()d htárérték
RészletesebbenKalkulus I. gyakorlat Fizika BSc I/1.
. Ábrázoljuk a következő halmazokat a síkon! {, y) R 2 : + y < }, b) {, y) R 2 : 2 + y 2 < 4}, c) {, y) R 2 : 2 + y 2 < 4, + y < }, {, y) R 2 : + y < }. Kalkulus I. gyakorlat Fizika BSc I/.. gyakorlat
RészletesebbenIntegr alsz am ıt as. 1. r esz aprilis 12.
Integrálszámítás. 1. rész. 2018. április 12. Területszámítás f : [a, b] IR + korlátos függvény. Mennyi a függvény grafikonja és az x tengely közti terület? Riemann integrál, ismétlés F: Az összes lehetséges
Részletesebben1. Folytonosság. 1. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maximuma és minimuma?
. Folytonosság. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maimuma és minimuma?. (A) Tudunk példát adni olyan függvényekre, melyek megegyeznek inverzükkel? Ha igen,
RészletesebbenJegyzőkönyv. Termoelektromos hűtőelemek vizsgálatáról (4)
Jegyzőkönyv ermoelektromos hűtőelemek vizsgáltáról (4) Készítette: üzes Dániel Mérés ideje: 8-11-6, szerd 14-18 ór Jegyzőkönyv elkészülte: 8-1-1 A mérés célj A termoelektromos hűtőelemek vizsgáltávl kicsit
RészletesebbenIntegrálszámítás. a Matematika A1a-Analízis nevű tárgyhoz november
Integrálszámítás a Matematika Aa-Analízis nevű tárgyhoz 009. november Tartalomjegyzék I. Feladatok 5. A határozatlan integrál (primitív függvények........... 7.. A definíciók egyszerű következményei..................
RészletesebbenA torokgerendás fedélszerkezet erőjátékáról 1. rész
A torokgerendás fedélszerkezet erőjátékáról. rész Bevezetés Az idő múlik, kívánlmk és lehetőségek változnk. Tegnp még logrléccel számoltunk, m már elektronikus számoló - és számítógéppel. Sok teendőnk
RészletesebbenArányosság. törtszámot az a és a b szám arányának, egyszer en aránynak nevezzük.
Arányosság Az törtszámot z és szám rányánk, egyszeren ránynk nevezzük. Az rány értéke zt ejezi ki, hogy z szám hányszor ngyo számnál, illetve szám hányszor kise z számnál. Az rányokkl végezhet két legontos
RészletesebbenKovács Judit ELEKTRO TEC HNIKA-ELEKTRONIKA 137
ELEKTROTECHNIKA-ELEKTRONIKA Kovács Judit A LINEÁRIS EGYENLETRENDSZEREK GAUSS-FÉLE ELIMINÁCIÓVAL TÖRTÉNŐ MEGOLDÁSÁNAK SZEREPE A VILLAMOSMÉRNÖK SZAKOS HALLGATÓK MATEMATIKA OKTATÁSÁBAN ON THE ROLE OF GAUSSIAN
RészletesebbenFeladatok az 5. hétre. Eredményekkel és teljesen kidolgozott megoldásokkal az 1,2,3.(a),(b),(c), 6.(a) feladatokra
Feladatok az 5. hétre. Eredményekkel és teljesen kidolgozott megoldásokkal az 1,,3.(a),(b),(), 6.(a) feladatokra 1. Oldjuk meg a következő kezdeti érték feladatot: y 1 =, y(0) = 3, 1 x y (0) = 1. Ha egy
RészletesebbenFELVÉTELI VIZSGA, július 21. Írásbeli próba MATEMATIKÁBÓL A. RÉSZ
BABE -BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR FELVÉTELI VIZSGA, 9. július. Írásbeli próba MATEMATIKÁBÓL FONTOS MEGJEGYZÉS: ) Az A. részben megjelen feleletválasztós feladatok esetén
RészletesebbenLineáris algebra numerikus módszerei
Hermite interpoláció Tegyük fel, hogy az x 0, x 1,..., x k [a, b] különböző alappontok (k n), továbbá m 0, m 1,..., m k N multiplicitások úgy, hogy Legyenek adottak k m i = n + 1. i=0 f (j) (x i ) = y
RészletesebbenNéhány szó a mátrixokról
VE 1 Az Néhány szó mátrixokról A : 11 1 m1 1 : m......... 1n n : mn tábláztot, hol ij H (i1,,m, j1,,n) H elemeiből képzett m n típusú vlós mátrixnk nevezzük. Továbbá zt mondjuk, hogy A-nk m sor és n oszlop
RészletesebbenMatematika II képletek. 1 sin xdx =, cos 2 x dx = sh 2 x dx = 1 + x 2 dx = 1 x. cos xdx =,
Matematika II előadás elméleti kérdéseinél kérdezhető képletek Matematika II képletek Határozatlan Integrálszámítás x n dx =, sin 2 x dx = sin xdx =, ch 2 x dx = sin xdx =, sh 2 x dx = cos xdx =, + x 2
Részletesebben(1 + (y ) 2 = f(x). Határozzuk meg a rúd alakját, ha a nyomaték eloszlás. (y ) 2 + 2yy = 0,
Feladatok az 5. hétre. Eredményekkel és kidolgozott megoldásokkal. Oldjuk meg az alábbi másodrend lineáris homogén d.e. - et, tudva, hogy egy megoldása az y = x! x y xy + y = 0.. Oldjuk meg a következ
Részletesebben3. előadás Stabilitás
Stabilitás 3. előadás 2011. 09. 19. Alapfogalmak Tekintsük dx dt = f (t, x), x(t 0) = x 0 t (, ), (1) Jelölje t x(t; t 0, x 0 ) vagy x(.; t 0, x 0 ) a KÉF megoldását. Kívánalom: kezdeti állapot kis megváltozása
RészletesebbenDifferenciálegyenletek numerikus megoldása
a Matematika mérnököknek II. című tárgyhoz Differenciálegyenletek numerikus megoldása Fokozatos közeĺıtés módszere (1) (2) x (t) = f (t, x(t)), x I, x(ξ) = η. Az (1)-(2) kezdeti érték probléma ekvivalens
RészletesebbenYBL - SGYMMAT2012XA Matematika II.
YBL - SGYMMAT2012XA Matematika II. Tantárgyfelelős: Dr. Joós Antal Tárgyelőadó: Dr. Joós Antal Tantárgyi leírás Oktatási cél: Azoknak a matematikai alapoknak a megszerzése, melyek a szaktárgyak elsajátításához
RészletesebbenExplicit hibabecslés Maxwell-egyenletek numerikus megoldásához
Explicit hibabecslés Maxwell-egyenletek numerikus megoldásához Izsák Ferenc 2007. szeptember 17. Explicit hibabecslés Maxwell-egyenletek numerikus megoldásához 1 Vázlat Bevezetés: a vizsgált egyenlet,
RészletesebbenV. Koordinátageometria
oordinátgeometri Szkszt dott rányn osztó pont súlypont koordinátái 6 6 6 ) xf + 9 yf + N 7 N F 9 i ) 7 O c) O N d) O c N e) O O 6 6 + 8 B( 8) 7 N 5 N N N 6 A B C O O O BA( 6) A B BA A B O $ BA A B Hsonlón
RészletesebbenREÁLIS GÁZOK ÁLLAPOTEGYENLETEI FENOMENOLOGIKUS KÖZELÍTÉS
REÁLIS GÁZOK ÁLLAPOEGYENLEEI FENOMENOLOGIKUS KÖZELÍÉS Száos odell gondoljunk potenciálo! F eltérés z ideális gáz odelljétl: éret és kölcsönhtás Moszkópikus következény: száos állpotegyenlet (ld. RM-jegyzet
Részletesebbenf függvény bijektív, ha injektív és szürjektív is (azaz minden képhalmazbeli elemnek pontosan egy ısképe van)
Mgyr Eszter. tétel Függvények vizsgált elemi úton és dierenciálszámítás elhsználásávl Függvény: H egy A hlmz minden eleméhez hozzárendelünk egy B hlmz egy-egy elemét, kkor egy A-ból B-be rendelı üggvényt
Részletesebben5.1. A határozatlan integrál fogalma
9 5. Egyváltozós vlós függvények integrálszámítás 5.. A htároztln integrál foglm Az eddigiekben megismertük differenciálás műveletét, melynek lpfeldt: dott f függvényhez megkeresni z f derivált függvényt.
RészletesebbenNumerikus módszerek 1.
Numerikus módszerek 1. 9. előadás: Paraméteres iterációk, relaxációs módszerek Lócsi Levente ELTE IK Tartalomjegyzék 1 A Richardson-iteráció 2 Relaxált Jacobi-iteráció 3 Relaxált Gauss Seidel-iteráció
Részletesebben2. (b) Hővezetési problémák. Utolsó módosítás: február25. Dr. Márkus Ferenc BME Fizika Tanszék
2. (b) Hővezetési problémák Utolsó módosítás: 2013. február25. A változók szétválasztásának módszere (5) 1 Az Y(t)-re vonakozó megoldás: Így: A probléma megoldása n-re összegzés után: A peremfeltételeknek
RészletesebbenJuhász István Orosz Gyula Paróczay József Szászné Dr. Simon Judit MATEMATIKA 10. Az érthetõ matematika tankönyv feladatainak megoldásai
Juhász István Orosz Gyul Próczy József Szászné Dr Simon Judit MATEMATIKA 0 Az érthetõ mtemtik tnkönyv feldtink megoldási A feldtokt nehézségük szerint szinteztük: K középszint, könnyebb; K középszint,
Részletesebben7. HATÁROZATLAN INTEGRÁL. 7.1 Definíció és alapintegrálok
7. HATÁROZATLAN INTEGRÁL 7. efiníió és lpintegrálok efiníió. Legyen f : I R dott függvény (I R egy intervllum). A F : I R függvényt f függvény primitív függvényének nevezzük I-n, h F differeniálhtó I-n,
RészletesebbenImproprius integrálás
Improprius integrálás. feruár 9.. Feldt: d Megoldás: Egy improprius integrált kell meghtározni, mivel fels integrálási htár. Deníció: H z f() függvény integrálhtó z, intervllum ármely, részin- tervllumán,
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Bizonyítások
) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Bizonyítások A szürkített hátterű feldtrészek nem trtoznk z érintett témkörhöz, zonbn szolgálhtnk fontos információvl z érintett feldtrészek megoldásához!
Részletesebben1. Végezd el a kijelölt mûveleteket a betûk helyére írt számokkal! Húzd alá azokat a mûveleteket,
Számok és mûveletek + b b + Összedásnál tgok felcserélhetõk. (kommuttív tuljdonság) ( + b) + c + (b + c) Összedásnál tgok csoportosíthtók. (sszocitív tuljdonság) b b ( b) c (b c) 1. Végezd el kijelölt
Részletesebben3-4.elıadás: Optimális választás; A fogyasztó kereslete
(C) htt://kgt.e.hu/ / 3-4.elıdás: Otiális válsztás; A fogysztó kereslete A fogysztó válsztási roléáj A fogysztó száár elérhetı (egfizethetı) jószágkosrk közül neki legjot válsztj A fogysztó költségvetési
RészletesebbenGAZDASÁGI MATEMATIKA I.
GAZDASÁGI MATEMATIKA I.. A HALMAZELMÉLET ALAPJAI. Hlmzok A hlmz, hlmz eleme lpfoglom (nem deniáljuk ket). Szokásos jelölések: hlmzok A, B, C (ngy bet k), elemek, b, c (kis bet k), trtlmzás B ( eleme z
RészletesebbenGazdasági matematika II. vizsgadolgozat megoldása, június 10
Gazdasági matematika II. vizsgadolgozat megoldása, 204. június 0 A dolgozatírásnál íróeszközön kívül más segédeszköz nem használható. A dolgozat időtartama: 90 perc. Ha a dolgozat első részéből szerzett
RészletesebbenT obbv altoz os f uggv enyek integr alja. 3. r esz aprilis 19.
Többváltozós függvények integrálja. 3. rész. 2018. április 19. Kettős integrál Kettős integrál téglalap alakú tartományon. Ismétlés Ha = [a, b] [c, d] téglalap-tartomány, f : I integrálható függvény, akkor
RészletesebbenNumerikus integrálás április 18.
Numerikus integrálás 2016. április 18. Integrálás A deriválás papíron is automatikusan elvégezhető feladat. Az analitikus integrálás ezzel szemben problémás vannak szabályok, de nem minden integrálható
RészletesebbenAz f ( xy, ) függvény y változó szerinti primitív függvénye G( x, f xydy= Gxy + C. Kétváltozós függvény integrálszámítása. Primitívfüggvény.
Tartalomjegyzék Kétváltozós függvény integrálszámítása... Primitívfüggvény... Kettősintegrál... A kettősintegrál téglalap tartományon... A kettősintegrál létezésének szükséges feltétele... 3 Illusztráció...
RészletesebbenMatematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx =
Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika II Határozatlan Integrálszámítás d) Adja meg az alábbi alapintegrálokat! x n 1 dx =, sin 2 x dx = d) Adja meg az alábbi alapintegrálokat!
RészletesebbenGazdasági matematika II. vizsgadolgozat megoldása A csoport
Gazdasági matematika II. vizsgadolgozat megoldása A csoport Definiálja az alábbi fogalmakat!. Egy eseménynek egy másik eseményre vonatkozó feltételes valószínűsége. ( pont) Az A esemény feltételes valószínűsége
RészletesebbenA torokgerendás fedélszerkezet erőjátékáról 2. rész
A torokgerendás fedélszerkezet erőjátékáról rész Az részben ddig jutottunk, hogy z A ) terhelési esetre vezettünk le képleteket Most további, gykorltilg is fontos esetek következnek B ) terhelési eset:
Részletesebben